Вязка углов арматуры: Армирование углов ленточного фундамента

Содержание

Армирование углов ленточного фундамента: полезные советы

Армирование углов ленточного фундамента необходимо для упрочнения конструкции всего строения, исключения возможности деформаций и разрушения строения под воздействием больших нагрузок и внешних негативных факторов. Углы и примыкания данного типа конструкции фундамента испытывают сильные разнонаправленные нагрузки, поэтому работы нужно выполнять в соответствии с установленными нормами и стандартами.

армирование углов фундамента

армирование углов фундамента

В противном случае вся конструкция может разрушиться, привести к расслоениям, отколам, деформациям. При условии же правильного выполнения задачи железобетонная конструкция будет прочной, сможет противостоять всем нагрузкам, не будет бояться сил растяжения и сжатия.

Зачем нужно армировать ленточный фундамент

Необходимость армирования ленточного фундамента на обычном грунте или на суглинке в углах объясняется свойствами строительных материалов. Сам бетон недостаточно пластичен и прочен, чтобы легко выдерживать растяжения и другие нагрузки, работающие в разных частях фундамента, особенно если речь о неравномерных нагрузках (провоцируются пучением грунта, температурными перепадами, влагой и т.д.).

В процессе деформации в бетонной конструкции появляются зоны растяжения и сжатия. И если сжатие бетон пережить может, то растяжение его разрушает. Для того, чтобы противодействовать этой нагрузке, и нужна армировка: внутри бетонной конструкции располагают металлический каркас, который воспринимает растягивающие нагрузки и существенно укрепляет материал, продлевая срок эксплуатации всего строения.

порвало фундамент

порвало фундамент

Угол ленты и места примыкания – самые важные точки конструкции, на них оказывается большее давление в сравнении продольными частями, поэтому их упрочнению нужно уделить особое внимание.

Как сделать правильный армирующий каркас

Правильное усиление важных конструкционных элементов играет очень важную роль в обеспечении длительного срока службы и эксплуатационных характеристик всего сооружения. Поэтому делать все самостоятельно можно лишь после тщательного изучения параметров и норм, уделяя внимание каждому этапу. В противном случае лучше предоставить выполнение работ профессионалам.

схема каркаса

схема каркаса

Основные требования:

  • Пруты арматуры в углах вязать нужно с соблюдением расстояния между стержнями, равного 50-80 сантиметрам.
  • Расстояние между продольными арматурными поясами составляет 50 сантиметров, их количество рассчитывается в каждом отдельном случае.
  • В обе стороны от каждого угла устанавливают 3-4 пояса поперечно, с шагом 0.5 от главного. Таким же образом делают в углах.
  • Диаметр рабочей арматуры должен составлять 1-2 сантиметра, диаметр дополнительных прутьев может составлять 4-10 миллиметров.
  • Четкое соблюдение последовательности работ: сначала в землю вбивают вертикальные прутья, потом к вертикальным стержням приваривают сверху и снизу горизонтальные.
  • В углах стыков желательно не делать, обязательно использование гнутых стержней, на прямых участках стыков лучше не делать вообще, если же стык делается, то только методом нахлеста с такими параметрами: 50 диаметров стержней для бетона М200, 40 – для М250, 35 – для М300. Стыкование продольной арматуры по вертикали возможно лишь с разносом минимум 60 сантиметров либо 1.5 общей длины нахлеста.
  • Основные способы соединения материалов: сварка, стыковка внахлест, с применением механических приспособлений. Вязка арматуры на углах ленточного фундамента осуществляется исключительно с использованием специальной проволоки.
  • Для формирования после заливки защитного бетонного слоя толщиной минимум 5 сантиметров используют специальные приспособления – снизу устанавливают «лягушки» или «стульчики», по бокам – «звездочки».

Виды углов

Прежде, чем будет выполнена вязка углов, необходимо определить тип угла и в соответствии с этим организовывать работы, подбирать материалы. Острые углы в вязке наиболее сложны, тупые – простые.

Углы бывают:

виды углов

виды углов

1. Прямые – распространены больше всего. Могут быть Т или Г-образными.

2. Тупые – произвольные (эркеры). Развернутые углы от 160 градусов легки в работе – арматура прокладывается от внешней к внутренней стороне, увеличивая частоту поперечин в два раза в сравнении с остальной длиной фундамента, а потом перевязывается. Углы 90-160 градусов требуют установки вертикальных стержней.

3. Острые – в частном малоэтажном строительстве встречаются нечасто, очень сложны в работе.

Материалы для армирования

Для армирования угла и примыкания мелкозагубленного фундамента выбирают только качественную арматуру диаметром 10-20 миллиметров. Для поперечных и вертикальных конструкционных частей допускается брать гладкие прутья диаметром 8-12 миллиметров, для вязки – проволоку сечением 0.8-1.2 миллиметра. Стержни должны быть рифлеными, ровными, длинными (чтобы стыков было по минимуму), без коррозии и больших участков ржавчины.

a400

a400

Стандарты допускают использование арматуры:

  • Позволяющей соединять части в бетонные и железобетонные конструкции с использованием сварочных работ (индекс С в маркировке).
  • Стойкость к коррозии, которая может появиться в бетонном составе (в маркировке обозначается буквой К).
  • Стойкость и прочность при фиксации частей вязальной проволокой – обычно такие стержни производят из стали 35ГС, класс А-2 и А-3. Дуговой сваркой они не соединяются.

Раствор готовят из цемента марки М200, М300, М400, щебня или гравия, песка и воды. Пропорцию рассчитывают, исходя из поставленных задач и особенностей эксплуатации.

Анкеровка при перевязке

Выбор типа соединения зависит от параметров арматуры и участка конструкции, в которой оно выполняется. Металлические стержни гнут тисками или на специальном станке.

Виды анкеровки:

  • Прямая – наименее желательна, соединение двух армирующих прутьев в углах данным способам актуально лишь для небольших зданий. Выполняется путем простого наложения стержней внахлест с последующей перевязкой с помощью проволоки. Здесь важно обеспечить максимальную жесткость, чтобы избежать сдвигов при заливке бетона.
  • Крюк – сгиб на 180 градусов таким образом, чтобы конец прилегал к главной части прута.
  • Лапка – конец стержня сгибается под прямым углом.
  • Петля – прут складывают вдвое, петля находится в углу.
  • Путем приваривания поперечин.
  • С дополнительным использованием стального уголка или шайбы.

анкеровка

анкеровка

Последние два способа могут использоваться лишь для анкерования продольной арматуры, которую допускается сваривать. Лапка и прямая анкеровка используются лишь с прутьями различного диаметра.

Неверное армирование углов

Армировка углов ленточного фундамента – задача сложная, поэтому неудивительно, что в процессе мастера допускают ошибки, которые, как правило, схожи.  Ошибки в расчетах и экономия на используемых материалах, попытки сделать все проще и быстрее обычно оборачиваются большими проблемами – как минимум появлением деформаций и трещин, как максимум – разрушением здания.

ошибки

ошибки

Варианты армирования

Правильная схема армирования углов предполагает обязательное выполнение анкеровки, формирование разных по силе связей для разных зон стены. Ведь углы и примыкания постоянно испытываются серьезными нагрузками и должны быть максимально жесткими.

Просто вязать продольные стержни прямо нельзя, это не обеспечит должной прочности конструкции. Всего существует три способа армирования данного типа.

Основные методы армирования:

П-образная укладка

Используются специальные П-образные элементы по углам и местам примыканий. Ширина элемента равна ширине каркаса, длина – минимум 50 диаметров продольного стержня. Элементы привязываются к главным продольным стержням открытой частью стороны П в направлении угла, в каждом из которых устанавливают по два элемента (для каждого горизонтального уровня). В местах примыкания достаточного одного на уровень.

п образно

п образно

Соединения типа «лапка» и внахлест

Жесткость обеспечивается за счет сгиба свободного конца, внутреннюю арматуру к горизонтальной привязывают внахлест, а ко внешней связке вяжут лапкой. Шаг поперечной угловой и вертикальной арматуры рассчитывается в соотношении 3/8 высоты фундамента. Длина лапки должна быть 3-5 сантиметров.

виды

виды

С использованием Г-образного хомута

Внутренние продольные прутки жестко крепят к внешним продольным внахлест, шаг составляет ¾ высоты фундамента, внешний и внутренний продольный каркас соединяется дополнительными поперечными элементами. Длина соединения внахлест равна 50 диаметрам горизонтальных прутьев.

Правильное армирование углов мелкозаглубленного ленточного фундамента

  • Каркас располагают на расстоянии в 5 сантиметров от фундамента.
  • Соединения выполняют арматурой, выгнутой в 90 градусов, без сварки. Крепят на прямых участках проволокой.
  • Обязательно на дно траншеи нужно выложить подушку из песка и гравия, что обеспечит достаточную прочность основания.

В углу обычно концентрируется максимум напряжения и разные слои каркаса испытывают различные нагрузки. И основная задача армировки – сделать так, чтобы стальные стержни воспринимали эти нагрузки равномерно, полностью забирая на себя. И если металлические стержни будут соединены неверно или с разрывами, то фундамент просто превратится в набор деталей, каждая из которых сама по себе не даст никакого толку, а бетон быстро расслоится, покроется отколами и трещинами.

Поэтому все работы нужно выполнять правильно, не допуская в указанных местах простых перекрестий концов прутьев, как часто можно встретить в строительной практике.

Как правильно армировать углы

Сначала выполняют чертежи каркаса, где прописывают основные значения, рассчитывают важные параметры и показатели, определяют необходимый минимум арматуры в расчете. Потом реализуют задачу.

Схема армирования:

  • Вертикальные стержни зафиксировать с интервалом в 60 сантиметров.
  • Вязальной проволокой скрепить горизонтальные силовые прутья сверху и снизу контура в местах их пересечения.
  • Усилить зоны, которые находятся посредине пролетов, дополнительными стержнями.

Ошибки при вязке арматуры на углах:

  • Арматуру просто скрещивают в углах, скрепляя проволокой. Это неправильно, хотя, схема достаточно распространенная.
  • В углах стержни гнут, но не анкеруют. Так, СП 50-101-2004 говорит, что сборномонолитные и монолитные фундаменты должны быть жестко связанными перекрестными лентами. Соединение обычным перекрестием – это разрыв в месте сгиба, что не обеспечит достаточной жесткости. В местах перехлеста стержни можно соединять лишь указанными способами: механически муфтами, свариванием, без сварки (внахлест рифленые прутья с прямыми концами, с поперечными или приваренными стержнями, с загибами на концах).
  • Использование только одного контура обвязки.
  • Использование двух контуров без должного крепления их вместе.
  • Отсутствие конструкционной связи между арматурным каркасом и подошвой основания.
  • В углах строения стержни соединили при помощи сварки, проигнорировав другие методы соединения.

Как правильно вязать арматуру

Вязка арматуры в углах ленточного фундамента осуществляется с использованием таких средств: болгарка, прутья, газо- или электросварочный аппарат. Сначала все просчитывают – от расчета зависит количество прутьев, их диаметр, способы вязки. Особое внимание уделяют усилению подошвы, изготавливая конструкцию на объекте.

Сваривают два контура, один с отступом в 5 сантиметров от внешнего периметра траншеи фундамента. Второй располагают на таком же расстоянии от внутреннего края. Шва сварки не должны быть по углам. Гнут арматуру под прямым углом, места сгиба разогревают, сварку используют только там, где нагрузки сравнительно невысокие.

Далее конструкцию опускают в траншею, в углы устанавливают вертикальные прутья. Штыри вбивают в грунт глубоко, контуры приваривают к вертикальным стойкам. Верхняя часть фундамента тоже должна быть выполнена из двух контуров.

До того, как вязать арматуру, необходимо изучить типы связки. Простые соединения не подходят в данном случае. Обязательно использование гнутых элементов, которые будут продолжать продольные прутья каркаса и выступать за угол на 60-70 сантиметров. Если длины стержня недостаточно, можно скреплять хомутами со сторонами, равными минимум 50 диаметрам используемой арматуры.

типы вязки арматуры

типы вязки арматуры

Полезные советы по правильной укладке арматуры

  • Расстояние между расположенными вертикально стержнями до 20 миллиметров должно быть равно 50-80 сантиметрам.
  • Применять нужно рабочие стальные прутья диаметром 1-2 сантиметра, дополнительные элементы должны быть в сечении не менее 4-10 миллиметров.
  • Желательно использование подкладок не из металла, которые зафиксируют каркас на нужном расстоянии от грунта и ближних конструкций.
  • Горизонтально расположенные прутья монтируются исключительно в загнутом виде.
  • Соединять встык нельзя.

Процесс армирование углов

Ввиду того, что на углы ленточного фундамента припадает основная часть нагрузки, долговечность и отсутствие деформаций напрямую зависят от правильности и качества выполнения упрочнения. Правила выполнения работы базируются на строительных нормативах и показателях.

Основные положения правильного армирования

  • Максимальные нагрузки идут на продольную часть ленточного фундамента – эти участки упрочняются самыми толстыми стержнями сечением до 15 миллиметров.
  • Напрямую влияет на жесткость и качество усиления плотность грунта (особенно сложно, когда грунты рыхлые, неустойчивы, глинистые): ленточный фундамент на суглинке должен выполняться с максимальными характеристиками жесткости из большего слоя прутьев большого сечения.
  • Прутья должны быть рифлеными, с хорошей адгезией с бетонной смесью.
  • Углы укрепляются более тщательно, чем стены и места примыкания.

Как правильно просчитать металлический каркас армирования

  • Каркас должен находиться от края основания на расстоянии минимум 5 сантиметров.
  • Нижние стержни не могут располагаться ниже уровня грунта больше, чем на 5 сантиметров.
  • Между вертикальными стойками выдерживают расстояние в 50-80 сантиметров.
  • Диаметр несущих прутьев опоры – 10-20 миллиметров, дополнительных – 4-10 миллиметров, проволоки для вязания – меньше.

