Схема люминесцентная лампа: Схемы подключения люминесцентных ламп: обзор популярных методов

Содержание

Простая Схема Подключения Люминесцентных Ламп

В закладкиВ закладкахУдалить 0

Схемы подключения люминесцентных лампСхемы подключения люминесцентных ламп

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Интересные идеи для украшения любимой дачи своими руками Интересные идеи для украшения любимой дачи своими руками

Читайте также:
Интересные идеи для украшения любимой дачи своими руками | 150+ оригинальных фото подсказок для умельцев

Особенности люминесцентных светильников

Читайте также:  Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков

Устройство люминесцентной лампыУстройство люминесцентной лампы

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Читайте также:  [Инструкция] Соединение проводов в распределительной коробке: типы соединений и их применение

Электромагнитный ПРАЭлектромагнитный ПРА

Электромагнитный ПРА

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Читайте также:  Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы

Электронный пускорегулирующий аппаратЭлектронный пускорегулирующий аппарат

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.

Ландшафтный дизайн вашего участка своими руками — (130+ Фото идей & Видео) +ОтзывыЛандшафтный дизайн вашего участка своими руками — (130+ Фото идей & Видео) +Отзывы

Читайте также:
Ландшафтный дизайн вашего участка своими руками — (130+ Фото идей & Видео) +Отзывы

Принцип действия

Читайте также:  Установка газового котла в частном доме: все необходимые требования для быстрого и законного запуска системы отопления (Фото & Видео) +Отзывы

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями

Читайте также:
Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями | Видео + Отзывы

Основные этапы подключения

Читайте также:  Газовый баллон на даче: для плиты, обогревателя и других нужд: правила пользования (Фото & Видео) +Отзывы

Схема подключения одного источника освещения к одному дросселюСхема подключения одного источника освещения к одному дросселю

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Изготовление теплицы своими руками из профильной трубы и поликарбоната: полное описание процесса, чертежи с размерами, полив и обогрев (Фото & Видео)Изготовление теплицы своими руками из профильной трубы и поликарбоната: полное описание процесса, чертежи с размерами, полив и обогрев (Фото & Видео)

Читайте также:
Изготовление теплицы своими руками из профильной трубы и поликарбоната: полное описание процесса, чертежи с размерами, полив и обогрев (Фото & Видео)

Монтаж двух ламп

Читайте также:  Секреты шумоизоляции стен в квартире: используем современные материалы и технологии (25+ Фото & Видео) +Отзывы

Варианты подключенийВарианты подключений

Варианты подключений

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

56 Самых лучших урожайных сортов огурцов для теплицы: описание и фото 56 Самых лучших урожайных сортов огурцов для теплицы: описание и фото

Читайте также:
56 Самых лучших урожайных сортов огурцов для теплицы: описание и фото | +Отзывы

Пара ламп и один дроссель

Читайте также:  Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы

Схема с одним дросселемСхема с одним дросселем

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

Баклажаны: описание и характеристика 53 популярных и необычных сортов для открытого грунта и теплицы (Фото & Видео) +ОтзывыБаклажаны: описание и характеристика 53 популярных и необычных сортов для открытого грунта и теплицы (Фото & Видео) +Отзывы

Читайте также:
Баклажаны: описание и характеристика 53 популярных и необычных сортов для открытого грунта и теплицы (Фото & Видео) +Отзывы

Подключение без дросселя

Читайте также:  Инфракрасный потолочный обогреватель с терморегулятором — современные технологии в вашем доме (Цены) +Отзывы

В данном подключении дроссель не используетсяВ данном подключении дроссель не используется

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Горох: описание 43 самых популярных сортов, низкорослые, среднерослые и сорта зернофуражного назначения (Фото & Видео) +ОтзывыГорох: описание 43 самых популярных сортов, низкорослые, среднерослые и сорта зернофуражного назначения (Фото & Видео) +Отзывы

Читайте также:
Горох: описание 43 самых популярных сортов, низкорослые, среднерослые и сорта зернофуражного назначения (Фото & Видео) +Отзывы

Подключение ЭПРА

Читайте также:  Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы

Подсоединение ЭПРА (электронного пускового механизма)Подсоединение ЭПРА (электронного пускового механизма)

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

Достоинства и недостатки люминесцентных источников света

Читайте также:  Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы

Использование ламп для тепличного выращивания растенийИспользование ламп для тепличного выращивания растений

Использование ламп для тепличного выращивания растений

ПЛЮСЫ:

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.

МИНУСЫ:

  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещенияСравнение параметров разных источников освещения

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

7
Total Score

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

БЕЗОПАСНОСТЬ

6

Оценки покупателей: Будьте первым!

Схемы подключения люминесцентных ламп | ehto.ru

Вступление

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов

Схема подключения люминесцентной лампы ЭМПРА

схема подключения люминесцентной лампысхема подключения люминесцентной лампы

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

две реализации подключения люминесцентной лампыдве реализации подключения люминесцентной лампы

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод  4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

схема подключения двух ламп 18 ваттсхема подключения двух ламп 18 ватт

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

схеме используются стартеры на 220-240 Вольтсхеме используются стартеры на 220-240 Вольт

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

ЭмПРА в едином корпусеЭмПРА в едином корпусе

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

пример ЭПРАпример ЭПРА

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения компактных люминесцентных лампСхемы подключения компактных люминесцентных ламп Схема подключения компактных люминесцентных лампСхема подключения компактных люминесцентных ламп

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVEподключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

подключения нерегулируемым ЭПРА QTP5подключения нерегулируемым ЭПРА QTP5

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

Схемаподключения ЭПРА QT-FQ,ламп Т5Схемаподключения ЭПРА QT-FQ,ламп Т5 Схемы подключения ЭПРА ламп Т5Схемы подключения ЭПРА ламп Т5

©Ehto.ru

Еще статьи

Похожие посты:

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

полное описание как подключить c дросселем и стартером, соединить последовательно или параллельно, с ЭПРА

Время на чтение: 5 минут

АА

Люминесцентные лампы давно и надежно служат нам повсюду. Они светят, когда мы работаем, отдыхаем, учимся, совершаем покупки и занимаемся спортом. Мало кто задумывается, что зажечь свет этой лампы непросто. Для этого требуется специально собранная схема из пусковых и поддерживающих горение устройств.

Конструкция люминесцентной лампы, со времени своего изобретения в 19 веке, практически не претерпела изменений. Изменялись и совершенствовались приборы и схемы для их подключения в сеть. В настоящее время актуальны и надежно работают электромагнитные и электронные устройства для люминесцентных светильников. У каждого из них есть свои достоинства и недостатки.

Варианты соединения светильника дневного света

Люминесцентная лампа (дневного света) представляет собой герметичный сосуд наполненный газом. С двух сторон в него впаяны электроды с вольфрамовыми нитями. Свечение газа под воздействием электричества и позволяет получить освещение.

фото2фото2Чтобы газ в колбе начал светиться, на электроды подается и кратковременно поддерживается высокое напряжение.