Прежде, чем приступать к работе, обязательно нужно прорисовать чертеж, составить схему. Так удастся избежать самых распространенных ошибок.

Алгоритм изготовления металлического каркаса

Сначала вбивают в землю несущие стержни диаметром 10-20 миллиметров шагом 50-60 сантиметров. Снизу и сверху варятся несущие стержни в вертикальном положении, потом привариваются рабочие дополнительные с шагом около 8-10 сантиметров.

Нюансы дополнительного армирования углов

  • Сварка на стыках конструкции недопустима, да и прямые участки так не скрепляются – лучше вязать.
  • На углах прутки варят чуть под наклоном, сгибая заранее.
  • Перекрестные крепления для упрочнения ленточного основания на стыках стен не допускаются.
  • Рекомендовано дополнительное крепление каждого прутка согнутой арматурой.
  • Все усиление должно превратиться в монолитную конструкцию из стержней каркаса, а не сборку из отдельных блоков.

Правила хорошего строительства

При выполнении работы используются только качественные материалы, соответствующие указанным физическим характеристикам. Именно фундамент требует использования самых лучших материалов, так как это основа и от того, насколько она получится надежной, зависит срок службы всего здания.

Нужно уметь правильно применять разные типы соединений в зависимости от контуров каркаса – в одних местах нужна сварка, в других недопустимо сваривать и нужно вязать. Делать наугад нельзя ни в коем случае. Каркас можно опускать в готовый котлован, заливать бетоном обязательно в один заход, чтобы избежать ослабляющих основание стыков и расслоений.

Для создания нужной монолитности основания на стыках стен используют гнутые стержни и установка их диагональная – под углом к основной сетке. Так удается добиться нужных характеристик надежности и прочности.

Армирование тупых углов

Когда выполняется фундамент сложной конфигурации, могут появляться углы более 90 градусов. Их упрочняют в соответствии со специальными схемами и используют арматурную конструкцию двух видов.

Первый способ

Выполняется загиб наружной продольной арматуры под установленным углом. Продольные внутренние хлысты загибаются аналогичным образом, потом вяжутся к продольной внешней части каркаса. Каждая загнутая часть продольного внутреннего прутка должна составлять минимум 50 диаметров основных стержней.

Второй способ

Осуществляется с использованием дополнительных гнутых элементов (они уже подготовлены и соответствуют нужному углу). Изогнутый элемент должен обладать плечом, равным минимум 50 диаметрам продольных прутьев. Перехлест в вязке может быть в диапазоне 35-50 значений сечения арматуры (зависит от марки цемента, который используется в приготовлении раствора).

Заключение

Армирование углов и примыканий с помощью металлических элементов играет очень важную роль и напрямую влияет на прочностные характеристики сооружения. Правильно выполненные работы данного этапа являются главным залогом длительной и комфортной эксплуатации всех помещений здания, обеспечения необходимых характеристик прочности, стойкости и сохранности на протяжении многих лет.

Армирование углов ленточного фундамента

Дата: 15 января 2019

Просмотров: 4814

Коментариев: 0

Основой любой жилой производственной постройки является фундамент. Продолжительный срок эксплуатации здания обеспечивает широко применяемая основа ленточного типа, которая обязательно усиливается стальными прутками. Армирование углов ленточного фундамента, воспринимающих значительную часть действующей нагрузки – серьезная технологическая операция.

При эксплуатации строения на фундамент постоянно воздействуют комплексные усилия – масса здания, движение почвы, реакция грунтов в результате морозного пучения. Различные зоны, в том числе и угловые стыки, железобетонной основы воспринимают сжимающие и растягивающие нагрузки.

Максимальная концентрация напряжений возникает в углах железобетонной конструкции, неправильное армирование которых может привести к нарушению целостности нулевого уровня и самого объекта строительства. Процесс армирования фундамента и его углов регламентирован строительными нормами и правилами, соблюдение которых гарантирует надежность и устойчивость строения.

Рассмотрим детально угловое армирование, правила выбора арматуры, а также остановимся на особенностях выполнения мероприятий.

Если пруты арматуры в углах вязать и устанавливать правильно, строение простоит довольно долго, и в нем не появятся никакие повреждения

Подготовительный этап

Профессионально выполненное проектирование ленточной основы и квалифицированно проведенные расчеты влияют на срок эксплуатации, прочность строения. При выполнении проектных работ учитываются следующие факторы:

  • Масса строения, связанная с применяемыми материалами и конструкцией здания.
  • Воспринимаемые усилия.
  • Разновидность грунта, на котором осуществляется строительство.
  • Особенности климата местности.
  • Сопротивление грунта, связанное с наличием водоносных слоев и замерзанием почвы.

По результатам расчетных мероприятий определяется глубина закладки основания. Согласно глубине погружения в почву, существует два типа фундамента:

  • неглубокий фундамент, применяемый для твердых грунтов, не подверженных пучению;
  • глубоко погруженный в грунт, используемый на почвах, которые отличаются повышенной пучинистостью.

Варианты отличаются уровнем финансовых расходов, трудоемкостью выполнения работ, объемом применяемых материалов, особенностями конструкции арматурного каркаса. Схема арматурного контура учитывает размеры прутков и обязательно предусматривает угловое армирование.

Очень важно, чтобы укладка и вязка арматуры была произведена правильно

Инструменты и приспособления

Для производства мероприятий по усилению фундамента ленточного типа, в том числе его угловых частей, подготовьте следующие инструменты:

  • болгарку, используемую для резки элементов пространственного каркаса, или специальные арматурные кусачки;
  • рулетку строительную, длина ленты которой соответствует размерам строения и позволяет осуществлять замеры;
  • предварительно отожженную проволоку, применяемую для вязания арматуры и элементов каркаса;
  • ручное или полуавтоматическое приспособление для фиксации арматуры;
  • подкладки из древесины или пластмассы, обеспечивающие фиксированное расстояние от элементов стальной пространственной конструкции до грунта;
  • плоскогубцы или кусачки для работы с вязальной проволокой;
  • молоток, который потребуется при выполнении работ по формированию арматурного каркаса.

Выбор арматуры

Правильный выбор арматуры для усиления основания углов ленточного типа положительно влияет на прочность всей конструкции. Принимая решение по применению стальных прутков, обратите внимание на маркировку проката.

Выбор толщины армирующих прутьев во многом зависит от распределения нагрузок

Можно применять арматуру, отличительными особенностями которой является:

  • Возможность соединения в единую конструкцию с помощью сварки, о чем свидетельствует индекс С в маркировке.
  • Устойчивость к воздействию коррозионных процессов, возникающих в бетонном массиве, что подтверждается обозначением К в аббревиатуре.
  • Сохранение прочностных характеристик при фиксации элементов с помощью вязальной проволоки. Такие прутки, соответствующие классам A-2, A-3, изготавливаются из стали 35ГС, соединяются только проволокой. Дуговая сварка для крепления недопустима.

Для усиления применяются металлические прутья диаметром 10-12 мм. Выбор марки и сортамента осуществляется согласно предварительно выполненным расчетам.

Целесообразность усиления основания

Правильно выполненный фундамент здания, представляющий бетонный монолит, обладает высокими прочностными характеристиками. Без стальной арматуры он не будет иметь требуемой эксплуатационной прочности. Бетон обладает повышенной устойчивостью к действию сжимающих нагрузок, однако может растрескаться при растяжении.

Это в полной мере компенсируется арматурным каркасом, устанавливаемым до заливки ленточного фундамента на нижнем и верхнем уровне ленточного контура. В углах фундамента концентрируются значительные усилия. Именно поэтому правильное армирование углов основания ленточного типа является гарантией длительного ресурса эксплуатации строения и его прочности.

В угловые части дополнительно нужно установить вертикальные металлические стержни

Установленная в угловых частях фундамента арматура значительно увеличивает прочностные характеристики конструкции, компенсирует изгибающие и разрывные нагрузки. Вертикально расположенные стальные стержни поддерживают арматурные пояса, расположенные в верхней и нижней части каркаса.

Особенности

Осуществляя армирование ленточного фундамента, придерживайтесь предварительно разработанной схемы расположения элементов пространственного каркаса и соблюдайте размеры, необходимый шаг:

  • расстояние между вертикально расположенными прутками, диаметром до 2 см, обеспечьте в интервале 50-80 см;
  • применяйте рабочие стальные стержни, диаметр которых составляет 1-2см;
  • используйте поперечные и дополнительные элементы диаметром 4-10 мм, усиливающие центральную зону каркаса;
  • используйте неметаллические подкладки, что позволит обеспечить фиксированное расстояние в 5 см от горизонтально расположенных прутков нижнего яруса до грунта.

Армирование угла и примыкания ленточного фундамента

При сборке пространственной конструкции соблюдайте следующую очередность операций:

  • Зафиксируйте вертикально арматуру диаметром до 20 миллиметров, обеспечив интервал между прутками порядка 60 сантиметров.
  • Закрепите с помощью вязальной проволоки горизонтально расположенные силовые стержни вверху контура и в нижней его части.
  • Усильте дополнительными прутьями зоны, расположенные посередине пролетов.

Сгибание арматуры правильно производить под прямым углом

При выполнении работ по сборке арматурного каркаса особого внимания требует армирование углов фундамента. В угловых частях конструкции устанавливайте изогнутые стержни, избегайте нежелательных стыков арматурных прутков.

Армирование тупого угла фундамента

Серьезной особенностью выполнения работ по усилению угловых зон нулевого уровня является применение дополнительной фиксации, произведенной с помощью стальных прутков. Расположенные в углах основания прутки объединяют участки, воспринимающие перпендикулярно направленные усилия. Обеспечение жесткости пространственной системы в углах нулевого уровня производится путем установки дополнительных вертикальных стержней, расстояние между которыми в два раза меньше, чем по периметру контура.

Правильное армирование углов ленточного фундамента

Усиление углов

В углах ленточного основания концентрируется напряжение, действующее в различных направлениях, сжимающее и растягивающее конструкцию. При правильно выполненном усилении напряжение воспринимают стальные прутья арматурного каркаса. Неправильное армирование вызывает нарушение целостности ленточного основания.

Фиксация элементов стальной конструкция должна обеспечивать полную передачу усилий между прутьями арматуры. Если армирование углов ленточного фундамента будет выполнено без разрывов, а соединение элементов будет жестким, то монолитное основание ленточного типа будет обладать необходимой прочностью за счет цельной пространственной рамы.

Простое соединение двух армирующих прутьев в углах недопустимо ни при каких обстоятельствах

Не допускается фиксация перпендикулярно расположенной арматуры, концы которой просто связаны с применением проволоки для вязания. Это вызывает появление трещин в угловых частях основания, расслаивание, откол частей фундамента.

Рассмотрим, как правильно армировать углы, какие главные ошибки допускают застройщики, не знакомые со спецификой армирования.

Производя работы, обратите внимание на следующие моменты:

  • в каждой из угловых частей основания горизонтально расположенные стержни должны монтироваться в загнутом виде;
  • не допускается соединение встык арматуры, что вызывает разрыв силовой цепи;
  • угловые участки следует армировать стержнями, диаметр которых превышает один сантиметр.

Выполнив армирование, обязательно сопоставьте соответствие конструкции собранного каркаса с предварительной разработанной схемой. Недостаточно жесткое крепление стержней, нарушение рекомендаций приводит к разрыву стальных прутков в точках фиксации и последующему растрескиванию основания.

Основная ошибка, которую допускают застройщики, производящие армирование углов ленточного фундамента – фиксация перпендикулярно расположенных концов прутьев. Это нарушает целостность жесткой пространственной конструкции, приводит к растрескиванию бетона, нарушению устойчивости строения.

Выбор толщины армирующих прутьев во многом зависит от распределения нагрузок

Армирование оснований производят в различных вариантах:

  • С применением при усилении стальной сетки, размещенной в верхнем и нижнем ярусе, закрепленной к поперечно расположенным арматурным пруткам. Усиление угловых стыков производится загнутыми стержнями увеличенного до 2 см диаметра. Фиксация сетки к вертикальным стержням осуществляется с интервалом 0,5 м.
  • Используя отдельные стальные стержни. Это позволяет обеспечить жесткую связь основания с капитальными стенами здания, надежно зафиксировать стальные стержни. Метод предусматривает соединение внахлест стержней, концы которых имеют необходимое перекрытие.

При изгибе стальных прутьев более 150 градусов применяются цельные прутки, имеющие незначительный изгиб. При меньших углах наружные прутья, имеющие прямолинейную конфигурацию, остаются целыми. Угловые элементы каждого яруса изгибаются соответствующим образом и пересекаются в зонах крепления. Усиление прямого угла основания осуществляется с использованием отдельных стержней Г-образной конфигурации.

Фиксация арматуры

Неправильное армирование вызывает серьезные последствия, связанные с появлением трещин. Обидно, если проблема возникла из-за некачественно выполненного соединения элементов. Принимая решение о методе фиксации арматуры, застройщики задаются вопросом, какой способ лучше использовать:

  • крепление с помощью вязальной проволоки;
  • фиксацию с использованием электрической сварки.

Угловое армирование, а также усиление продольных частей каркаса, будут иметь необходимую прочность, если использовать вязальную проволоку. В эффективности данного варианта крепления убедились многие застройщики.

Применение электрической сварки не обеспечивает требуемую жесткость арматурного каркаса, который в точках стыков разрывается под воздействием нагрузок и реакции почвы. Электрическая сварка нарушает структуру прутков в зонах нагрева. Повреждение каркаса вызывает образование на нулевом уровне нежелательных трещин.Заключение

Ознакомившись с материалом статьи, изучив, как правильно армировать углы, можно избежать серьезных ошибок. Владея информацией, несложно самостоятельно выполнить работы по усилению ленточного фундамента с помощью надежно зафиксированных элементов пространственного арматурного каркаса.