Вольфрамовые нити разогревают газ, и он начинает светиться. Когда газ разгорится и начнет источать свет, напряжение спадает и поддерживается в так называемом, тлеющем режиме.

Для запуска и поддержания свечения в люминесцентных лампах были разработаны несколько схем подключения к электрической сети:

  1. С использованием классического электромагнитного балласта (ЭмПРА) – одна лампа и один дроссель.
  2. Две трубки и два дросселя.
  3. Подключения двух ламп от одного дросселя.
  4. Электронный балласт.
  5. Используя умножитель напряжения.

Использование электромагнитного балласта (ЭмПРА)

Стандартная схема с использованием электромагнитного балласта была придумана в 1934 году американцами, и в 1938 уже повсеместно использовалась в США. Она проста и включает в себя помимо лампы дроссель, стартер и конденсатор.

Одна лампа и один дроссель

Дроссель представляет собой индуктивное сопротивление и может накапливать ЭДС самоиндукции. Стартер — это небольшая неоновая лампочка, имеющая биметаллический контакт и конденсатор. Конденсатор стартера служит для подавления радиопомех, а параллельный дросселю для коррекции мощности.

После включения в сеть ток течет через дроссель на спираль лампы, потом через стартер на вторую спираль. Дроссель начинает накапливать электрический заряд. По схеме вначале течет слабый ток, ограниченный сопротивлением стартера. Контакты стартера нагреваются и замыкаются. Ток в схеме резко возрастает, но его безопасную величину обеспечивает дроссель.

Поэтому дроссель и называют – пускорегулирующий аппарат. Большой ток позволяет спиралям разогреть газ в колбе. В это время, контакты стартера остывают и размыкаются, через стартер ток уже не течет. Но дроссель успел накопить энергию и уже отдает ее на спирали лампы. Она начинает светиться. Дроссель, отдав накопленный заряд, в дальнейшем выступает как сопротивление. Поддерживает только тлеющий разряд, позволяя лампе гореть. Стартер уже выключен из схемы и не работает до следующего пуска.

Процесс пуска занимает доли секунды, но может незаметно для глаз, повторится несколько раз.

Достоинства и недостатки

Схема обладает рядом достоинств:

  • Дешевые и доступные комплектующие.
  • Достаточно проста.
  • Надежна.

По сравнению с современным электронным, дроссельное устройство имеет весомые недостатки:

  • Избыточный вес.
  • довольно продолжительное время запуска.
  • Небольшую надежность при низкой температуре.
  • Большее потребление энергии.
  • Шумный дроссель.
  • Нестабильный световой поток.

Две трубки и два дросселя

Применение в одном светильнике двух пар дросселей и ламп ведет к утяжелению и увеличению конструкции. Каждая из пар, имеет свой стартер. Мощность дросселя и лампы в этом случае совпадает, стартер применяется на 220 вольт.

Две схемы с использованием электромагнитного балласта работают в таком случае параллельно.

Достоинством этого варианта является его надежность. Выход из строя одной из веток не влияет на работу другой. Светильник будет работать, хотя бы и наполовину мощности.

Главный недостаток – очень громоздкая конструкция.

В остальном, имеет такие же плюсы и минусы, как и все ЭмПРА.

Включение двух ламп от одного дросселя

Дроссель является самой дорогостоящей деталью люминесцентного светильника. В целях экономии, иногда используется схема подключения двух ламп от одного дросселя.

Две лампы от одного дросселя можно запитать двумя способами:

  1. Последовательно.
  2. Параллельно.

Последовательное соединение двух ламп

фото3фото3Копируется схема стандартного подключения с использованием электромагнитного балласта.

Вторая лампа со своим стартером подключается последовательно первой. Светильник получается дешевле. Но, возникает несколько конструктивных и эксплуатационных проблем.

Конструктивные:

  • Мощность дросселя должна соответствовать суммарной мощности ламп.
  • Стартеры должны быть однотипными, рассчитанными на пониженное напряжение.

Эксплуатационные:

  • При выходе из строя одной из ламп или стартеров не будет работать весь светильник.
  • Усложняется поиск неисправности.

Конструктивные проблемы решаются просто. Необходимо только подобрать из имеющихся в наличии или приобрести подходящие по характеристикам комплектующие.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Для схемы с параллельным соединением, следует выбирать стартеры, рассчитанные на рабочее напряжение от 110 вольт.

Кроме удешевления конструкции, последовательное соединение имеет те же достоинства и недостатки, что и классическое ЭмПРА подключение.

Параллельное соединение

Такую схему собрать несложно. Вторая лампа подключается параллельно и имеет отдельный стартер. К одной из ламп, при таком соединении, целесообразно подсоединить фазосдвигающий конденсатор. Это позволит нивелировать один из недостатков схем ЭмПРА – мерцание. Конденсатор сдвинет фазу одной лампы, сгладит общий световой поток и сделает его приятнее для зрения.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Стартеры при такой сборке следует устанавливать на 220 вольт.

К плюсам электромагнитных схем, параллельное соединение добавляет еще два:

  1. Экономия средств на одном дросселе.
  2. Сглаженный световой поток.

Электронный балласт

Электронный запуск и поддержание горения люминесцентных ламп разработали еще в восьмидесятые и начали применять в начале девяностых годов ХХ века. Использование электронного балласта позволило сделать люминесцентное освещение на 20% экономичнее.

фото 4фото 4При этом сохранились и улучшились все характеристики светового потока. Равномерное, без характерного мерцания освещение стабильно даже при колебаниях напряжения в сети.

Этого удалось достичь благодаря повышенной частоте тока, подаваемого на лампы и большим коэффициентом полезного действия электронных устройств.

Плавный запуск и мягкий рабочий режим позволили почти вдвое увеличить срок эксплуатации ламп. Дополнительно появилась возможность плавного управления яркостью светильника. Необходимость использования стартеров исчезла. С ними пропали и радиопомехи.

Принцип работы электронного балласта отличается от электромагнитного. При этом, выполняет те же функции: разогрев газа, розжиг и поддержание горения. Но, делает это точнее и мягче. В различных схемах используются полупроводники, конденсаторы, сопротивления и трансформатор.

Электронные балласты могут иметь разные схематические исполнения в зависимости от применяемых компонентов. Упрощенно, прохождение тока по схеме можно описать следующим алгоритмом:

  1. Напряжение поступает на выпрямитель.
  2. Выпрямленный ток обрабатывается электронным преобразователем, посредством микросхемы или автогенератора.
  3. Далее напряжение регулируется тиристорными ключами.
  4. Впоследствии один канал фильтруется дросселем, другой конденсатором.
  5. И по двум проводам напряжение поступает на пару контактов лампы.
  6. Другая пара контактов лампы замкнута через конденсатор.

Выгодным отличием электронных систем является то, что напряжение, поступающее на контакты ламп имеет большую, чем у электромагнитных, частоту. Она варьируется от 25 до 140 кГц. Именно поэтому в системах ЭПРА мерцание светильников сведено к минимуму и их свет менее утомителен для человеческих глаз.

Схемы подключения ламп к ЭПРА и их мощность, большинство производителей указывают на верхней стороне устройства. Поэтому потребители имеют наглядный пример, как правильно собрать и подключить прибор в сеть.

В электронных балластах предусмотрено различное количество подключаемых ламп разной мощности, например:

  • К дросселям Philips серии HF-P можно подключить от 1 до 4 трубок, мощностью от 14 до 40 Вт.
  • Дроссели Helvar серии EL предусмотрены для одной – четырех ламп, мощностью от 14 до 58 Вт.
  • QUICKTRONIC торговой марки Osram типа QTР5 также имеют возможность управлять одной – четырьмя лампами, мощностью 14 – 58 Вт.

Электронные приборы имеют массу достоинств, из которых можно выделить следующие:

  • небольшой вес и малую величину устройства;
  • быстрое и сберегающее люминесцентную лампу, плавное включение;
  • отсутствует видимое глазу мерцание света;
  • большой коэффициент мощности, примерно 0,95;
  • прибор не греется;
  • экономия электроэнергии в размере 20%;
  • высокий уровень пожарной безопасности и отсутствие рисков в процессе работы;
  • большой срок службы люминесцентов;
  • отсутствие высоких требований к температуре окружающей среды;
  • способность автоматической подстройки к параметрам колбы;
  • отсутствие шумов во время работы;
  • возможность плавной регулировки светового потока.

Отмечаемый многими, единственный минус электронных систем это их цена. Но она оправдывается достоинствами.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

При покупке электронного балансового устройства не следует слишком экономить. Зачастую дешевые приборы оказываются всего лишь умножителями напряжения. Они не берегут лампы и опасны для жизни.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Мнение эксперта

Изосимов Владимир Николаевич

Электрик высшей категории. Специалист по осветительным приборам.

Задать вопрос эксперту

Напряжение на контактах ламп может быть очень высоким, доходить до 1 тыс. вольт и выше. Такие схемы опасны для окружающих.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

Предыдущая

ЛюминесцентныеДроссели и их назначение при использовании люминесцентных ламп

Следующая

ЛюминесцентныеКуда сдавать: пункты приема энергосберегающих ламп

Схемы подключения люминесцентных ламп дневного света

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)

Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.






Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

3 схемы подключения люминесцентной лампы без дросселя и стартера.

подключение лампы дневного света без дросселя и стартера

Лампы
дневного света несмотря на всю их «живучесть», по сравнению с
обычными лампочками накаливания, в один прекрасный момент также выходят из
строя и перестают светить.

Конечно,
срок их службы не сравнить со светодиодными моделями, но как оказывается, даже
при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить
без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

  • сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

как проверить лампу дневного света дроссель стартер

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из
наиболее серьезных проблем — это вышедший из строя дроссель.

как проверить дроссель лампы дневного света

Большинство
при этом считают такой люминесцентный светильник полностью негодным и
выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Как запустить лампу дневного света без дросселя

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

бездроссельная схема включения лампы дневного света

В ней
используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на
некоторые преимущества (возможность запуска сгоревших ламп дневного света), все
эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый
светильник, чем паять и собирать всю эту конструкцию.

как собрать бездроссельную схему запуска ламп дневного света

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам
понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

энергосберегающая лампочка что внутри

Конечно,
схему с ее использованием нельзя считать абсолютно бездроссельной, так как на
плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам
гораздо меньше, так как экономка работает на частотах до нескольких десятков
килогерц.

Этот
минидроссель ограничивает ток через лампу и дает высоковольтный импульс для
зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была
большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня
уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

можно ли выбрасывать светодиодные лампочки в мусорку

Поэтому
некоторые сознательные и бережливые граждане, которые еще не сдали их в
специальные пункты приема, хранят подобные изделия у себя на полках в
шкафчиках.

зачем хранить сгоревшие энергосберегающие лампочки

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

лампы от комаров инсектицидные лампы работают ли они

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

вред от фитоламп мифы или правда

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

негодная энергосберегающая лампочка вторая жизнь

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

как разобрать энергосберегающую лампочку

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

разбор экономки энергосберегающей лампочки как правильно

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от «нитей накала» колбы. Они обычно идут в виде штырьков.

куда в энергосберегающей лампе подключаются нити накала

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

  • куда подключать люминисцентную лампу к энергосберегающей
  • куда подключать люминисцентную лампу к энергосберегающей

Всего у вас
должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и
естественно не забываем про питание 220В. Это те самые жилки, которые идут от
цоколя.

куда подключать питание 220в на плату энергосберегающей лампочки через предохранитель

Все что
нужно сделать далее, это припаять по два проводника к каждому контакту на плате
(от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного
света.

схема подключения люминесцентной лампы дневного света без дросселя и стартера

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

как запустить лампу дневного света без дросселяподключение лампы дневного света без дросселя

Если стартер
в схеме присутствует, его придется выкинуть или зашунтировать.

Как выбрать мощность энергосберегающей лампы

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

разные размеры светоидодных ламп для переделки под светильники дневного света

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

что такое индукционная лампа сравнение с ДРЛ ДНаТ люминесцентными и светодиодными

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

таблица соответствий мощности разных ламп освещения

Если вы
переделываете светильник с одним дросселем на две лампочки, то учитывайте
мощности обеих.

схема подключения люминесцентной лампы с одним дросселем и двумя лампочками

Почему еще
нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп
дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ,
реальная мощность всегда на порядок меньше заявленной.

Поэтому не
удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от
китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат.
Это не схема не работает — это качество товаров из поднебесной не соответствует
«железобетонным» советским гостам.

2 схемы бездроссельного включения ламп дневного света

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант — это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

бездроссельная схема включения лампы дневного света

Главное
преимущество ее в том, что подобным образом можно запустить светильник не
только без дросселя, но и перегоревшую лампу, у которой вообще нет целых
спиралей на штырьковых контактах.

спираль на лампе дневного света

Для трубок
мощностью 18Вт подойдут следующие компоненты:

  • диодный мост GBU408

диодный мост GBU408

  • конденсатор 2нФ (до 1кв)
  • конденсатор 3нФ (до 1кв)
  • лампочка накаливания 40Вт

Для трубок в
36Вт или 40Вт емкости конденсаторов следует увеличить.  Все элементы соединяются вот таким образом.

как подключить сгоревшую люминесцентнрую лампочку через диодный мост

После чего схемка подключается к лампе дневного света.

подключение сгоревшей лампы дневного света

Вот еще одна
подобная бездроссельная схема.

бездроссельная схема запуска лампы дневного света

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

Зажигаем сгоревшую лампу

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

зачем замыкать штфрьки на лампе дневного света при включении без дросселя

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

подбор конденсаторов и диодов для бездроссельной схемы запуска люминесцентной лампы

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны
необходимые для ионизации, вырываются наружу и при комнатной температуре, даже
если спираль и перегорела. Все происходит за счет умноженного напряжения.