Результат профессионально выполненной работы – прочная конструкция основания, позволяющая осуществить возведение здания и эксплуатировать его на протяжении длительного времени.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках – 12 лет, из них 8 лет – за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Правильное армирование углов фундамента – залог крепкого основания

Как известно основой любого дома является фундамент и очень важно уделить ему достаточно внимания, иначе это может привести в будущем к деформации или полному разрушению здания. Безусловно, у человека, который занимается строительством, не возникает проблем с возведением фундамента, однако человеку далекому от этого, сделать качественное основание сложно. В большинстве случаев не опытные строители мало уделяют внимание армированию фундамента и это не правильно. Армирование является важным моментом, в особенности армирование углов фундамента в ленточном основании. Выполнять его нужно по всем стандартам и правилам, иначе это может быть чревато негативными последствиями.

армирование углов

Причины, по которым необходимо армировать фундамент

Пожалуй, каждый из нас знает, что бетон по своим характеристикам очень прочный материал, однако используя его для основания дома необходимо четко понимать, что на него будет воздействовать большая нагрузка. В случае отсутствия арматурного каркаса в фундаменте при нагрузках, действующих на разрыв, бетон становиться достаточно хрупким и в нем возникают трещины. Именно по этой причине необходимо выполнять армирование, поскольку металлический каркас будет компенсировать прочность фундамента.

Второй причиной, по которой необходимо делать армирование, является то, что углы фундамента подвергаются еще большим нагрузкам, нежели продольная часть, и, выполнив правильное армирование, можно быть уверенным практически на 100 % в высокой прочности и долговечности всего фундамента в целом. Следует также отметить, что даже небольшой домик, пристройка или какое-либо сооружение, которое стоит на фундаменте без металлического каркаса, может вызвать деформацию основания через некоторое время после строительства за счет нагрузки самого строения и воздействия почвы на фундамент.

Важные правила армирования

При возведении фундамента важно соблюдать не только схему основания, но также учитывать некоторые важные моменты:

  • Необходимо соблюдать расстояние между арматурными прутками. Важно располагать вертикальные прутки на расстоянии друг от друга 50-80 см, не больше и не меньше.
  • Важно понимать, что диаметр основной (рабочей) арматуры для качественного армирования должен составлять 10-20 мм. Дополнительная может иметь диаметр 4-10 мм.
  • Необходимо четко соблюдать последовательность выполнения армирования: первыми вбивается в землю вертикальная арматура, после чего к ним приваривается горизонтальная снизу и сверху.
  • При армировании углов фундамента лучше всего избегать стыков в углах, а также использовать загнутые прутки.

Какую арматуру лучше всего использовать для армирования?

Выбор арматуры

Ни одно армирование не проходит без арматуры, но чтобы металлический каркас получился прочным и качественным, необходимо не только соблюдать правила армирования, но и правильно подойти к выбору арматуры, в особенности, если фундамент выполняется своими руками. Так при выборе арматуры нужно обратить внимание на обозначения:

  • Индекс С – данный показатель говорит о том, что арматурный прокат – свариваемый.
  • Индекс К – данный показатель говорит о том, что арматура довольно стойкая к коррозии метала и не растрескивается под воздействием напряжения.

В случае если выбранная арматура не содержит ни одного из этих показателей, то от ее использования лучше отказаться, поскольку она не подходит для фундамента и не будет залогом качественного основания.

Схемы правильного армирования углов ленточного фундамента

Прежде всего, перед началом армирования, нужно разобраться, как правильно его нужно выполнять и какие схемы и способы обвязки углов существуют.

Для начала разберем, какие ошибки могут возникать при попытке сделать прочными углы фундамента:

  • При выполнении армирования был использован только один контур обвязки, например внешний, причем чаще всего это делается по внешнему периметру.
  • Используя два контура, не было произведено их крепление между собой.
  • Отсутствует связь между подошвой основания и самим каркасом из арматуры.
  • Арматуру соединили при помощи сварки в углах строения.

На схеме можно увидеть самые популярные неправильные схемы, которые не позволяют нормально произвести усиление фундамента:

Не правильаня схема армирвоания

Теперь рассмотрим схемы правильного армирования углов ленточного фундамента. Их существует несколько:

  1. Армирование угла с анкеровкой Г-образными элементами.1.	Армирование угла с анкеровкой Г-образными элементами
  2. Армирование тупого угла.Армирование тупого угла
  3. Армирование угла и примыканий с помощью П-образных хомутов.Армирование угла и примыканий с помощью П-образных хомутов.
  4. Армирование угла и примыканий с помощью Г-образных хомутов.Армирование угла и примыканий с помощью Г-образных хомутов

Какой тип выбрать зависит уже непосредственно от возможностей и необходимого усиления.

Инструкция по армированию углов

Первым делом необходимо определиться со схемой армирования. Самым простым и наиболее распространенным видом армирования углов ленточного фундамента является использование Г-образных элементов.

Итак, для того чтобы усилить фундамент при помощи арматуры необходимо придерживаться следующей последовательности:

  • Когда траншея для фундамента готова, на ее дно необходимо выложить кирпичи, высотой около 5 см. Это нужно сделать для чтобы получился небольшой зазор между основанием фундамента и каркасом из арматуры.
  • Затем нужно подготовить вертикальную арматуру, которая будет выступать стоечным каркасом. Для этого необходимо измерить высоту будущего фундамента и нарезать арматуру нужной высоты, при этом важно помнить, что она не должна доходить около 10 см до поверхности будущего фундамента.
  • После этого на уже уложенные кирпичи выкладывается продольная арматура каркаса. Для этого лучше подойдет целая арматура.
  • Далее на расстоянии около 50 см друг от друга к горизонтальной арматуре нужно привязать, используя специальную вязальную проволоку и крючок, перемычки. Они должны располагаться на расстоянии около 5 см с каждой стороны от стенок фундамента.
  • После этого на углы образовавшихся квадратных ячеек нужно привязать вертикальные пруты по всему периметру.
  • Для углов лучше всего заранее подготовить арматуру в виде буквы Г. Подготовленные согнутые пруты укладываются так, как показано на первой схеме выше и закрепляются с помощью проволоки. Важно также помнить, что угловые каркасы должны заходить в тело стены минимум на 70 см от угла.Инструкция по армированию углов
  • Затем выполняется верхняя обвязка каркаса точно таким же образом, как и нижняя: к вертикальным прутам привязывается продольная арматура по всему периметру, затем привязываются поперечные пруты, и выполняется верхнее армирование углов.

Когда весь арматурный каркас выполнен, можно приступать к формированию опалубки и заливке фундамента.

Полезные советы при армировании основания

Специалисты рекомендуют при выполнении армировании, как углов, так и всего основания придерживаться следующих правил:

  • Арматурный каркас необходимо располагать на определенном расстоянии. Со всех сторон он должен отступать на 5 см. Это объясняется тем, что фундамент при несоблюдении данного правила может начать деформировать и крошиться, что повлияет на прочность всей конструкции.
  • Для углов необходимо брать только арматуру, которая была выгнута под углом 90 градусов, а не сварена. Закреплять такие элементы необходимо только на прямых участках с помощью специальной проволоки. Это придаст большей прочности углам.
  • Не стоит забывать, что на дно траншеи нужно уложить песчано-гравийную подушку, поскольку она является немало важной для прочности основания точно также как и .

Напоследок нужно отметить, что в случае если вы не являетесь специалистом в области возведения фундамента, рекомендуется заранее сделать схему армирования углов и всего основания фундамента. Если все будет верно подобрано и сделаны схемы, то во время выполнения строительных работ у вас не возникнет проблем, и вы сможете сэкономить не только время на выполнение работ, но и деньги, поскольку неправильно выполненная работа, в особенности армирование углов, может привести к негативным последствиям, таким как деформация или полное разрушение фундамента.

Правильное армирование углов ленточного фундамента

Углы и примыкания ленточного фундамента являются местами концентрации разнонаправленных напряжений. Неправильная стыковка продольной рабочей арматуры на участках примыканий и по углам может привести к появлению поперечных трещин, расслоений и отколов в этих проблемных зонах. Правильное армирование ленточного фундамента обеспечивает сопротивляемость железобетонной конструкции силам сжатия и растяжения на всех его участках.

Рис.1. Нагрузки на угол фундамента.

Содержание статьи

Правила армирования углов

Общие правила применения арматуры при строительстве ленточных фундаментов изложены в СП 50-101-2004. В пункте 8.9 этого документа указано, что фундаменты стен должны объединяться в систему перекрёстных лент и иметь между собой жёсткую связку. О способах жёсткого соединения арматуры говорится в СП 52-101-2003. В пункте 8.3.26 перечислены все допустимые способы таких соединений:

1. Стыковка арматуры без сварки, внахлёст. Допускаются следующие способы анкеровки в районе нахлёстки: с прямыми концами рифлёной арматуры, с приваркой поперечных стержней, с загибами на концах в форме крюков, или петель.
2. Сварка арматуры.
3. Применение механических устройств, или резьбовых муфт.

Жёсткость соединения арматуры на углах, или примыканиях может быть обеспечена только этими способами. Соединения при помощи вязки перекрестий при армировании углов ленточного фундамента не допускаются. В этом случае происходит угловой разрыв арматурного каркаса и потеря его целостности. Для усиления угловых арматурных стыков можно применять П- и Г-образные элементы, изготовленные из арматурных прутьев, применяемых для устройства продольной (рабочей) арматуры. Вертикальные и поперечные хомуты в области угловых и примыкающих анкеровок устанавливаются в 2 раза чаще, чем в остальных частях ленточного фундамента. Оптимальное расстояние между хомутами в зонах примыканий и углов определяется как половина от ¾ высоты ленты. Не рекомендуется делать это расстояние более 25 см. Для равномерного распределения нагрузок на углах ленты, а также в области примыканий, делается жёсткая связка внутренней и внешней продольной арматуры.

Схемы армирования углов

Для формирования единой жёсткой пространственной рамы ленточного фундамента применяют следующие схемы угловых и примыкающих соединений продольной арматуры:

1. Жёсткое угловое соединение арматуры внахлёст и «лапкой».
2. Армирование угловой зоны при помощи хомута Г-образной формы.
3. Схема армирования угла при помощи П-образного хомута.
4. Армирование зоны примыкания при помощи соединения внахлёст.
5. Схема армирования примыкающей зоны при помощи хомута Г-образной формы.
6. Армирование области примыкания при помощи хомута П-образной формы.
7. Армирование тупых углов при помощи жёсткого соединения внахлёст.

Любая из вышеперечисленных схем предусматривает жёсткое соединение внутренней и внешней продольной арматуры.

Схема внахлёст (лапки)

1. Жесткость углового соединения внешней горизонтальной арматуры обеспечивается внахлёст при помощи сгиба одного из свободных концов (1-2).
2. Привязка внутренней горизонтальной арматуры (7) к внешней горизонтальной арматуре (2) осуществляется внахлёст.
3. Привязка внутренней горизонтальной арматуры (3) к внешней связке (1-2) производится при помощи соединения «лапка».
4. Шаг угловой поперечной арматуры (5) и вертикальной арматуры (4) рассчитывается по формуле 3/8 высоты ленточного фундамента.
5. Длина «лапки» составляет 35-50 диаметров продольной арматуры.

Рис. 2. Схема армирования угла внахлёст.

Хомут Г-образной формы

1. Жесткость соединения внешней продольной арматуры (1) в угловой зоне обеспечивает Г-образный хомут (6).
2. Внутренняя продольная арматура (2) жестко скрепляется с внешней продольной арматурой (1) внахлёст.
3. Шаг поперечной арматуры (L) составляет не более ¾ высоты ленты фундамента.
4. Внутреннюю и внешнюю продольную арматуру соединяет дополнительная поперечная арматура (5).
5. Длина соединения внахлёст составляет 50 диаметров горизонтальной арматуры.

Рис. 3. Схема армирования угла г-образным хомутом.

Хомут П-образной формы

1. При использовании П-образных хомутов (5) угловое соединение внешней и внутренней горизонтальной арматуры ленточного фундамента (1) получает жёсткую сцепку наподобие замка.
2. В анкеровке П-образных хомутов участвует вертикальная (2), поперечная (3) и дополнительная поперечная (4) арматура.

Рис. 4. Схема армирования углов п-образным хомутом.

Тупой угол

1. Для надёжного соединения арматурного каркаса при повороте ленточного фундамента под тупым углом (1) используется схема жёсткого соединения внахлёст свободных концов внутренней горизонтальной арматуры (4) с внешней горизонтальной арматурой (5).
2. Вертикальную (2) и горизонтальную (3) арматуру в зоне соединения внахлёст следует устанавливать в 2 раза чаще, чем на ровных участках ленты.
3. Длина соединения внахлёст должна быть не меньше 50 диаметров продольной арматуры.

Рис. 8. Схема армирование тупого угла.

Армирование примыканий

Соединение внахлёст

1. Соединение горизонтальной арматуры (2) примыкающего элемента ленточного фундамента внахлёст осуществляется только к внешней горизонтальной арматуре (1).
2. Шаг поперечной (4), дополнительной поперечной (5) и вертикальной арматуры в зоне примыкания должен быть не менее 3/8 от высоты ленты фундамента.
3. Размеры соединения внахлёст составляют 50 диаметров рабочей арматуры.

Рис.5. Схема армирования примыкания внахлёст.

Хомут Г-образной формы

1. При использовании Г-образного хомута (6) для армирования зоны примыкания горизонтальная арматура примыкающей части и внешняя горизонтальная арматура (1) соединяются с уголком внахлёст.
2. Длина соединения внахлёст (2) составляет 50 диаметров рабочей арматуры.
3. Шаг вертикальной (3) и поперечной арматуры (4) в зоне примыкания уменьшается в два раза при помощи дополнительной поперечной арматуры (5).

Рис. 6. Схема армирования примыкания хомутом г-образной формы.

Хомут П-образной формы

1. Хомут П-образной формы (6) обеспечивает дополнительную жёсткую привязку внахлёст горизонтальной арматуры примыкающего элемента ленточного фундамента (3) к внешней горизонтальной арматуре (1).
2. Длина соединения внахлёст (2) может составлять 35-50 диаметров горизонтальной арматуры.
3. Минимально допустимая длина П-образного хомута должна равняться двойной ширине ленточного фундамента.