ультрафиолетовой свечение внутри люминесцентных ламп

Весь процесс
выглядит следующим образом:

  • первоначально в колбе разряд отсутствует
  • затем на концы подается умноженное напряжение
  • свет внутри за счет этого моментально зажигается

свет от ламп дневного света

  • далее загорается лампочка накаливания, которая своим сопротивлением ограничивает максимальный ток
  • в колбе постепенно стабилизируется рабочее напряжение и ток
  • лампочка накаливания немного тускнеет

Недостатки
подобной сборки:

  • низкий уровень яркости
  • повышенная пульсация

пульсации света светодиодных ламп какой вред здоровью наносят как влияют на глаза

А еще при питании люминесцентных ламп постоянным напряжением, вам придется очень часто менять полярность на крайних электродах колбы. Проще говоря, перед каждым новым включением переворачивать лампу.

В противном
случае пары ртути будут собираться только возле одного из электродов и
светильник без периодического обслуживания долго не протянет. Это явление
называется катафорез или унос паров ртути в катодный конец светильника.

из-за чего оьбразуются почерения на концах люминесцентной лампы

Там где
подключен «плюс», яркость будет меньше и этот край начнет чернеть
значительно быстрее.

Особенно это
заметно при монтаже светильников ЛБ в холодных помещениях — гараж, сарай,
коридор, подвал. Если колба не прогрета, она может даже не запуститься.

В этом
случае стоит до нее дотронуться теплой рукой и она тут же начинает гореть.

почему лампа дневного света загорается при дотрагивании рукой

Поэтому
запомните — люминесцентная лампа это источник света переменного тока.
Постоянный ей противопоказан и убивает лампу. Особенно импортные дохнут очень
быстро.

люминесцентные лампы для освещения аквариума и растений в нем

Еще один
минус подобных диодных схем, про который мало кто говорит — итоговый ток
потребления из розетки. Для 40Вт ЛБ лампочки при не идеально подобранных
компонентах, ток потребления из сети 220В может доходить до 1А.

А это даже
превышает нагрузку обычной лампы накаливания в 200Вт. Вот это экономия у вас
получится!

Поэтому какой из способов подойдет именно вам, решайте сами, исходя из имеющихся под рукой запчастей и познаний в электронике.

Подробная схема подключения люминесцентной лампы, устройство 

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

Флуоресцентные электронные схемы

3-сторонний диммер CFL балласт — 3-сторонняя система диммирования, широко применяемая в США с обычными лампами накаливания, состоит из лампочки с модифицированным основанием винтового типа Эдисона, которое позволяет выполнять 3 подключения к специальному патрону лампы, который также имеет 3 подключения. __

Инвертор люминесцентных ламп мощностью 40 Вт — Этот инвертор люминесцентных ламп мощностью 40 Вт позволяет управлять люминесцентными лампами мощностью 40 Вт от любого источника 12 В, способного обеспечить ток 3 А.__ Дизайн Аарона Торт

Компактный люминесцентный балласт мощностью 42 Вт — CFL-2 — это электронный балласт для питания компактной люминесцентной лампы мощностью 42 Вт от сети переменного тока напряжением 120 или 230 вольт. Схема была разработана с использованием микросхемы драйвера балласта IR2156. Основные характеристики схемы — это программируемая частота, время предварительного нагрева, порог перегрузки по току и мертвое время. __

Модулятор яркости люминесцентных ламп

5 Вт — Схема была разработана для экспериментов с использованием небольших люминесцентных ламп в качестве источника модулированного света с широкой диаграммой направленности.Схема поражает фонарик узкими импульсами 1 мкс с частотой 10 кГц. Каждый импульс испускает около 10 Вт видимого света. Лампа. . . Схема Дэйва Джонсона P.E.-июнь 2000

Драйвер люминесцентной лампы 8 Вт — Вот схема простой схемы драйвера люминесцентной лампы на двух транзисторах. В схеме используется емкостный балласт для привода трубки. Стандартная люминесцентная лампа мощностью 8 Вт может эффективно работать с этой схемой. Два __ Разработано Radio LocMan

3-сторонний балласт CFL — 3-сторонняя система затемнения, широко применяемая в США с обычными лампами накаливания, состоит из лампочки с модифицированным основанием винтового типа Эдисона, которое позволяет выполнять 3 подключения к специальному патрону, который также имеет 3 соединения.__

Балласт, который можно уменьшить с помощью бытового диммера с фазовым вырезом. — В настоящее время разработана система на основе IR2156, в которой балласт может работать с минимальным мерцанием в значительной части диапазона регулировки диммера, а световой поток можно регулировать в этом диапазоне от максимальной мощности до примерно 10%. __

Адресный диммирующий балласт DALI — был разработан цифровой диммирующий балласт с цифровой адресацией. Он соответствует стандарту DALI, требует очень мало деталей и работает с очень низким энергопотреблением.Приложения включают управление зданием или студийное освещение, где желательно управлять отдельными лампами или группами для экономии энергии, выполнения технического обслуживания ламп или обеспечения идеального качества света. Конструкция включает в себя цифровой диммер балласта, код микроконтроллера и платформу для управления балластом с ПК. __ Разработано Сесилией Контенти и Томом Рибарич, инженером по приложениям, International Rectifier, Lighting Group

Избегайте ошибок при затемнении и отключении подсветки CCFL для ЖК-дисплеев — 14/03/96 Техническая статья EDN: Обеспечение высокоэффективной подсветки ЖК-дисплеев стало проще, чем раньше, благодаря специально разработанным для этой цели ИС, но нескольким элементам схемы дизайн еще требует ухода.Диммирование и выключение — два из них. __ Дизайн схем Джима Уильямса, самого уважаемого автора EDN, скончался в июне 2011 года после инсульта. Ему было 63 года.

Балласт, который можно уменьшить с помощью бытового диммера с фазовой отсечкой. — В настоящее время разработана система на основе IR2156, в которой балласт может работать с минимальным мерцанием в значительной части диапазона регулировки диммера, а световой поток можно регулировать в этом диапазоне от максимальной мощности до примерно 10%. __

Black Light с питанием от батареи на 6 В — Эта схема представляет собой простой ультрафиолетовый свет, который может питаться от батареи на 6 вольт или источника питания, способного обеспечить 1 или более ампер.Принципиальная схема Компоненты C1 0,0047 мкФ моноконденсатор C2 0,1 мкФ Дисковый конденсатор D1, D2 1N4007 Диод FTB __ Дизайн Аарона Торта

Балласт

CFL для 26 Вт / спиральной лампы 220 В переменного тока — эталонная конструкция IRPLCFL5E представляет собой электронный балласт для питания компактных люминесцентных ламп мощностью 26 Вт от 220 В переменного тока. Схема обеспечивает все необходимые функции для предварительного нагрева, зажигания и работы лампы, а также включает фильтр электромагнитных помех и ступень выпрямления. Схема построена на ИС управления балластом IR2520D.__

Балласт CFL для управления светодиодами — 26.04.2007 Идеи дизайна EDN Балласт CFL может управлять цепочкой из 64 светодиодов __ Дизайн схемы Кристиан Рауш, Унтерхахинг, Германия

Компактная люминесцентная лампа (КЛЛ). Часть 1 — Компактные люминесцентные лампы имеют некоторые преимущества по сравнению с классическими лампочками. Это меньшее энергопотребление (до 80%) и гораздо больший срок службы (от 5 до 15 раз). Недостатки — более длинные пуски в основном у более дорогих типов, __ Разработано Radio LocMan

Компактная люминесцентная лампа (КЛЛ).Часть 2 — Неисправности. Обычно неисправен конденсатор С3. В основном это возможно при дешевых лампах, где используются более дешевые компоненты для более низкого напряжения. Если труба не загорится вовремя, есть риск вывести из строя транзисторы Q1 и Q2 и следующие __ Разработано Radio LocMan

Компактный драйвер люминесцентной лампы

— работает от источника постоянного тока 12 В и может управлять до четырех КЛЛ мощностью 9 Вт при полной яркости. Используйте его как часть солнечной электростанции или в любом другом месте, где требуется хорошее освещение без сетевого питания.___ SiliconChip

Преобразователь

управляет люминесцентными лампами — 31.03.94 Идеи дизайна EDN В последние несколько месяцев несколько разработчиков опубликовали схемы для источников питания люминесцентных ламп с холодным катодом (CCFT), а также теперь доступна специализированная ИС источника питания . Тем не менее, значительное количество приложений CCFT __ Дизайн схем Стивен Хагеман, Calex Manufacturing Co, Конкорд, Калифорния

Цифровой балласт DALI

с цифровым затемнением для входа 32 Вт / T8 110 В — Эта эталонная конструкция представляет собой высокоэффективный электронный балласт с цифровым затемнением и высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском.Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592. Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

Цифровой балласт DALI с регулируемой яркостью для входа 36 Вт / T8 220 В — Эта эталонная конструкция представляет собой высокоэффективный электронный балласт с цифровым затемнением и высоким коэффициентом мощности, разработанный для управления типами люминесцентных ламп с быстрым запуском.Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592. Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

DALI Dimming Ballast с цифровой адресацией — Разработан цифровой диммирующий балласт с цифровой адресацией. Он соответствует стандарту DALI, требует очень мало деталей и работает с очень низким энергопотреблением.Приложения включают управление зданием или студийное освещение, где желательно управлять отдельными лампами или группами для экономии энергии, выполнения технического обслуживания ламп или обеспечения идеального качества света. Конструкция включает в себя цифровой диммер балласта, код микроконтроллера и платформу для управления балластом с ПК. __ Разработано Сесилией Контенти и Томом Рибарич, инженером по приложениям, International Rectifier, Lighting Group

Диммирующий балласт DALI для входа 32 Вт / T8 110 В — Эта эталонная конструкция представляет собой высокоэффективный цифровой диммирующий электронный балласт с высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском.Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592. Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

Диммирующий балласт DALI для входа 36 Вт / T8 220 В — Эта эталонная конструкция представляет собой высокоэффективный цифровой диммирующий электронный балласт с высоким коэффициентом мощности, предназначенный для управления типами люминесцентных ламп с быстрым запуском.Конструкция содержит схему активной коррекции коэффициента мощности для универсального входа напряжения, а также схему управления балластом с использованием IR21592. Конструкция также включает микроконтроллер PIC16F628 и схему развязки для подключения к интерфейсу освещения с цифровой адресацией (DALI). __

Симулятор нарушений в линии проверяет линии — 14/10/00 Идеи проектирования EDN Простой имитатор помех в линии, показанный на Рисунке 1, помогает вам проверить устойчивость устройств с питанием от сети к помехам в линии и шумам; вы можете собрать устройство из остатков, найденных в ящике для мусора.Ключевыми элементами являются балластный индуктор (L3) и слегка модифицированный пускатель тлеющего разряда (ST1) от люминесцентной лампы. Стартеры для люминесцентных ламп__ Схема схем Питера Геттлера, APS Software Engineering, Кельн, Германия

Управление VFD с PIC — Вакуумные флуоресцентные дисплеи, известные как VFD (потому что и вакуумный, и флуоресцентный трудно написать), обычно используются в видеомагнитофонах и микроволновых печах. Они относительно яркие и имеют низкое энергопотребление. Некоторые старые калькуляторы использовали их до того, как ЖК-дисплеи стали популярными.Получив несколько частотно-регулируемых приводов Futaba от избыточного дилера, я попытался связать их с PIC. Просьба была внесена в список PIC, и Калле Пихлаясаари вскоре ответил на нее с некоторыми подробностями о VFD. __

Квазирезонансный инвертор

Dual Monostable Drives — 17.02.97 Идеи проектирования EDN Контроллер с переключением при нулевом напряжении (ZVS) обычно объединяет однократную схему, реализованную в системе VCO. Усилитель ошибки контролирует выходное напряжение и регулирует время отключения ГУН, чтобы поддерживать выходное значение на постоянном уровне.Каждый период включения начинается, как только напряжение в первичной обмотке падает до нуля, что устраняет потери коммутации включения / выключения, связанные с переключающим элементом __ Схема схемы Кристофа Бассо, Синар, Франция

.

Люминесцентные лампы — как работает люминесцентная лампа и ее применение

Что такое люминесцентные лампы?

Люминесцентные лампы — это лампы, в которых свет возникает в результате движения свободных электронов и ионов внутри газа. Типичная люминесцентная лампа состоит из стеклянной трубки, покрытой люминофором и содержащей по паре электродов на каждом конце. Он заполнен инертным газом, обычно аргоном, который действует как проводник, а также состоит из жидкой ртути.

Fluorescent lamp Fluorescent lamp Люминесцентная лампа

Как работает люминесцентная лампа?

Когда электричество подается в трубку через электроды, ток проходит через газовый проводник в виде свободных электронов и ионов и испаряет ртуть.Когда электроны сталкиваются с газообразными атомами ртути, они испускают свободные электроны, которые перескакивают на более высокие уровни, а когда они возвращаются на исходный уровень, испускаются фотоны света. Эта излучаемая световая энергия находится в форме ультрафиолетового света, невидимого для человека. Когда этот свет попадает на люминофор, нанесенный на трубку, он возбуждает электроны люминофора на более высокий уровень, и когда эти электроны возвращаются к своему исходному уровню, излучаются фотоны, и эта световая энергия теперь находится в форме видимого света.

Запуск люминесцентной лампы

В люминесцентных лампах ток течет через газовый проводник, а не через твердотельный проводник, где электроны просто текут от отрицательного конца к положительному. Должно быть много свободных электронов и ионов, чтобы позволить потоку заряда через газ. Обычно в газе очень мало свободных электронов и ионов. По этой причине необходим специальный пусковой механизм для введения большего количества свободных электронов в газ.