Рис. 7. Схема армирования примыкания ленточного фундамента хомутом г-образной формы.

Рекомендуем: Пример расчета диаметра арматуры для ленточного фундамента.

Типичные ошибки

Все способы угловых и примыкающих соединений арматуры направлены на сохранение целостности арматурного каркаса, независимо от его конфигурации. Прочность ленточного фундамента зависит от правильной анкеровки концевых элементов продольной арматуры. К неправильному армированию углов ленточного фундамента приводят следующие схемы:

1. Армирование угловых зон ленточного фундамента арматурными перекрестиями с вязкой стержней продольной арматуры под прямыми углами.
2. Установка в угловых и примыкающих зонах гнутой продольной арматуры без анкеровки.

Эти ошибки являются самыми распространёнными и могут привести к разрушению фундамента в местах угловых соединений и примыканий.

Угловые и примыкающие соединения, выполненные методом вязки перекрестий стержней продольной арматуры

Типичной ошибкой армирования углов и примыканий являются соединения продольной арматуры методом вязки перекрестий. Такое арматурное соединение без надлежащей анкеровки стержней может привести к разрушению бетонного монолита из-за разнонаправленных нагрузок, возникающих по углам ленточного фундамента.

Рис. 9. Частая ошибка при армировании углов

Применение гнутой продольной арматуры для армирования угловых соединений и примыканий

1. Угловые соединения без связки внутренней и внешней продольной арматуры (1) не обеспечивают жесткой стержневой фиксации.
2. Разрушение фундамента может происходить не только из-за образования поперечных трещин, но и из-за отслаивания внутренних углов.

Неправильное армирование угла

Рис. 10. Ещё один пример неправильного армирования углов

Обязательно прочитайте: Можно ли армировать ленточный фундамент стеклопластиковой арматурой, если собираетесь ее использовать.

Чтобы не допустить появление на углах и примыканиях ленточного фундамента образование трещин, отколов и расслоений, необходимо правильно связать концевые стержни продольной арматуры и выполнить их надёжную анкеровку. Правильное армирование углов ленточного фундамента – залог надёжности и долговечности здания.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

схема действий, вязка и усиление

Содержание статьи:

Ленточные фундаменты являются наиболее востребованным и популярным типом опорной системы в индивидуальном строительстве. Эти конструкции отличаются надежностью, практичностью и долговечностью. Однако эти преимущества удастся воплотить в жизнь только при условии соблюдения технологии монтажа на каждом его этапе. Одним из них является армирование. Наиболее ответственными точками являются углы, принимающие на себя максимальные вертикальные нагрузки.

Необходимость армирования углов ленточного фундамента

Самая большая нагрузка приходится на углы ленточного фундамента

Бетон является очень прочным материалом, способным выдерживать большое давление на сжатие. Однако и у него есть свой запас прочности, особенно это касается нагрузок на скручивание и излом. Именно они приходятся на углы ленточных опорных систем.

Необходимость правильного армирования этих участков обусловлено следующими факторами:

  • Неравномерность давления на разные стороны основания. Это приводит к возникновению напряжения на стыках. Компенсировать и нейтрализовать их может металлический каркас.
  • Сосредоточение линейных нагрузок. Они передаются по монолитной ленте к углам, где достигают значительных величин.

Железный каркас выполняет функцию жесткой и упругой рамы, нейтрализующей оказываемое зданием и грунтом давление на опорную систему.

Схема действий

Способы армирования углов с помощью П-образных хомутов

Достижение прочности углового узла каркаса ленточного фундамента достигается правильным использованием уже имеющихся и проверенных практикой технологий.

Существуют такие способы углового соединения арматуры:

  • Внахлест. Производится сгибание свободных концов внешней и внутренних горизонтальных прутов и завод их внахлест на противоположные по ориентации линии. Дополнительная прочность обеспечивается перемычками.
  • Хомутами Г-образной формы. Здесь также осуществляется переход с внешней на внутреннюю продольную арматуру с помощью нахлестового соединения. Полученный узел фиксируется Г-образным фрагментом со стороной 50-80 см.
  • Хомут П-образной формы. Внутренние и внешние линии сгибаются в П-образные контуры, которые замыкаются вертикальными и горизонтальными фрагментами. Считается наиболее прочным и надежным узлом.
  • Тупой угол. Такие соединения не несут высокой нагрузки, но тоже требуют внимания. Соединение осуществляется путем перехода внешних и внешних прутов на противоположные стороны с нахлестом от 50 см. При этом вертикальные и горизонтальные перемычки ставятся в 2 раза чаще.

При создании вертикальной и замкнутой монолитной плиты рекомендуется использовать одну технологию для вязки арматуры углов. Это позволит создать равный запас прочности по всему фундаменту. Даже если лента заливается на ростверк, эти участки все равно остаются критическими в плане нагрузки.

Правильная вязка и усиление углов

Сварку использовать нельзя. Вместо нее применяют проволоку для соединения арматуры

Соединение прутов целесообразно осуществлять с помощью обжима прутов с помощью проволоки или пластиковых стяжек. Использование сварки не рекомендуется по двум причинам. Первая заключается в том, что после сильного нагревания металл становится гибким и хрупким. Второй минус — под окалиной развивается ржавчина, которая со временем разрушает соединение.

Для вязки нужно использовать проволоку толщиной 1-1,3 мм в рулонах или обоймах из готовых хомутов. Скручивать проволоку можно плоскогубцами, ручным крючком или полуавтоматическим аккумуляторным пистолетом. Пластиковыми стяжками работать проще и быстрее, но этот вариант не отличается должной прочностью и дорого стоит.

Сгибание угловых фрагментов следует проводить без предварительного нагревания арматуры, используя станок или тиски. После проведения соединений устанавливаются распорки на боковых и нижних фрагментах каркаса. Оптимальным вариантом являются звездочки, которые закрепляются без клея и сварки. Бетон тяжелый и вязкий, а жесткая фиксация армирующей конструкции не позволит ей сдвигаться в стороны при заливке раствора.

При монтаже каркаса нужно выдерживать расстояние не только между внутренними и внешними линиями. Вертикальные перемычки должны устанавливаться с шагом 40-80 см, а в углах — 20-40 см друг от друга. Основные пруты выбираются диаметром 10-16 см, а вспомогательные — 6-10 мм. Целесообразно выбирать арматуру с рифленой поверхностью, которая обеспечивает лучшее сцепление с вязальной проволокой и бетоном. Следует обращать внимание на маркировку металла. «С» означает, что его можно сваривать, а «К» — что он устойчив к коррозии.

Армирование примыканий

Схема армирования углов ленточного фундамента аналогична способам, которые применяются при соединении прутов в острых, прямых и тупых углах.

В местах примыканий внутренних фрагментов к периметру фундамента используются такие методы стыковки:

  • внахлест;
  • Г-образными хомутами;
  • П-образными хомутами.

Соединение проводится аналогично угловым соединениям, только все действия выполняются дважды, в зеркальной ориентации. Дополнительно места стыков усиливаются продольными фрагментами, проходящими по внутренним и внешним прутам.

Типичные ошибки и полезные советы

Сварка арматуры встык приводит к появлению ржавчины

Основные ошибки, чаще всего встречающиеся при армировании ленточной опорной системы:

  • работа без чертежа и предварительных расчетов, что приводит к возникновению трудностей при сборке и нарушениям ее технологии;
  • армирование угловых зон с вязкой стержней продольных прутов под прямыми углами;
  • монтаж гнутых элементов без анкеровки;
  • соединение арматуры сваркой встык, что является крайне ненадежным вариантом;
  • вязка перекрестий без применения сгибов и нахлестов;
  • использование сварки для металла, который для этого не предназначен;
  • применение в качестве подставок и распорок железных деталей или материалов, которые впитывают влагу — это приводит к поражению каркаса ржавчиной;
  • армирование фундамента прутами сомнительного происхождения или не имеющими недостаточный запас прочности;
  • проведение сборки из металла покрытого ржавчиной и не прошедшего предварительной обработки от коррозии;
  • забивание вертикальных элементов каркаса в землю сквозь дренаж и гидроизоляцию.

Ошибки армирования являются причинами появления трещин в углах основания, дорогостоящего ремонта, перекосов и возможного обрушения строения.

Армирование углов ленточного фундамента

Долговечность и устойчивость зданий определяются прочностью фундамента, воспринимающего значительные нагрузки. Для возведения строений широко используется основание в виде усиленной бетонной ленты, укрепленное в угловых зонах стальной арматурой. Армирование углов ленточного фундамента – ответственная операция, позволяющая повысить прочностные характеристики основы. Неправильное армирование является причиной преждевременного разрушения здания. Ведь в стыковых участках концентрируются значительные напряжения. Рассмотрим угловое армирование.

Готовимся выполнять угловое армирование – оцениваем факторы и планируем работы

На подготовительной стадии целесообразно изучить положения строительных норм и правил, соблюдение которых является гарантией надежности возводимых зданий.

Устойчивость строений зависит от различных факторов и усилий, возникающих в процессе эксплуатации:

  • веса постройки;
  • стабильности грунта;
  • реакции почвы при замерзании.

Если пруты арматуры в углах вязать и устанавливать правильно, строение простоит довольно долго

На здание действуют различные нагрузки:

  • сжимающие усилия;
  • растягивающие напряжения;
  • изгибающие моменты.

Наибольшая концентрация усилий возникает в угловых участках основания.

Именно поэтому важно на подготовительной стадии строительства выполнить следующие работы:

  • проанализировать комплекс факторов, влияющих на прочность конструкции;
  • профессионально разработать проектную документацию на основание;
  • правильно подобрать арматуру для реальных условий эксплуатации.

До начала мероприятий необходимо также приобрести необходимые материалы и подготовить инструменты для выполнения работ. Остановимся на главных моментах подготовительного этапа.

Проектные работы

При отсутствии строительной квалификации, проектирование целесообразно осуществлять силами специалистов. Правильно произведенные проектные мероприятия позволяют создать прочную ленточную основу, которая на протяжении длительного периода сможет обеспечить устойчивость здания.

Без наличия усиления в виде качественной арматуры фундамент не прослужит достаточно долго

При этом важно учесть следующие моменты:

  • конструктивные особенности и массу будущего здания;
  • почвенно-климатические характеристики этого региона;
  • виды нагрузок, действующих на укрепленное основание.

По результатам анализа выполняются специальные расчеты. В результате принимается решение о глубине закладки бетонной ленты фундамента.

Для различных видов грунтов основа погружается в почву на разную глубину:

  • мелкозаглубленная обеспечивает устойчивость строений на стабильных почвах;
  • глубокопогруженная применяется на грунтах с повышенной концентрацией влаги.

Фундаменты отличаются конструктивными особенностями, в том числе конструкцией силовой решетки. Разработанный в процессе проектирования чертеж содержит информацию о сортаменте применяемой проволоки и особенностях усиления.

Подготовка инструмента и необходимых материалов

Для усиления продольных и угловых зон ленточного фундамента потребуются следующие материалы:

  • стальные стержни, марка и размеры которых соответствуют требованиям проектной документации;
  • вязальная проволока, применяемая для обеспечения надежной фиксации элементов арматурного каркаса;
  • подкладки под прутки, изготовленные из неметаллического материала, которые поддерживают стабильность зазора.

Вязка углов арматуры и примыканий ленточного фундамента — это целое искусство

Обратите внимание, что проволока для вязания должна быть отожженной. Это повышает ее гибкость и облегчает выполнение работ.

Армирование фундамента ленточного типа производится с помощью стандартного инструмента. Потребуется:

  • оснастка для загиба арматурных прутков;
  • инструмент для резки стержней, например, специальные кусачки или болгарка;
  • строительная рулетка с длиной ленты, соответствующей габаритам каркаса;
  • специальный крючок или плоскогубцы для скручивания вязальной проволоки;
  • молоток, необходимый для рихтовки заготовок силового каркаса.

Инструменты и материалы должны находиться в непосредственной близости от места выполнения работ.

Армирование углов фундамента – критерии выбора арматуры

Важно ответственно подойти к вопросу выбора стальных прутков для ленточной основы.

Существует несколько моментов, которые следует знать, прежде чем приступать к укладке арматуры в угловых частях фундамента

Следует изучить, как обозначается арматурный прокат, и использовать стержни со следующими особенностями маркировки:

  • обозначенные индексом C. Он свидетельствует о возможности соединения элементов электрической сваркой;
  • маркируемые буквой К. Это подтверждает повышенную стойкость прутков к воздействию коррозионных процессов;
  • с буквенно-цифровой аббревиатурой А2 или A3. Такую проволоку нельзя соединять дуговой сваркой, ее можно фиксировать только вязальной проволокой.

Укрепление арматурного каркаса осуществляется прутками диаметром 1–1,2 см. Используется прокат, соответствующий требованиям чертежа.

Армирование углов ленточного фундамента – оправданная необходимость

Нет необходимости дискутировать о целесообразности усиления фундамента строения.

Это обязательная операция, позволяющая повысить характеристики основания:

  • обеспечить увеличенный запас прочности;
  • улучшить устойчивость к воздействию нагрузок;
  • увеличить ресурс эксплуатации основы.

Силовой каркас устанавливается в опалубку до заливки бетона на уровне нулевой отметки и на верхней отметке капитальных стен. Наиболее нагруженные участки находятся в краях основания, где происходит концентрация нагрузок. Важно правильно выполнить усиление для повышения долговечности и устойчивости здания.

Конструкция арматуры для укрепления подошвы может быть изготовлена на строительной площадке

Изогнутые стальные прутки, размещенные в угловых зонах, повышают прочность фундамента, демпфируют изгибающие нагрузки и обеспечивают целостность бетонной ленты.

Правильное армирование углов – конструктивные нюансы

Производя армирование участков основания ленточного типа, соблюдайте следующие требования:

  • применяйте цельную арматуру, изогнутую под прямым углом;
  • избегайте стыкового соединения арматурных элементов силового каркаса;
  • производите дополнительную фиксацию вертикальными стержнями;
  • соблюдайте уменьшенный интервал между вертикальными стержнями.

Армированная металлоконструкция в углах подвержена воздействию перпендикулярно направленных нагрузок. Для обеспечения жесткости контура необходимо уменьшить расстояние между вертикальными прутками. В угловых зонах оно должно быть на 50% меньше по сравнению с аналогичными элементами, расположенными на прямолинейных участках.

При выполнении армирования следует соблюдать размеры, указанные в рабочей документации. Необходимо обращать особое внимание на следующие параметры:

  • интервал между вертикальными стержнями каркаса, который должен составлять 0,5–0,8 м;
  • диаметр арматуры 10-16 мм, требуемый для обеспечения прочности;
  • сечение поперечных элементов, составляющее 0,4–1 см;
  • расстояние от каркаса до края бетонной поверхности, составляющее 40–50 мм.

Сгибание арматуры правильно производить под прямым углом

Соблюдайте приведенную очередность сборки пространственной конструкции:

  1. Установите с интервалом 50–80 см вертикальные стержни на прямолинейных участках.
  2. Привяжите к ним проволокой горизонтальные элементы верхнего и нижнего яруса.
  3. Произведите угловое армирование с помощью изогнутой по радиусу стальной арматуры.

При выполнении работ важно обеспечить жесткость соединяемых элементов с помощью вязальной проволоки, а также правильно усилить все зоны ленточной основы.

Как правильно армировать углы

Максимальная концентрация напряжений, вызывающих растяжение и сжатие, возникает в углах армированной ленты. Это связано с перпендикулярным направлением усилий, которые воспринимает арматура в углах основы. При правильном укреплении угловых зон хорошо демпфируются нагрузки. Ошибки могут вызвать появление глубоких трещин в бетонном массиве.

Повышенная жесткость при усилении ленточного фундамента обеспечивается формированием жесткого замкнутого контура. При этом прочно зафиксированная арматура позволяет в полном объеме передавать усилия элементам пространственного каркаса. Важно не допустить растрескивания угловых зон, откалывания частей основы и расслоения бетонного массива в результате неправильного армирования.

После того, как конструкция будет полностью готова, ее можно опускать в готовый котлован

Производя усиление углов важно соблюдать следующие требования:

  • укреплять угловые части цельными стержнями радиусной конфигурации, которые необходимо надежно зафиксировать;
  • замкнуть силовой контур, полностью исключив стыковые соединения прямых кусков арматуры;
  • использовать для усиления углов ленточного фундамента стальную арматуру диаметром более 10 мм.

После окончания мероприятий по армированию необходимо проверить соответствие размеров собранного пространственного каркаса требованиям чертежа. Отклонения от проектной документации и недостаточная жесткость фиксации прутков вызывают нарушение целостности каркаса. Сдвиг под нагрузкой элементов в точках соединения вызывает появление трещин на основании после бетонирования.

Возможны различные способы укрепления ленточных оснований:

  • стальной сеткой. Ее можно приобрести в специализированных магазинах или изготовить самостоятельно. Сетка размещается на уровне цоколя и соединяется с перпендикулярно расположенными стальными стержнями. Сетка крепится к вертикальным прутикам по всему контуру с расстоянием между ними 50 см;
  • рифленой арматурой. Пространственная рама собирается из отдельных заготовок, которые крепятся между собой внахлест. Стальные стержни жестко связывают фундамент с несущими стенами строения и формируют общий силовой каркас. В углах основания расстояние между вертикальными прутками составляет 20–25 см.

Изгиб прутьев должен соответствовать форме основы строения и обеспечивается с помощью гибочного приспособления. В зонах нахлеста угловые элементы прочно крепятся к продольным пруткам верхнего и нижнего яруса.

Простое соединение двух армирующих прутьев в углах недопустимо ни при каких обстоятельствах

Неправильное армирование – характерные ошибки

При выполнении работ неопытными застройщиками неизбежно возникают ошибки, отрицательно влияющие на прочностные характеристики:

  • отклонение конструкции от требований чертежа;
  • применение арматуры уменьшенного диаметра;
  • соединение прутков сваркой, нарушающей структуру металла;
  • фиксация стержней в угловых зонах под прямым углом;
  • недостаточная прочность соединения арматуры проволокой;
  • несоответствие конфигурации угловых элементов форме строения;
  • контакт арматурного каркаса с воздушной средой после бетонирования.

В результате ошибок, допущенных в процессе армирования, появляются трещины, снижается прочность конструкции, что может вызвать серьезные последствия.

Особенности соединения арматуры

Размышляя о способе крепления элементов арматурной решетки, многие начинающие застройщики выбирают между двумя методами крепления:

  • применением проволоки для вязания;
  • использованием электросварки.

Часто возникают ситуации, когда стальная решетка изготовлена в точном соответствии с требованиями чертежа, но выбран неправильный способ фиксации арматуры. Обратите внимание, что усиление угловых зон и соединение продольных элементов каркаса может обеспечить повышенную прочность только при использовании вязальной проволоки для соединения стержней. Это проверенный вариант, в надежности которого не стоит сомневаться.

Сварка неспособна обеспечить необходимую жесткость, а повышенная температура изменяет структуру материала при нагреве. В результате велика вероятность повреждения каркаса при нагрузке.

Овладев технологией армирования углов, можно самостоятельно усилить фундамент и не допустить при этом ошибок. Правильно укрепленный фундамент может длительно эксплуатироваться, обеспечивая устойчивость здания.

Вязка арматуры под ленточный фундамент – схемы армирования и виды арматуры

Надежность и долговечность любого сооружения, построенного на ленточном фундаменте, зависит от нескольких факторов, главным из которых является прочность самого фундамента. При этом важную роль в прочности фундамента играет его правильное армирование, так как арматура является «силовым скелетом» основания. О правильной вязке арматуры под ленточный фундамент мы поговорим в этой статье.

Часто будущие владельцы домов задают вопрос, можно ли заливать фундамент без арматуры. Такие вопросы возникают из-за желания экономии, и они вполне обоснованы. Но необходимо учитывать, что бетон хорошо воспринимает нагрузки на сжатие, но плохо переносит нагрузки, направленные на растяжение и изгиб. Напротив, арматура работает на растяжение, поэтому бетон и арматура удачно дополняют друг друга. Только совместная работа этих двух элементов позволяет основанию стать монолитным и крепким.

Для удовлетворения требований по безопасности, фундаментные конструкции должны иметь такие начальные характеристики, чтобы при различных расчетных воздействиях в процессе строительства и эксплуатации были исключены разрушения любого характера или нарушения эксплуатационной пригодности. В зависимости от нагрузок, каждый фундамент отличается прочностью, закладываемой на этапе проектирования. На это влияет два параметра – вид бетона и вид арматуры. Поговорим подробнее про арматуру.

Виды арматуры для фундамента

В соответствии со сводом правил СП 63.13330.2012 «Бетонные и железобетонные конструкции. Основные положения», для армирования железобетонных конструкций следует применять отвечающую требованиям соответствующих стандартов или утвержденных в установленном порядке технических условий арматуру следующих видов:

  • горячекатаную гладкую и периодического профиля с постоянной и переменной высотой выступов (кольцевой и серповидный профиль соответственно) диаметром 6-50 мм;
  • термомеханически упрочненную периодического профиля диаметром 6-50 мм;
  • холоднодеформированную периодического профиля диаметром 3-16 мм;
  • арматурные канаты диаметром 6-18 мм.

Арматурный каркас представляет собой металлический скелет, состоящий из продольных прутьев, проходящих вдоль фундамента, и поперечных прутьев-хомутов, поддерживающих продольные прутья в правильном пространственном положении.

Арматура ленточного фундамента

Различают два вида арматурных каркасов – сварные и вязаные. Сварные каркасы изготавливают в заводских условиях с применением технологии сварки, не допускающей ослабления арматуры. В полевых условиях использовать сварку не рекомендуется, так как сварные швы ухудшают физико-механические свойства металла в районе шва, что может привести к разрушениям и потери целостности металлического каркаса.

Вязаный арматурный каркас сооружается на месте. Рабочая продольная арматура связывается с поперечной при помощи тонкой стальной проволоки, которая надежно фиксирует прутья в правильном положении.

Рабочая продольная арматура определяется расчетом, а для одноэтажных зданий и временных сооружений назначается конструктивно, не менее 0,1% от площади поперечного сечения фундамента. Диаметр арматуры для ленточного фундамента должен составлять при длине здания:

  • до 3 м – не менее 10 мм;
  • более 3 м – не менее 12 мм.

В качестве продольной арматуры используют рифленые пруты, т.к. они имеют большую прочность и способны лучше сопротивляться изгибающим усилиям.

Поперечная арматура назначается конструктивно, диаметром 6 мм при высоте фундамента до 80 см, в других случаях ставят арматуру диаметром 8 мм. Диаметр поперечной арматуры не должен быть меньше четверти диаметра продольной арматуры. Шаг конструктивной арматуры составляет 30-80 см. В качестве поперечной арматуры подойдут обычные гладкие пруты, т.к. они не несут на себе нагрузку, а только поддерживают продольные прутья в правильном положении.

Схема армирования ленточного фундамента

Альтернативой традиционной стальной арматуре является композитная арматура, появившаяся не так давно. К ее достоинствам можно отнести следующие факторы:

  • Цена. Арматура из стекловолокна дешевле стального прута.
  • Легкость и прочность. Несмотря на то, что вес стекловолоконных прутьев намного ниже, чем стальных, их прочность примерно в 3 раза выше.
  • Стойкость к коррозии и долговечность. Стекловолокно не подвержено коррозии, поэтому срок службы таких элементов не ограничен.
  • Композитная арматура не намагничевается и не создает помех радиоволнам.

Композитная стеклопластиковая арматура

Как правильно армировать ленточный фундамент

Для совместной работы бетона и арматуры необходимо четко следовать правилам и схеме армирования ленточного фундамента, изображенной на рисунке ниже:

  • размеры фундамента должны позволять свободно и правильно разместить арматурные каркасы;
  • в арматурном каркасе должно быть не менее четырех продольных прутьев;
  • рабочие стержни необходимо располагать с таким расчетом, чтобы обеспечить совместную работу арматуры и бетона, правильную стыковку арматуры и заливку фундамента;
  • необходимо обеспечить требуемый защитный слой бетона, чтобы обеспечить сохранность арматуры от воздействий окружающей среды, для фундаментов он должен быть не менее 5 см;
  • продольную стыковку арматуры нужно проводить внахлест, длина его должна составлять не менее 60 диаметров арматуры и не менее 25 см;
  • расстояние между продольными хомутами должно быть в пределах 30-80 см;
  • при плотном расположении арматуры нужно использовать бетон с мелкими заполнителями.

Армирование углов и мест примыкания ленточного фундамента

Как правило, последовательность сборки арматурного каркаса фундамента состоит из последовательной сборки прямых участков и связи их в углах фундамента и в местах примыкания внутренних перегородок. На эти участки стоит обращать особенное внимание, так как основные изгибающие и скалывающие напряжения возникают здесь.

Армирование углов ленточного фундамента и мест примыкания стен проводят при помощи жестких лапок, Г и П-образных хомутов.

При использовании жесткой лапки, напоминающей кочергу, длиной не менее 35d рабочего стержня, гнутая часть арматуры располагается таким образом, чтобы внешние стержни в обоих направлениях были соединены, а внутренние стержни привариваются к внешним прутьям. Этим способом можно избежать распространенной ошибки при армировании– отсутствия связи между внешними и внутренними стержнями. В местах изгиба с внутренней стороны ставится вертикальная арматура.

Принцип установки Г-образного хомута аналогичен, только вместо лапки используют гнутый стержень стороной не менее 50d рабочей арматуры. Здесь также внутренние стержни одного направления соединяются с внешними прутьями другой стороны. Хомуты П-образной формы позволяют соединять параллельные внешние и внутренние стержни в одном направлении соединить к перпендикулярно расположенному внешнему стержню в другом направлении. На углах фундаментов применяют два таких хомута, на местах примыкания стены только один.

Наглядно схемы примыкания углов и стыков арматуры показаны на схемах ниже:

Схемы армирования углов и примыканий

Здесь возникает вопрос, как правильно гнуть арматуру для фундамента. Для этого используют специальное приспособление — арматурогиб, состоящее из трех стержней разного диаметра, жестко закрепленных на устойчивое, преимущественно стальное основание. Такое приспособление можно изготовить самостоятельно, либо приобрести в магазине.

Правильная вязка арматуры

Вязка арматуры процесс трудоемкий, требует знаний и навыка, а также специальных приспособлений – вязального пистолета или крючка. Вязальный пистолет вещь удобная, но дорогостоящая, поэтому покупать его для монтажа одного фундамента нецелесообразно. Также можно взять такой инструмент в аренду, либо использовать один с соседями по стройке.

Вязальный пистолет для арматуры

Вязальный крючок продается нескольких видов и легко изготавливается своими руками.

Вязальный крючок для арматуры

Для вязки арматуры под ленточный фундамент используется отожженная проволока диаметром 0,8-1,4 мм.

Различают схемы вязки при продольном соединении арматуры внахлест и перекрестном соединении двух перпендикулярно расположенных стержней. Применяют различные способы вязки, наиболее эффективными являются: двухрядные, крестовые и мертвые узлы.

Необходимо проследить, чтобы вязальная проволока находилась в углублении профиля арматуры. Продольное соединение внахлест осуществляется вязкой как минимум в 3-5 местах.

Наглядно процесс вязки арматуры показан на видео:

Технологически грамотное армирование ленточного фундамента позволит избежать ошибок, а главное достичь максимальной надежности всего основания, так как от этого зависит долговечность всего сооружения.