Два пусковых механизма для люминесцентной лампы

1.Один из методов заключается в использовании выключателя стартера и магнитного балласта для подачи переменного тока к лампе. Выключатель стартера требуется для предварительного нагрева лампы, так что требуется значительно меньшее количество напряжения для запуска образования электронов на электродах лампы. Балласт используется для ограничения силы тока, протекающего через лампу. Без выключателя стартера и балласта большое количество тока будет течь непосредственно к лампе, что уменьшит сопротивление лампы и, в конечном итоге, нагреет лампу и разрушит ее.

Fluorescent lamp using a magnetic ballast and a starter switch Fluorescent lamp using a magnetic ballast and a starter switch Люминесцентная лампа с магнитным балластом и выключателем стартера

Используемый выключатель стартера представляет собой обычную лампу, состоящую из двух электродов, так что электрическая дуга образуется между ними, когда ток течет через лампу. В качестве балласта используется магнитный балласт, который состоит из катушки трансформатора. Когда через катушку проходит переменный ток, создается магнитное поле. По мере увеличения тока магнитное поле увеличивается, и это в конечном итоге препятствует прохождению тока. Таким образом ограничивается переменный ток.

Первоначально для каждого полупериода сигнала переменного тока ток течет через балласт (катушку), создавая вокруг него магнитное поле. Этот ток, проходя через нити трубки, медленно нагревает их, вызывая образование свободных электронов. Когда ток проходит через нить накала к электродам колбы (используется в качестве выключателя стартера), между двумя электродами колбы образуется электрическая дуга. Поскольку один из электродов представляет собой биметаллическую полосу, он изгибается при нагревании, и в конечном итоге дуга полностью гаснет, а поскольку через пускатель не течет ток, он действует как размыкающий переключатель.Это вызывает коллапс магнитного поля на катушке, и в результате возникает высокое напряжение, которое обеспечивает необходимое срабатывание для нагрева лампы, чтобы произвести необходимое количество свободных электронов через инертный газ, и в конечном итоге лампа загорится.

6 причин, почему магнитный балласт не считается удобным?

  • Потребляемая мощность довольно высокая, порядка 55 Вт.
  • Они большие и тяжелые
  • Они вызывают мерцание, поскольку работают на более низких частотах.
  • Они не служат дольше.
  • Потери от 13 до 15 Вт.

2. Использование электронного балласта для запуска люминесцентных ламп

Электронные балласты, в отличие от магнитного балласта, подают переменный ток в лампу после увеличения частоты сети с 50 Гц до 20 кГц.

Electronic Ballast to start a Fluorescent lamp Electronic Ballast to start a Fluorescent lamp Электронный балласт для запуска люминесцентной лампы

Типичная схема электронного балласта состоит из преобразователя переменного тока в постоянный, состоящего из мостов и конденсаторов, которые преобразуют сигнал переменного тока в постоянный и отфильтровывают пульсации переменного тока для выработки постоянного тока.Это постоянное напряжение затем преобразуется в высокочастотное прямоугольное напряжение переменного тока с помощью набора переключателей. Это напряжение приводит в действие резонансный контур LC-резервуара, чтобы произвести отфильтрованный синусоидальный сигнал переменного тока, который подается на лампу. Когда ток проходит через лампу с высокой частотой, он действует как резистор, образуя параллельную RC-цепь с цепью резервуара. Первоначально частота переключения переключателей снижается с помощью схемы управления, что приводит к предварительному нагреву лампы, что приводит к увеличению напряжения на лампе.В конце концов, когда напряжение на лампе достаточно увеличивается, она загорается и начинает светиться. Существует устройство для измерения тока, которое может определять количество тока, протекающего через лампу, и соответственно регулировать частоту переключения.

6 причин, по которым предпочтение отдается электронным пускорегулирующим аппаратам больше

  • Они имеют низкое энергопотребление, менее 40 Вт
  • Потери незначительны
  • Устранено мерцание
  • Они легче и больше подходят для разных мест
  • Они служат дольше

Типичное применение люминесцентной лампы — автоматическое переключение света

Вот вам полезная домашняя схема.Данную систему автоматического освещения можно установить в вашем доме для освещения помещения с помощью КЛЛ или люминесцентных ламп. Лампа автоматически включается около 18:00 и гаснет утром. Таким образом, эта схема без выключателя очень полезна для освещения помещений в доме, даже если заключенных нет дома. Обычно автоматические огни на основе LDR мерцают, когда интенсивность света изменяется на рассвете или в сумерках. Поэтому КЛЛ нельзя использовать в таких схемах. В автоматических осветительных приборах с симисторным управлением возможна только лампа накаливания, поскольку мерцание может повредить цепь внутри КЛЛ.Эта схема преодолевает все подобные недостатки и мгновенно включается / выключается при изменении заданного уровня освещенности.

Как это работает?

IC1 (NE555) — это популярная микросхема таймера, которая используется в схеме в качестве триггера Шмитта для получения бистабильного действия. Действия установки и сброса ИС используются для включения / выключения лампы. Внутри ИС есть два компаратора. Компаратор с верхним порогом срабатывает при 2/3 В постоянного тока, а компаратор с нижним триггером срабатывает при 1/3 В постоянного тока. Входы этих двух компараторов связаны вместе и соединены на стыке LDR и VR1.Таким образом, напряжение, подаваемое LDR на входы, зависит от интенсивности света.

LDR — это разновидность переменного резистора, сопротивление которого изменяется в зависимости от интенсивности падающего на него света. В темноте LDR предлагает очень высокое сопротивление, достигающее 10 Мегаом, но при ярком свете оно уменьшается до 100 Ом или меньше. Итак, LDR — идеальный датчик света для автоматических систем освещения.

В дневное время LDR имеет меньшее сопротивление, и ток течет через него на пороговый (вывод 6) и триггерный (вывод 2) входы IC.В результате напряжение на пороговом входе превышает 2/3 Vcc, что сбрасывает внутренний триггер, и выход остается низким. В то же время триггерный вход получает более 1/3 В постоянного тока. Оба условия поддерживают низкий уровень выходного сигнала IC1 в дневное время. Транзистор драйвера реле подключен к выходу IC1, так что реле остается обесточенным в дневное время.

Auto switching light circuit diagram Auto switching light circuit diagram Схема автоматического переключения света

На закате сопротивление LDR увеличивается, и количество тока, протекающего через него, прекращается.В результате напряжение на входе компаратора пороговых значений (вывод 6) падает ниже 2/3 В постоянного тока, а напряжение на входе компаратора триггера (вывод 2) — менее 1/3 В постоянного тока. Оба эти условия вызывают высокий уровень на выходе компараторов, который устанавливает триггер. Это изменяет выход IC1 на высокий уровень и запускает T1. Светодиод указывает на высокий выход IC1. Когда T1 проводит, реле активируется и замыкает цепь лампы через общий (Comm) и NO (нормально разомкнутый) контакты реле.Это состояние продолжается до утра, и IC сбрасывается, когда LDR снова подвергается воздействию света.

Конденсатор C3 добавлен к базе T1 для чистого переключения реле. Диод D3 защищает Т1 от обратного ЭДС при выключении Т1.

Как настроить?

Соберите схему на общей печатной плате и поместите в противоударный корпус. Коробка переходника вставного типа — хороший выбор для включения трансформатора и цепи. Разместите блок в местах, доступных солнечному свету в дневное время, предпочтительно вне дома.Перед подключением реле проверьте выход с помощью светодиодного индикатора. Отрегулируйте VR1, чтобы светодиод загорелся при определенном уровне освещенности, например, в 18:00. Если все в порядке, подключите реле и соединения переменного тока. Фаза и нейтраль могут быть отведены от первичной обмотки трансформатора. Возьмите фазный и нейтральный провода и подключите к патрону. Вы можете использовать любое количество ламп в зависимости от номинального тока контактов реле. Свет от лампы не должен попадать на LDR, поэтому установите лампу соответствующим образом.

Осторожно : На контактах реле 230 В во время зарядки. Поэтому не прикасайтесь к цепи, когда она подключена к сети. Используйте хорошую оплетку для контактов реле, чтобы избежать удара.

Фотография предоставлена:

  • Люминесцентная лампа от wikimedia
  • Запуск люминесцентной лампы с использованием магнитного балласта и выключателя стартера от wikimedia

.

Light Laser LED Circuits :: Next.gr

— Стр. 2

  • Схема основана на IC1, которая представляет собой микросхему таймера 555 в нестабильном режиме. Он питает 6-дюймовую люминесцентную лампу мощностью 4 Вт от источника питания 12 В, потребляя 300 мА. Он также может питаться от универсального адаптера переменного / постоянного тока подходящего номинала. Достоинства конструкции: ….

  • Это недорогой проект для люминесцентных ламп мощностью 20 или 40 Вт.Однако наиболее эффективным является использование лампы мощностью 40 Вт (или двух последовательно соединенных ламп мощностью 20 Вт). Это схема, которую можно собрать из компонентов ящика для мусора или собрать из набора. Строить очень просто ….

  • Вот схема драйвера на 20 Вт. Я разработал эту схему в 1985 году и использовал ее для создания лампы, которая нашла широкое применение как в качестве фонарей для кемпинга, так и в качестве аварийного освещения во время частых в то время отключений электроэнергии.Два транзистора работают как ….

  • Этот инвертор очень прост в сборке, надежен и даже достаточно мощный, чтобы зажечь люминесцентную лампу мощностью 15 Вт (если вы хорошо охладите транзистор). Единственная труднодоступная деталь этой малышки — это так называемый желтый инверторный трансформатор. Это миниатюрный кайф ….

  • Лампы обычно используются как балластные или электронные балластные инверторы.Здесь он используется для уменьшения реактивного сопротивления конденсатора напряжения. Интересен также способ поджига вспомогательных электродов с использованием резисторов более 150 Ом. Для начала просто задействуйте всего ….

  • Это схема люминесцентной лампы мощностью 40 ватт — амбициозность работает в изобилии, как у местных стробосов.за исключением того, что используется излучающая трубка. Таким образом, излучающая трубка zG ndbereit древесного угля постоянна, два электрода трубки непрерывно ….

  • ..

  • ..

  • ..

  • ..

  • ..

  • В этой статье я предложу схему драйвера для люминесцентной лампы 12 В / 5 Вт, в этой схеме использовался обычный понижающий трансформатор с 220 на 10 В, обратный ступени 12 В …

  • Схема была разработана для экспериментов с использованием небольших люминесцентных ламп в качестве источника модулированного света с широкой диаграммой направленности.Схема поражает фонарик узкими импульсами 1 мкс с частотой 10 кГц. Каждый импульс испускает около 10 Вт видимого света. Светильник ….

  • Это схема лампы с аудиоуправлением. Для этой схемы требуется вход низкого напряжения, такой как предусилители, регулятор тембра или общий линейный аудиовыход. Это …

  • Эта схема питает 6-дюймовую люминесцентную лампу мощностью 4 Вт от источника питания 12 В, потребляя 300 мА…

  • Эта схема представляет собой инверторную схему мощностью 8 Вт. Схема по-прежнему предназначена для питания люминесцентной лампы мощностью 8 Вт от источника питания 12 В с использованием дешевого инвертора, в основном на основе транзистора ZTX652. Инвертор будет работать от источников питания в ….

  • ..

  • Люминесцентные лампы существуют уже много лет, но для большинства людей они остаются загадкой. В этом нет ничего удивительного, поскольку их работа непростая. Сама трубка содержит смесь газов, но активным ингредиентом является ртуть …..

  • Это недорогой проект для люминесцентных ламп мощностью 20 или 40 Вт.Однако наиболее эффективным является использование лампы мощностью 40 Вт (или двух последовательно соединенных ламп мощностью 20 Вт). Эту схему можно собрать из компонентов ящика для мусора или собрать из набора. Строить очень просто ….

  • Спасибо Дону Клипштейну (don @ misty.com) за его комментарии и дополнения к этому документу. Его веб-сайт () является ценным источником информации о технологии освещения в целом, а также включает дополнительные статьи, посвященные флуоресцентным лампам и лампам….

  • ..

  • Этот проект был намеренно направлен на разработку очень недорогого детектора космических лучей с использованием обычных люминесцентных ламп.Он был основан на вариации эксперимента, проведенного в 2000 г. лабораториями CERN (Европейской организации ядерных исследований) доктором …..

    .

  • Компактные люминесцентные лампы

    [CFL] невысоки, их много, и их легко найти. К сожалению, нынешний урожай этих ламп редко длится столько же, сколько их гарантия.Обычно выходит из строя только электроника, а ламповая часть лампы в сборе все еще очень …

  • Амбит работает в изобилии, как у аборигенов Стробос. за исключением того, что используется излучающая трубка. Таким образом, излучающая трубка zG ndbereit древесного угля постоянная, два электрода трубки непрерывно питаются агентом Ta1 электричеством.Это принятое делает двоих ….

  • Люминесцентная лампа предъявляет несколько уникальных требований, чтобы заставить ее включиться и оставаться включенной. Как этому обратноходовому преобразователю удается делать эти вещи. Я сначала огляделся, чтобы увидеть, смогу ли я найти схему этой сборки люминесцентной лампы, но …

  • Типовая двухконтактная лампа F71T12 мощностью 100 Вт, используемая в соляриях.Обратите внимание на символ (Hg), указывающий на то, что он содержит ртуть. В США этот символ теперь требуется на всех люминесцентных лампах, содержащих ртуть. [1] Внутри торца двухштырьковой лампы предварительного нагрева. В этой лампе ….

  • ..

  • ..

  • Когда возникает потребность в освещении с батарейным питанием, например, для кемпинга, коттеджей на солнечных батареях, автомобилей, лодок, самолетов или в чрезвычайных ситуациях, люминесцентные лампы имеют большое значение. Во-первых, они намного эффективнее ламп накаливания, поэтому производят ….