Помогла статья? Оцените ее

 

Концепция UCB, объясненная с помощью кода

В настоящее время это один из наиболее изученных и популярных методов машинного обучения со стороны самых больших и ярких умов ИИ. Обучение с подкреплением — это термин, известный практически всем, кто работает в области ИИ. Процесс обучения посредством подкрепления сам по себе является сильным признаком интеллекта, с которым мы, люди, можем легко понять. Мы уже обсуждали обучение с подкреплением с помощью очень популярного алгоритма под названием Thompson Sampling в одной из наших предыдущих статей.

Тем временем, не стесняйтесь посетить наш последний хакатон в Machinehack — Predict The Cost of Used Cars — Hackathon By Imarticus. Хакатон проводится при партнерстве с Imarticus Learning. Участвуйте сейчас и выигрывайте интересные призы.

В этой статье мы исследуем еще один популярный алгоритм, реализующий обучение с подкреплением, который называется Верхняя граница уверенности или UCB.



Что такое UCB

В отличие от выборки Томпсона, которую мы обсуждали в одной из наших предыдущих статей, это вероятностный алгоритм, означающий, что распределение вероятности успеха бандитов было рассчитано на основе распределения вероятностей.UCB — это детерминированный алгоритм, который означает отсутствие фактора неопределенности или вероятности.

Для понимания UCB мы воспользуемся той же проблемой MultiArmed Bandit. Если вы не знакомы с проблемой многорукого бандита (MABP), пожалуйста, прочтите статью — «Интуиция за выборкой Томпсона, объясненная с помощью кода Python».

UCB — это детерминированный алгоритм обучения с подкреплением, который фокусируется на исследовании и эксплуатации на основе доверительной границы, которую алгоритм назначает каждой машине на каждом этапе исследования.(Раунд — это когда игрок тянет за руку автомата)

Внутри UCB

Мы постараемся понять UCB как можно проще. Представьте, что есть 5 бандитов или игровых автоматов, а именно B1, B2, B3, B4 и B5.

Учитывая 5 машин, используя UCB, мы собираемся разработать последовательность игры на машинах таким образом, чтобы максимизировать отдачу или вознаграждение от машин.

Ниже приведены интуитивно понятные шаги, лежащие в основе UCB для максимизации вознаграждений в MABP:

Шаг 1: Предполагается, что каждая машина имеет одинаковый доверительный интервал и распределение успехов.Этот доверительный интервал представляет собой предел распределения вероятности успеха, который с наибольшей уверенностью состоит из фактического распределения вероятности успеха каждой машины, о котором мы не знали вначале.

Шаг 2: Машина случайным образом выбирается для игры, поскольку изначально у них все одинаковые интервалы уверенности.

Шаг 3: В зависимости от того, дала ли машина вознаграждение или нет, доверительный интервал смещается либо в сторону фактического распределения успеха, либо от него, а также сходится или сужается по мере исследования, что приводит к значению верхней границы доверительного интервала. также быть уменьшенным.

Шаг 4: Основываясь на текущих верхних пределах уверенности каждой из машин, для исследования в следующем раунде выбирается машина с наивысшим значением.

Шаг 5: Шаги 3 и 4 продолжаются до тех пор, пока не будет набрано достаточно наблюдений для определения верхней доверительной границы каждой машины. Машина с наивысшей верхней границей достоверности — это машина с наибольшим процентом успеха.

Узнайте математику, лежащую в основе UCB

Ниже приведен алгоритм внутри UCB, который обновляет доверительные границы каждой машины после каждого раунда.

Шаг 1: два значения учитываются для каждого раунда исследования машины

  1. Сколько раз каждый автомат был выбран до раунда n
  2. Сумма наград, собранных каждым автоматом до раунда n

Шаг 2: В каждом раунде мы вычисляем среднее вознаграждение и доверительный интервал машины от i до n раундов следующим образом:

Средняя награда:

Доверительный интервал:

Шаг 3: Выбирается машина с максимальным UCB.

UCB:

Реализация UCB с проблемой многоруких бандитов

Импорт набора данных

Мы будем использовать простой набор данных с 200 наблюдениями для 5 машин. Щелкните здесь, чтобы загрузить образец, или создайте свой, генерируя случайные числа.

импортировать панды как pd
data = pd.read_csv («UCBbandits.csv»)

Импорт необходимых библиотек

import math
import matplotlib.pyplot as plt
import pandas as pd

Внедрение UCB

Поскольку мы должны перебирать каждое наблюдение каждой из 5 машин, мы начнем с инициализации количества наблюдений и машин.

наблюдений = 200
станков = 5

Теперь мы инициализируем две необходимые переменные, обсуждаемые в алгоритме, следующим образом:

numbers_of_selections_of_each_machine = [0] * машины
sums_of_rewards_for_each_machine = [0] * машины

Мы также определим еще две переменные перед алгоритмом: одну для хранения последовательности машин, выбранных в каждом раунде, и другую переменную для хранения общих вознаграждений, произведенных алгоритмом.

machines_selected = []
total_rewards = 0

Теперь приступим к нашему алгоритму, мы будем перебирать каждую машину в каждом наблюдении, начиная с B1 (с индексом 0) и с нулевым максимальным значением верхней границы.

В каждом раунде мы будем проверять, была ли выбрана машина (бандит) раньше или нет. Если да, алгоритм переходит к вычислению среднего вознаграждения машины, дельты и верхней достоверности. В противном случае, то есть, если машина выбирается впервые, она устанавливает значение верхней границы по умолчанию 1e400.

Смотрите также

После каждого раунда выбирается автомат с наивысшим значением верхней границы, количество выборов вместе с фактическим вознаграждением и суммой вознаграждений для выбранного автомата обновляется.

После завершения всех раундов у нас будет машина с максимальным значением верхней границы.

Алгоритм можно закодировать следующим образом:

для n в диапазоне (наблюдения):
bandit = 0
max_upper_bound = 0

для i в ассортименте (станки):

if (numbers_of_selections_of_each_machine [i]> 0):
average_reward = sums_of_rewards_for_each_machine [i] / numbers_of_selections_of_each_machine [i]
di = math.sqrt (3/2 * math.log (n + 1) / numbers_of_selections_of_each_machine [i])
upper_bound = average_reward + di

иначе:
upper_bound = 1e400

, если upper_bound> max_upper_bound:
max_upper_bound = upper_bound
bandit = i

machines_selected.append (бандит)
число_выборок_каждого_машина [бандит] = число_выборок_ каждого_машины [бандит] + 1
награда = данные.values ​​[n, bandit]
sums_of_rewards_for_each_machine [bandit] = sums_of_rewards_for_each_machine [bandit] + награда
total_rewards = total_rewards + награда

Визуализация результатов

print ("\ n \ nRewards By Machine =", sums_of_rewards_for_each_machine)
print ("\ nTotal Rewards by UCB =", total_rewards)
print ("\ nМашина, выбранная в каждом раунде по выборке Томпсона: \ n ", machine_selected)
Вывод:

Визуализация наград каждой машины

PLT.bar (['B1', 'B2', 'B3', 'B4', 'B5'], sums_of_rewards_for_each_machine)
plt.title ('MABP With UCB')
plt.xlabel ('Bandits')
plt.ylabel («Награды от каждой машины»)
plt.show ()
Результат:

Визуализация выбора каждой машины

plt.bar (['B1', 'B2', 'B3', 'B4', 'B5'], numbers_of_selections_of_each_machine)
plt.title ('Гистограмма выбранных машин')
plt.xlabel ('Bandits')
plt.ylabel ('Количество раз, когда каждый бандит был выбран для игры')
plt.show ()
Вывод:

Вот как выглядит полный код с правильным отступом:


Если вам понравилась эта история, присоединяйтесь к нашему сообществу Telegram.

Кроме того, вы можете написать для нас и стать одним из 500+ экспертов, которые написали статьи на AIM. Поделитесь своими номинациями здесь.

.

What is, Algorithms, Applications, Example

  • Home
  • Testing

      • Back
      • Agile Testing
      • BugZilla
      • Cucumber
      • Database Testing
      • ETL Testing
      • Назад
      • JUnit
      • LoadRunner
      • Ручное тестирование
      • Мобильное тестирование
      • Mantis
      • Почтальон
      • QTP
      • Назад
      • Центр качества (ALM)
      • Центр качества (ALM)
      • Управление тестированием
      • TestLink
  • SAP

      • Назад
      • ABAP
      • APO
      • Начинающий
      • Basis
      • BODS
      • BI
      • BPC
      • CO
      • Назад
      • CRM
      • Crystal Reports
      • QM4000
      • QM4
      • Заработная плата
      • Назад
      • PI / PO
      • PP
      • SD
      • SAPUI5
      • Безопасность
      • Менеджер решений
      • Successfactors
      • Учебники SAP

    • Apache
    • AngularJS
    • ASP.Net
    • C
    • C #
    • C ++
    • CodeIgniter
    • СУБД
    • JavaScript
    • Назад
    • Java
    • JSP
    • Kotlin
    • Linux
    • Linux
    • Kotlin
    • Linux
    • js

    • Perl
    • Назад
    • PHP
    • PL / SQL
    • PostgreSQL
    • Python
    • ReactJS
    • Ruby & Rails
    • Scala
    • SQL
    • 000

    • SQL
    • 000

      0003 SQL

      000

      0003 SQL

      000

    • UML
    • VB.Net
    • VBScript
    • Веб-службы
    • WPF
  • Обязательно учите!

      • Назад
      • Бухгалтерский учет
      • Алгоритмы
      • Android
      • Блокчейн
      • Business Analyst
      • Создание веб-сайта
      • CCNA
      • Облачные вычисления
      • 00030003 COBOL
          9000 Compiler

            9000 Встроенные системы

          • 00030003 9000 Compiler 9000
          • Ethical Hacking
          • Учебные пособия по Excel
          • Программирование на Go
          • IoT
          • ITIL
          • Jenkins
          • MIS
          • Сети
          • Операционная система
          • 00030003
          • Назад
          • Управление проектами Обзоры

          • Salesforce
          • SEO
          • Разработка программного обеспечения
          • VB A
      • Big Data

          • Назад
          • AWS
          • BigData
          • Cassandra
          • Cognos
          • Хранилище данных
          • 00030003

          • HBOps
          • 0003

          • HBOps
          • 0003

          • MicroStrategy

      .

      Что такое обучение с подкреплением? Полное руководство

      При предполагаемом размере рынка в 7,35 миллиарда долларов США искусственный интеллект растет не по дням, а по часам. McKinsey прогнозирует, что методы искусственного интеллекта (включая глубокое обучение и обучение с подкреплением) потенциально могут приносить от 3,5 до 5,8 трлн долларов в год в девяти бизнес-функциях в 19 отраслях.

      Хотя машинное обучение рассматривается как монолит, эта передовая технология диверсифицирована с различными подтипами, включая машинное обучение, глубокое обучение и современные технологии глубокого обучения с подкреплением.

      Что такое обучение с подкреплением?

      Обучение с подкреплением — это обучение моделей машинного обучения принятию последовательности решений. Агент учится достигать цели в неопределенной, потенциально сложной среде. При обучении с подкреплением искусственный интеллект сталкивается с игровой ситуацией. Компьютер пытается найти решение проблемы методом проб и ошибок. Чтобы заставить машину делать то, что хочет программист, искусственный интеллект получает либо вознаграждение, либо штрафы за свои действия.Его цель — максимизировать общую награду.
      Хотя дизайнер устанавливает политику вознаграждения, то есть правила игры, он не дает модели никаких подсказок или предложений о том, как решить игру. Модель должна выяснить, как выполнить задачу, чтобы получить максимальную награду, начиная с совершенно случайных испытаний и заканчивая сложной тактикой и сверхчеловеческими навыками. Используя возможности поиска и множество испытаний, обучение с подкреплением в настоящее время является наиболее эффективным способом продемонстрировать творческий потенциал машины.В отличие от людей, искусственный интеллект может собирать опыт из тысяч параллельных игровых процессов, если алгоритм обучения с подкреплением запускается на достаточно мощной компьютерной инфраструктуре.

      Примеры обучения с подкреплением

      В прошлом применение обучения с подкреплением ограничивалось слабой компьютерной инфраструктурой. Однако по мере того, как суперпользователь ИИ в нарды Джерарда Тезауро развивался в шоу 1990-х годов, прогресс все же произошел. Этот ранний прогресс сейчас быстро меняется с появлением новых мощных вычислительных технологий, открывающих путь совершенно новым вдохновляющим приложениям.
      Обучение моделей, управляющих автономными автомобилями, является отличным примером потенциального применения обучения с подкреплением. В идеальном случае компьютер не должен получать инструкции по вождению автомобиля. Программист избегал бы жесткой привязки всего, что связано с задачей, и позволял машине учиться на собственных ошибках. В идеальной ситуации единственным жестко закрепленным элементом была бы функция вознаграждения.

      • Например, , в обычных обстоятельствах нам необходимо, чтобы автономное транспортное средство ставило безопасность на первое место, минимизировало время поездки, уменьшало загрязнение, предлагало пассажирам комфорт и соблюдало нормы закона.С другой стороны, в случае с автономным гоночным автомобилем мы уделяем больше внимания скорости, чем комфорту водителя. Программист не может предсказать все, что может случиться в дороге. Вместо того, чтобы строить длинные инструкции «если-то», программист подготавливает агент обучения с подкреплением, чтобы он мог учиться на системе вознаграждений и наказаний. Агент (другое название алгоритмов обучения с подкреплением, выполняющих задачу) получает вознаграждение за достижение определенных целей.
      • Другой пример: deepsense.ai принял участие в проекте «Учимся бегать», целью которого было обучить виртуального бегуна с нуля. Бегуна является передовой и точной моделью опорно-двигательного аппарата разработана биомеханика лаборатории Стэнфордский Нейромускульной. Обучение агента бегу — это первый шаг к созданию нового поколения протезов ног, которые автоматически распознают характер ходьбы людей и настраиваются так, чтобы их было легче и эффективнее. Хотя это возможно и было сделано в лабораториях Стэнфорда, жесткая привязка всех команд и прогнозирование всех возможных схем ходьбы требует большой работы от высококвалифицированных программистов.

      Чтобы узнать больше о реальных приложениях обучения с подкреплением, прочтите эту статью.

      Проблемы с обучением с подкреплением

      Основная проблема в обучении с подкреплением заключается в подготовке среды моделирования, которая в значительной степени зависит от выполняемой задачи. Когда модель должна стать сверхчеловеческой в ​​играх Chess, Go или Atari, подготовка среды моделирования относительно проста. Когда дело доходит до создания модели, способной управлять автономным автомобилем, создание реалистичного симулятора имеет решающее значение, прежде чем позволить автомобилю ездить по улице.Модель должна выяснить, как затормозить или избежать столкновения в безопасных условиях, когда жертва даже тысячи автомобилей обходится с минимальными затратами. Перенос модели из учебной среды в реальный мир — вот где все усложняется.
      Масштабирование и настройка нейронной сети, управляющей агентом, — еще одна проблема. Нет другого способа общаться с сетью, кроме как через систему вознаграждений и штрафов. Это, в частности, может привести к катастрофическому забыванию , когда приобретение новых знаний приводит к удалению некоторых старых из сети (чтобы прочитать дальше этот выпуск, см. этот документ, опубликованный во время Международной конференции по машинному обучению).
      Еще одна проблема — достижение локального оптимума, то есть агент выполняет задачу как есть, но не оптимальным или требуемым образом. «Прыгун», прыгающий, как кенгуру, вместо того, чтобы делать то, что от него ожидалось, — ходьбу, — отличный пример, который также можно найти в нашем недавнем сообщении в блоге.
      Наконец, есть агенты, которые оптимизируют приз без выполнения той задачи, для которой он был разработан. Интересный пример можно найти в видео OpenAI ниже, где агент научился получать награды, но не завершать гонку.

      Чем отличается обучение с подкреплением от глубокого и машинного обучения?

      На самом деле не должно быть четкого разделения между машинным обучением, глубоким обучением и обучением с подкреплением. Это похоже на отношение параллелограмм — прямоугольник — квадрат, где машинное обучение является самой широкой категорией, а глубокое обучение с подкреплением — самой узкой.
      Точно так же обучение с подкреплением — это специализированное приложение методов машинного и глубокого обучения, предназначенное для решения проблем определенным образом.

      Хотя идеи кажутся разными, между этими подтипами нет резкого разделения. Более того, они объединяются в рамках проектов, поскольку модели созданы не для того, чтобы придерживаться «чистого типа», а для выполнения задачи наиболее эффективным способом. Так что «что именно отличает машинное обучение, глубокое обучение и обучение с подкреплением» — на самом деле сложный вопрос.

      • Машинное обучение — это форма ИИ, в которой компьютерам дается возможность постепенно улучшать выполнение конкретной задачи с помощью данных без непосредственного программирования (это определение Артура Ли Самуэля.Он ввел термин «машинное обучение», которое бывает двух типов: машинное обучение с учителем и без учителя.

      Машинное обучение с учителем происходит, когда программист может предоставить метку для каждого обучающего ввода в систему машинного обучения.

      • Пример — путем анализа исторических данных, взятых с угольных шахт, deepsense.ai подготовил автоматизированную систему для прогнозирования опасных сейсмических событий за 8 часов до их возникновения. Записи сейсмических событий были взяты на 24 угольных шахтах, которые собирали данные в течение нескольких месяцев.Модель смогла определить вероятность взрыва, проанализировав показания за предыдущие 24 часа.

      AAIA16 Data Mining Challenge Seismic Events Height Randomization

      Некоторые шахты можно точно определить по их основным значениям рабочей высоты. Чтобы затруднить идентификацию, мы добавили гауссов шум

      С точки зрения ИИ, одна модель выполняла одну задачу с уточненным и нормализованным набором данных. Чтобы узнать больше об истории, прочитайте наш блог.
      Обучение без учителя происходит, когда модели предоставляются только входные данные, но нет явных меток.Он должен копаться в данных и находить скрытую структуру или взаимосвязи внутри. Дизайнер может не знать, что это за структура или что найдет модель машинного обучения.

      • В качестве примера мы использовали прогноз оттока. Мы проанализировали данные о клиентах и ​​разработали алгоритм для группировки похожих клиентов. Однако мы не сами выбирали группы. Позже мы смогли определить группы высокого риска (с высоким уровнем оттока клиентов), и наш клиент знал, к каким клиентам им следует обратиться в первую очередь.
      • Другой пример обучения без учителя — обнаружение аномалии, когда алгоритм должен определить элемент, который не вписывается в группу. Это может быть некорректный продукт, потенциально мошенническая транзакция или любое другое событие, связанное с нарушением нормы.

      Глубокое обучение состоит из нескольких уровней нейронных сетей, предназначенных для выполнения более сложных задач. На создание моделей глубокого обучения вдохновил дизайн человеческого мозга, но в упрощенном виде.Модели глубокого обучения состоят из нескольких слоев нейронной сети, которые в принципе отвечают за постепенное изучение более абстрактных функций конкретных данных.
      Хотя решения для глубокого обучения способны давать потрясающие результаты, по масштабу они не могут сравниться с человеческим мозгом. Каждый уровень использует результат предыдущего в качестве входных данных, и вся сеть обучается как единое целое. Основная концепция создания искусственной нейронной сети не нова, но только недавно современное оборудование обеспечило достаточную вычислительную мощность для эффективного обучения таких сетей на достаточном количестве примеров.Расширенное внедрение привело к появлению таких фреймворков, как TensorFlow, Keras и PyTorch, которые сделали создание моделей машинного обучения намного более удобным.

      • Пример: deepsense.ai разработал модель на основе глубокого обучения для Национального управления океанических и атмосферных исследований (NOAA). Он был разработан для распознавания китов по аэрофотоснимкам, сделанным исследователями. Для получения дополнительной информации об этом исчезающем виде и работе deepsense.ai с NOAA прочтите нашу запись в блоге.С технической точки зрения распознавание конкретного экземпляра китов по аэрофотоснимкам — это чистое глубокое обучение. Решение состоит из нескольких моделей машинного обучения, выполняющих отдельные задачи. Первый отвечал за поиск головы кита на фотографии, в то время как второй нормализовал фотографию, разрезая и поворачивая ее, что в конечном итоге обеспечило единый вид (фотография на паспорт) одного кита.


      Третья модель отвечала за распознавание определенных китов по фотографиям, которые были подготовлены и обработаны ранее.Сеть, состоящая из 5 миллионов нейронов, располагалась на кончике капота. Более 941000 нейронов искали голову и более 3 миллионов нейронов были использованы для классификации конкретного кита. Это более 9 миллионов нейронов, выполняющих задачу, что может показаться большим количеством, но бледнеет по сравнению с более чем 100 миллиардами нейронов, работающих в человеческом мозгу. Позже мы использовали аналогичное решение на основе глубокого обучения для диагностики диабетической ретинопатии с использованием изображений сетчатки глаза пациентов.
      Обучение с подкреплением , как указано выше, использует систему вознаграждений и штрафов, чтобы заставить компьютер решить проблему самостоятельно.Участие человека ограничивается изменением окружающей среды и настройкой системы вознаграждений и штрафов. Поскольку компьютер максимизирует вознаграждение, он склонен искать неожиданные способы сделать это. Вовлеченность человека направлена ​​на то, чтобы предотвратить использование системы и побудить машину выполнять задачу ожидаемым образом. Обучение с подкреплением полезно, когда нет «правильного способа» выполнить задачу, но есть правила, которым модель должна следовать, чтобы правильно выполнять свои обязанности. Возьмем, к примеру, дорожный кодекс.

      В частности, если искусственный интеллект будет управлять автомобилем, обучение игре на некоторых классических играх Atari можно считать значимым промежуточным этапом. Возможное применение обучения с подкреплением в автономных транспортных средствах — это следующий интересный случай. Разработчик не может предсказать все будущие дорожные ситуации, поэтому позволить модели обучиться с помощью системы штрафов и вознаграждений в разнообразной среде, возможно, является наиболее эффективным способом для ИИ расширить опыт, который он имеет и собирает.

      Заключение

      Ключевым отличительным фактором обучения с подкреплением является то, как обучается агент. Вместо того чтобы проверять предоставленные данные, модель взаимодействует с окружающей средой, ища способы максимизировать вознаграждение. В случае глубокого обучения с подкреплением нейронная сеть отвечает за хранение опыта и, таким образом, улучшает способ выполнения задачи.

      Является ли обучение с подкреплением будущим машинного обучения?

      Хотя обучение с подкреплением, глубокое обучение и машинное обучение взаимосвязаны, никто из них не собирается заменять другие.Ян ЛеКун, известный французский ученый и руководитель отдела исследований в Facebook, шутит, что обучение с подкреплением — это вишенка на большом торте искусственного интеллекта с машинным обучением самого пирога и глубоким обучением глазури. Без предыдущих итераций вишня ничего бы не увенчала.
      Во многих случаях использования классических методов машинного обучения будет достаточно. Чисто алгоритмические методы, не связанные с машинным обучением, как правило, полезны при обработке бизнес-данных или управлении базами данных.
      Иногда машинное обучение только поддерживает процесс, выполняемый другим способом, например, ища способ оптимизации скорости или эффективности.
      Когда машине приходится иметь дело с неструктурированными и несортированными данными или с различными типами данных, нейронные сети могут быть очень полезны. Как машинное обучение улучшило качество машинного перевода, было описано в The New York Times.

      Сводка

      Обучение с подкреплением, несомненно, является передовой технологией, которая может изменить наш мир. Однако его не нужно использовать в каждом случае. Тем не менее, обучение с подкреплением кажется наиболее вероятным способом сделать машину творческой, поскольку поиск новых, инновационных способов выполнения ее задач на самом деле является творчеством.Это уже происходит: теперь знаменитая AlphaGo DeepMind выполняла движения, которые сначала считались ошибками специалистами-людьми, но на самом деле обеспечила победу над одним из сильнейших игроков-людей, Ли Седолом.
      Таким образом, обучение с подкреплением может стать революционной технологией и следующим шагом в развитии ИИ.

      .

      Выбор армирования швов — СТР

      Photo courtesy Neumann/Smith Architecture Фото любезно предоставлено Neumann / Smith Architecture

      Дэном Цехмайстером, PE, FASTM и Джеффом Снайдером, MBA
      Во время все более сложных систем ограждающих конструкций каменная промышленность стремится заново открыть для себя упрощенные принципы, которые сделали ее частый выбор материала на протяжении всей истории. Одним из них является принцип «меньше — значит больше», который справедлив, когда дело доходит до выбора проволочной арматуры для систем стен из армированной каменной кладки.

      Стандартный калибр 9 (MW11), проволока в форме лестницы, изготовленная из приваренных встык поперечных стержней, расположенных на расстоянии 406 мм (16 дюймов) по центру (oc), лучше облегчает конструктивно необходимую установку арматуры, растекание и уплотнение раствора, а также усадку контроль бетонных стен (ББК). Чтобы понять, почему, важно знать историю и рациональную основу армирования горизонтальных швов.

      Согласно данным Национальной ассоциации бетонных кладок (NCMA) TEK 12-2B (2005), Армирование швов для бетонной кладки , армирование швов CMU было «изначально задумано в первую очередь для контроля растрескивания стен, связанного с горизонтальной термической усадкой или расширением под действием влаги, а также альтернатива кладки коллекторов при связывании кладочных лент вместе.Далее в примечании TEK говорится, что «также увеличивает сопротивление стены горизонтальному изгибу, но это не широко признано модельными строительными нормами для структурных целей».

      Самым значительным изменением конструкции одинарных и многослойных стен с тех пор, как армирование проволокой стало нормой в 1960-х годах, стал переход на вертикальную и горизонтальную стальную арматуру (арматуру) в CMU в 1990-х. Это охватило все неармированные рынки Северной Америки, а не только сейсмические зоны.

      В соответствии с таблицей 2 в NCMA TEK 10-3 (2003), Контрольные стыки для бетонных стен — альтернативный инженерный метод («Максимальный интервал горизонтального армирования для соответствия критериям> 0.0007 An ”), для стен без заделки или частично залитых раствором, расстояние между проводами по вертикали составляет 406 мм (16 дюймов) oc для блока CMU 203 и 305 мм (8 и 12 дюймов). Кроме того, в Таблице 2 указано, что расстояние 406 мм (16 дюймов) применимо к проводу 9-го калибра (MW11) с двумя проводами (по одному проводу на лицевую оболочку блока). Стена CMU без часто расположенных вертикальных арматурных стержней и соответствующих связующих балок с арматурными стержнями, заключенными в раствор, встречается редко.

      Ladder-shaped wire promotes code required rebar centering. [CREDIT] Images courtesy John Maniatis Проволока в форме лестницы обеспечивает необходимое центрирование арматуры. Изображения любезно предоставлены Джоном Маниатисом Truss-shaped wire interferes with code-required rebar centering. Проволока в форме фермы мешает центрированию арматуры в соответствии с требованиями кода.

      Ферма против лестницы
      Горизонтальное усиление стыков претерпело значительные изменения за десятилетия. Вначале форма фермы была нормой для стен из неармированной каменной кладки. Как следует из NCMA TEK 12-2B, форма фермы оказывала некоторое сопротивление перекрытию стены в горизонтальном направлении из-за трех проводов — двух продольных и одной диагональной. Однако, поскольку большинство каменных стен в настоящее время, как правило, рассчитаны на перекрытие в вертикальном направлении, стальная арматура и раствор размещаются вертикально.

      Размещение арматуры
      Когда инженеры-строители проектируют армированную кладку, они обычно требуют, чтобы вертикальный стержень был размещен в центре ячеек блока. В статьях 3.4 B.11.a и b, Требования и спецификация строительных норм и правил для строительных норм , Комитета по стандартизации каменной кладки 2013 года, требует, чтобы допуск на размещение вертикальной арматуры составлял ± 12,7 мм (½ дюйма) в поперечнике. ширину блока и ± 50,8 мм (2 дюйма) по длине блока, измеренной от центра ячейки блока.

      Форма имеет значение
      Проволока лестничной формы имеет перпендикулярные поперечные стержни, приваренные встык под углом 406 мм (16 дюймов) к продольным проволокам. Он размещается поперечными стержнями по центру непосредственно над стенками блока (рис. 1). Размещение лестничного троса таким образом устраняет препятствия, вызванные диагональными поперечными стержнями, общими с формой фермы, особенно если блочные ячейки спроектированы так, чтобы содержать вертикальные стержни (Рисунок 2).

      Поток раствора
      Еще одно преимущество лестничной проволоки проявляется при укладке и уплотнении раствора.Отсутствие диагональных (анкерных) поперечин улучшает растекание и уплотнение раствора. Согласно статьям 3.43 B.4.d, код MSJC обычно требует размещения блока CMU (, т.е. полых блоков), чтобы вертикальные ячейки, подлежащие заливке, были выровнены. Это обеспечивает беспрепятственный путь для потока раствора. Согласно NCMA TEK 12-2B: «Поскольку диагональные поперечные проволоки могут мешать укладке вертикальной арматурной стали и цементного раствора, армирование швов ферменного типа не должно использоваться в армированных или залитых раствором стенах.”

      Masonry Masonry_mobile

      Контроль усадки
      Проволока в форме лестницы, размещенная с поперечными стержнями, центрированными непосредственно над стенками блоков, имеет еще одно отличительное преимущество. Он размещает сварные встык Т-образные пересечения каждой продольной проволоки с поперечными стержнями непосредственно над Т-образными пересечениями, где торцевые поверхности блоков встречаются с каждой стенкой. При укладке по схеме непрерывного скрепления двухъячеечные блоки укладываются только под засыпку из облицовочного раствора. Перекрытия блоков засыпаются строительным раствором только рядом с вертикально армированными ячейками.

      Подложка из облицовочного раствора будет выдавливаться на перемычках при сжатии во время укладки блока, полностью закрывая Т-образные пересечения проволоки, связывая проволоку с бетонной кладкой (Рисунок 3). Следовательно, конечный результат должен заключаться в улучшенном контроле над растрескиванием при усадке.

      Ladder-shaped wire improves shrinkage control. Проволока в форме лестницы улучшает контроль усадки. Heavy-duty 4.8-mm (3/16-in.) diameter wire leaves inadequate room for mortar coverage. Прочная проволока диаметром 4,8 мм (3/16 дюйма) не оставляет места для покрытия раствором.

      Стандартный калибр 9 или тяжелый 3/16
      Помимо формы ( i.е. фермы или лестницы), толщина проволоки важна в процессе укладки. Чаще всего указанная толщина швов раствора составляет 9,5 мм (3/8 дюйма). Наибольший диаметр проволоки, разрешенный Разделом 6.1.2.3 MSJC Code , будет составлять половину толщины шва раствора — 4,8 мм (3/16 дюйма). Существуют веские причины, по которым использование провода 9-го калибра (, т.е. 3,8 мм [0,148 дюйма) более целесообразно, чем использование провода большего диаметра для тяжелых условий эксплуатации (, т.е. 4,8 мм [3/16 дюйма]). .

      Допуски на укладку
      Допуск MSJC Code на укладку толщины шва слоя раствора составляет ± 3.2 мм (1/8 дюйма), как указано в Статье 3.3 F. 1. b. Следовательно, указанный шов из раствора толщиной 9,5 мм (3/8 дюйма) может иметь толщину от 12,7 до 6,4 мм (от ½ до ¼ дюйма). При толщине шва из строительного раствора от до 3/8 дюйма, с использованием сверхпрочных 3/16 дюйма. проволока с покрытием, нанесенным методом горячего цинкования (в соответствии с MSJC Code , раздел 6.1.4.2), оставит недостаточно места для покрытия из раствора для герметизации проволоки (рисунок 4). Буквально, блок можно было поставить прямо на провод ( т.е. блок на проводе на блоке).

      В статье в выпуске журнала Masonry Construction за январь 1995 г. «Выбор правильного армирования швов для работы» автор Марио Дж. Катани утверждает:

      Одной из веских причин использовать арматуру 9-го калибра является удобство и конструктивность. В то время как код позволяет армированию швов иметь диаметр, составляющий половину ширины шва раствора, допуски, разрешенные для узлов, соединений и самой проволоки, могут препятствовать размещению арматуры большого диаметра.Используйте его только тогда, когда другого выбора нет.

      Формовка углов
      Существуют некоторые споры относительно преимуществ заказа заводских сборных внутренних и внешних углов по сравнению с их формованием на месте. Поскольку код MSJC Code не различает достоинств того или иного метода (и фактически почти не распознает их), необходима некоторая интерпретация.

      Стандарт для притертой проволочной арматуры в любом месте всегда один и тот же — требуется длина 152 мм (6 дюймов).) как минимум при притирке прямых участков длиной 3,1 м (10 футов) друг к другу или там, где прямой участок пересекает угол (согласно статье 3.4 B.10.b). Это требование также может применяться к углам полевой формы. Внутреннюю продольную проволоку можно разрезать и согнуть, образуя угол в 90 градусов с минимальным перекрытием 152 мм (6 дюймов) параллельно недавно сформированной внутренней продольной проволоке (Рисунок 5).

      Заводские углы могут показаться естественным выбором, но это может потребовать дополнительных затрат времени и средств для любого размера или конфигурации, кроме стандартных (8 или 12 дюймов.) двухпроводная арматура. Это особенно актуально для регулируемых крючков и проушин, изготовленных по индивидуальному заказу.

      Углы полевой формы имеют много преимуществ. Они соответствуют всем требованиям MSJC Code и легко поддаются формовке для любых углов. Каждую опору можно сформировать по размеру, а также притереть в каждом направлении от угла, что минимизирует расточительные остатки от 3,1-метровых отрезков, которые в противном случае были бы отправлены на свалку. Формованные на месте углы сокращают время выполнения заказа, стоят меньше на линейный фут, чем детали, изготовленные на заводе, и занимают всего минуту, чтобы вырезать и сформировать, чтобы соответствовать на рабочем месте.

      This shows a simple three-step sequence to field form corners. Здесь показана простая последовательность из трех шагов для формирования углов. Сетчатые стяжки, утвержденные Кодексом Code approved mesh ties are safe, economical, and readily available. [CREDIT] Image courtesy Matt Fowler , безопасны, экономичны и легко доступны. Изображение предоставлено Мэттом Фаулером

      Пересекающиеся стены
      Код MSJC допускает сборные Т-образные горизонтальные участки арматуры из проволоки там, где внутренняя ненесущая кирпичная стена пересекает другую для боковой поддержки.Однако это может быть не лучший выбор. Такие Т-образные профили обычно закладываются на 406 мм (16 дюймов) по центру во время строительства в продольной стене, оставляя выступающую ножку Т-образного профиля, выступающую примерно на 609 мм (24 дюйма), пока пересекающаяся стена не станет построен.

      Многие каменщики согласятся, что оголенные участки провода могут быть опасными на месте, особенно на высоте глаз. К счастью, MSJC Code также допускает использование оцинкованной аппаратной ткани с сеткой 6,3 мм (1/4 дюйма) для внутренних ненесущих интересных стен (рис. 6).Кроме того, код MSJC допускает использование анкеров Z-образной планки для стен, которые пересекаются там, где требуется передача сдвига. Выступающие Z-образные ремни имеют те же проблемы безопасности, что и открытые Т-образные секции. Их нужно использовать только там, где инженер-строитель указывает на передачу сдвига. Когда возможно, сетчатые стяжки обычно являются лучшим выбором. Они легко доступны, просты и экономичны в установке, и их можно безопасно сгибать, пока пересекающаяся стена не достигнет их высоты.

      Варианты отделки
      Двумя наиболее распространенными видами отделки для армирования проволоки являются прокатное цинкование и горячее цинкование.Первая категория разрешена кодом MSJC для большинства внутренних помещений, не контактирующих с влагой или высокой влажностью. Эти стандартные оцинкованные покрытия производятся путем гальванизации — процесса, при котором слой цинка связывается со сталью, когда электрический ток пропускается через солевой / цинковый раствор с цинковым анодом и стальным проводником. Этот процесс выполняется, когда проволока находится в необработанном состоянии, перед ее изготовлением (, т. Е. , разрезанная и сваренная для придания формы) арматуры.

      This guide outlines joint reinforcement selection. [CREDIT] Image courtesy Masonry Institute of Michigan В этом руководстве описывается выбор армирования швов. Изображение предоставлено Masonry Institute of Michigan Горячее цинкование требуется для всех наружных работ, а также любых внутренних стен, подверженных воздействию влаги или высокой влажности. Это процесс нанесения на сталь толстого слоя путем погружения ее в ванну с расплавленным цинком. Этот процесс выполняется после изготовления проволоки для формирования арматуры.

      Множество преимуществ
      К сожалению, не все, кто проектирует или задает арматуру проволоки, успевают за переходом на армированные CMU.Есть много мест в стране, где все еще используются устаревшая форма фермы и / или сверхпрочная проволока. На рис. 7 показаны преимущества и недостатки профилей лестниц и ферм, а также стандартной арматуры 9-го калибра по сравнению с усиленной проволокой.

      Кроме того, проволока в форме лестницы с поперечными и поперечными стержнями 9-го калибра имеет другие преимущества, включая более низкие затраты на производство, упаковку и транспортировку. Более легкий вес связки снижает риск травм спины при работе с ними на рабочем месте.Конфигурация лестницы также упрощает установку проводов, арматуры и раствора, что, в свою очередь, увеличивает производительность каменщика.

      Спецификация
      Ниже и на Рисунке 8 приведен пример рекомендуемой формулировки для усиления горизонтальных швов в одинарных и многослойных кирпичных стенах:

      ЧАСТЬ 2 ПРОДУКТЫ
      2.1 Армирование кладки
      A. Армирование швов, общее: ASTM A 961
      1. Внутренние стены: оцинкованные, ASTM A 641 (0,10 унций на квадратный фут), углеродистая сталь.
      2. Наружные стены: горячеоцинкованная углеродистая сталь ASTM A 153, класс B-2 (1,50 унции на квадратный фут).
      3. Внутренние стены, подверженные воздействию высокой влажности: горячее цинкование, углеродистая сталь ASTM A 153, класс B-2 (1,50 унции на квадратный фут)).
      4. Размер проволоки и боковые стержни: диаметр W1,7 или 0,148 дюйма (калибр 9).
      5. Размер проволоки и поперечные стержни: диаметр W1,7 или 0,148 дюйма (калибр 9).
      6. Размер проволоки для шпоновых стяжек: W2,8 или 0,1875 дюйма в диаметре (3/16 дюйма).
      7. Расстояние между поперечными стержнями: 16 дюймов по центру
      8.Обеспечьте длину 10 футов.

      • B. Армирование стыков кладки для одинарной кладки: лестничного типа с одной парой боковых стержней.
      • C. Армирование швов в каменной кладке с несколькими витками Кладка: лестничного типа с регулируемой (состоящей из двух частей) конструкцией, с отдельной двойной проушиной, приваренной встык к боковому стержню 16 дюймов по центру. Двойные крючки, которые входят в проушины, приваренные к арматуре, и препятствуют перемещению перпендикулярно стене. Длина стяжки с крюком должна быть достаточной, чтобы выступать минимум на 1/2 дюйма в оболочку внешней поверхности для полых элементов и минимум на 1-1 / 2 дюйма в сплошные элементы, но с минимальной крышкой 5/8 дюйма на внешней стороне.

      Ladder-shaped wire, code required minimum lap, and butt-welded adjustable eye options are shown here. Images courtesy John Maniatis Проволока в форме лестницы, минимальный требуемый код нахлеста и варианты регулируемой проушины для стыковой сварки показаны здесь. Изображение любезно предоставлено Джоном Маниатисом

      Заключение
      Чтобы контролировать возможное растрескивание в результате усадки в бетонной кирпичной стене, требуется правильное размещение контрольных швов (CJ), а также размещение горизонтального армирования швов. Армирование горизонтальных швов в стене CMU не предотвращает растрескивание, а контролирует его. Без этого в бетонной кладке стены могут быть видны усадочные трещины, размер которых может проникнуть сама Мать-природа.

      При армировании стыков в виде лестницы 9-го калибра в бетонной кирпичной стене продольная проволока будет растягиваться по мере усадки бетонной кладки. Следовательно, случайные микроскопические трещины не должны быть заметны и будут менее уязвимы для элементов. Использование проволоки в форме фермы не соответствует нормам и может отрицательно повлиять на целостность железобетонной кирпичной стены.

      Когда дело доходит до армирования кирпичной кладки, старая поговорка «меньше значит больше» не может быть более верной.Проволока в форме лестницы, изготовленная из отрезков длиной 3,1 м (10 футов) с непрерывными боковыми стержнями 9-го калибра и приваренными встык поперечными стержнями 9-го калибра, расположенными на расстоянии 406 мм (16 дюймов), является идеальным выбором. для высокоэффективных и экономичных стенных систем CMU.

      Дэн Зехмайстер, ЧП, FASTM, был исполнительным директором и директором по структурным службам Мичиганского института масонства (MIM) с 1986 года. Он является активным членом ASTM и в 2012 году был удостоен Международной награды за заслуги перед ним. Зехмайстер также является членом правления Американского института архитекторов (AIA) Совета по ограждению зданий Большого Детройта.С ним можно связаться по адресу [email protected]

      Джефф Снайдер, MBA, является президентом Masonpro Inc., поставщика специальных принадлежностей для подрядчиков каменщиков. Он имеет обширный опыт работы на местах, в том числе руководил проектами для каменщиков в Техасе и Нью-Мексико. Снайдер является доверенным лицом MIM, входящим в комитет по проектированию общих стен. С ним можно связаться по адресу [email protected]

      .

      0 0 vote
      Article Rating
  • Подписаться
    Уведомление о
    guest
    0 Комментарий
    Inline Feedbacks
    View all comments
    0
    Would love your thoughts, please comment.x
    ()
    x