  • ..

  • ..

  • Многие люди не смогли найти трансформатор, необходимый для проекта «Черный свет», поэтому я огляделся, чтобы увидеть, смогу ли я найти драйвер люминесцентной лампы, для которого не требуются какие-либо специальные компоненты.Наконец-то я нашел его в Electronics Now. Вот оно ….

.Схема и проект драйвера люминесцентной лампы

— электрические схемы

1. Запуск люминесцентной лампы на инверторе

Драйверы 12 В для люминесцентных ламп сложны из-за компромисса между хорошей эффективностью работы и возможностью запуска лампы. Требования противоречат друг другу. Вот 7 способов запуска:

1.1 Чистый однотранзисторный инвертор с обратным ходом, создает скачки напряжения в диапазоне киловольт в режиме холостого хода, так что лампа запускается.Недостаток: одна нить накала испаряется и затемняет лампу, делает ее электрически несимметричной и сокращает срок службы. Высокий уровень радиации (EMC).

1.2 Нагрев нитей с помощью подходящих обмоток трансформатора. Проблема в том, что эта мощность нагрева подавляет скачки напряжения. Вы получаете только одно из этих двух стартовых средств. Но дополнительный одиночный большой скачок напряжения (например, сокращение вторичной обмотки вручную всего на несколько миллисекунд с помощью кнопки) запустит лампу.

1.3 Ионизационный провод вдоль лампы. Этот провод действует только там, где есть разность потенциалов, он ионизируется вокруг противоположной нити накала. Мы можем рассматривать эту меру как дешевую и простую дополнительную уловку, но она не является прорывом, не способна только запустить.

1,4 Ионизационный провод плюс дополнительная специальная высоковольтная обмотка. Это действительно полноценный стартер. Обмотка может отключаться во время работы или может питаться от отдельного пускового генератора, который отключается как единое целое.Возможно, многообещающе, но необычно.

1,5 Цепь стартера со стороны лампы. Такой описан в книге Нюрманна «Professionelle Schaltungstechnik», выпуск 2, стр. 180. Он использовал довольно экзотический тиристорный тетрод BRY20, чтобы последовательно подключить нити ко всей вторичной обмотке для эффективного предварительного нагрева. Когда лампа зажглась, тетрод выключается. Генератор представляет собой генератор синусоидального режима, и напряжение холостого хода достаточно высокое для запуска, но не содержит всплесков. Хорошо известный патрон с тлеющим пуском неприменим для небольших высокочастотных инверторов, он предназначен только для частоты сети и индуктивного балласта.

1.6 Ссылаясь на схему, приведенную здесь, если отключить конденсатор 0,68 мкФ (параллельно первичной обмотке), генератор перейдет не в синусоидальный режим, а в режим обратного хода и вызовет скачки напряжения, которые немедленно начнутся. флуоресцентный. Для этого потребуется либо ручной запуск, например, кнопка с размыкающим контактом (NC), либо внешнее реле, выполняющее то же действие автоматически.

1,7 Вторичная обмотка предназначена для выработки достаточно высокого напряжения, но без скачков напряжения.Конденсатор включен последовательно со вторичной обмоткой. Поначалу высокая частота холостого хода и напряжение передаются на лампу напрямую, так как она электрически неактивна. После запуска напряжение падает с нескольких сотен вольт до рабочего напряжения, которое составляет около 70 В для стержня мощностью 8 Вт. Дополнительно могут применяться ионизационные провода. Недостатком является определенная потеря эффективности, поскольку мы (очень упрощенно) сначала генерируем высокое напряжение, а затем используем только его часть. Преимущество заключается в самозапуске без ручных кнопок или внешних специальных пусковых цепей.

2. Схема

Работает в соответствии со способом запуска 1.7, как описано выше.

Транзистор имеет резонансный контур в эмиттерной линии и работает в режиме общего коллектора. Для этого необходимо, чтобы напряжение обратной связи было выше рабочего напряжения, поэтому обмотка обратной связи имеет большее количество витков, чем первичная обмотка.

У меня были транзисторы, которые превосходили все остальные, но это очень экзотические PNP-комплементарные типы еще более экзотического высокочастотного усилителя мощности 2SC1306.Тестировал также BD249C, они работают хорошо. Согласно паспортам, также должен работать 2N 4923.
Ищите транзисторы с быстрым переключением, ток 2А, способные обрабатывать высокие частоты. Размер ТО-220 или больше.

Резистор, состоящий из 2 x 1 кОм, включенных параллельно, раньше был одиночным резистором на 470 Ом, но стал слишком горячим для длительной надежной работы, поэтому я использовал 2 x 1 кОм = 500 Ом только для тепловой мощности.

Конденсатор 1uF 50V наверняка может быть танталового типа, а возможно, еще и качественным электролитическим.Его цель — создать делитель напряжения для высокой частоты, но в первый момент запуска (после принятия его заряда) он делает резистор 500 Ом доминирующим для запуска генератора.

Конденсатор 0,68 мкФ 400 В нагружен частотой от 12 до 30 кГц, и во избежание чрезмерных диэлектрических потерь рекомендуется выбрать большое номинальное напряжение. Но, наверное, здесь тоже подойдет рейтинг 160В.
Вторичный конденсатор — самая важная часть. В режиме холостого хода он передает около 700 В (пик / пик) на флуоресцентный свет, в работе он нагружается более 200 В при 12 кГц.Диэлектрический материал должен быть отличным, иначе мы должны позаботиться о том, чтобы был большой запас по номинальному напряжению.
Керамика не подходит. Типы FKP и STYROFLEX (полистирол) хороши и могут быть рассчитаны на 400 В переменного тока. Все другие более распространенные типы, такие как MKP или «без названия», должны быть рассчитаны на напряжение более 1000 В.
Я использовал 2 x 5,6 нФ параллельно 1,5 кВ, что дало 11,2 нФ. Это значение не критично, но немного влияет на ток лампы. Хорошим выбором будет 2 последовательных разъема по 22 нФ, 400 В (или 630 В).Если они нагреваются во время работы, они перегружаются.

3. Подготовка лампы

Благодаря небольшой ручной работе мы улучшаем пусковые характеристики. Обычный ионизационный провод выглядит так:

Вы найдете его в переносных лампах 12 В для мастерских или вашего автомобиля. Он действует только там, где есть заметная разность потенциалов, и неактивен вблизи того места, где он подключен. Так работает только на одном конце лампы.

Я использую перекрестную двойную ионизацию.К стеклянному стержню с прозрачным силиконом приклеены две тонкие проволоки диаметром 0,1 мм. Они соединены с алюминиевыми кольцами, которые окружают концы трубки. Алюминиевые кольца создают высокую электрическую прочность на лету по сравнению с расположенными рядом нитями, поскольку они находятся под противоположным потенциалом. Два провода вдоль трубки ионизируют всю трубку. Так действуем по всей лампе

.

Want to say something? Post a comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *