Минимальный уклон плоской кровли в процентах: какой должен быть, расчет, нормативы, СНиП

Содержание

какой должен быть, расчет, нормативы, СНиП

Независимо от формы и размеров горизонтального перекрытия, всегда нужно делать хотя бы минимальный уклон плоской кровли. При больших углах наклона поверхности сложность, стоимость и вес конструкции резко увеличивается, поэтому приходится обходиться минимальными величинами дифферента.

Зачем нужен уклон на плоской кровле

Строительная наука давно установила: прочность гидроизоляции напрямую зависит от количества воды, остающейся на поверхности крыши. Для обычной скатной кровли проблема решается обустройством достаточно большого угла наклона, 10-55о. Для зданий с плоским, как стол, перекрытием крыши ситуация осложняется целым букетом проблем:

  • Дождевая и талая вода остается на гидроизоляции, что существенно увеличивает теплопотери через плоскую поверхность покрытия;
  • Постоянный контакт воды или конденсированной влаги с поверхностью гидроизоляции приводит к деградации и деструкции кровельного покрытия. С первыми морозами набухший влагой рубероид на плоской поверхности превращается в клочья битумной бумаги;
  • Снег и лед практически не уходят с плоской крыши, не имеющей хотя бы минимального уклона, нагрузка на плиту и защитное покрытие достигает 300-500 кг/м2.

Бороться с остатками воды на крыше очень сложно, чаще всего приходится вручную убирать заносы. Единственный выход – сделать для плоской крыши уклон в несколько градусов. Это поможет убирать воду и сохранить кровельное покрытие.

Какой уклон должен быть на плоской кровле

Выбор угла наклона плоской кровельной поверхности осуществляется еще на этапе расчета и проектирования устройства крыши здания. Существуют готовые типовые схемы каркаса и несущих конструкций, для каждой из которых строительными правилами рекомендован свой нормативный уклон плоской кровли.

Важно! Для бетонных перекрытий с минимальным подъемом для разных схем отличия в наклоне внешнего защитного покрытия могут составлять 3-5о, но, тем не менее, рекомендованный СП уклон плоской кровли нужно обязательно выдерживать.

Традиционно для плоских перекрытий используют кровельные покрытия с подъемом 1-10о. На первый взгляд, кажется, какая разница, будет ли угол больше или меньше минимального на несколько градусов. На самом деле эта величина крайне важна для обеспечения устойчивости несущей конструкции, а кроме того, строительная инспекция никогда не пропустит и не даст разрешение на эксплуатацию здания, у которого минимальный уклон плоской кровли меньше, чем по СП 17.13330.2017. Именно в этом своде правил приведены основные значения для базовых типов кровельных покрытий.

Обычно угол наклона выбирают на основе трех позиций:

  • Длины ската. Чем короче линия ската, тем проще отвести воду с плоской кровли. Для крыш многоэтажных зданий приходится использовать либо минимальные уклоны кровли с встроенными внутренними водостоками, либо применять многорядовую систему разуклонов с отведением воды по желобам;
  • Характер эксплуатации плоской кровли. Минимальный угол наклона рекомендован для мягких и неармированных покрытий;
  • Жесткостью кровельного покрытия и поперечным прогибом опорных балок перекрытия. При отклонении угла от минимального рекомендованного в большую сторону в несколько раз увеличивается горизонтальное усилие на верхнюю опорную кромку стены.

Проще говоря, если поднять железобетонную плиту, находящуюся в основании кровли, слишком круто, то вместо нормированных минимальных 50-60 кг на стену будет давить усилие до 300 кг.

Максимальный уклон плоской кровли в процентах

На практике достаточно сложно оперировать величиной угла наклона, если речь идет о порядках 1-10о. Гораздо проще говорить о пропорции и перевести уклон сразу в проценты. Крупные строительные фирмы используют современную технику в виде лазерных уровней и дальномеров, в которых можно даже зафиксировать и сфотографировать для протокола получившийся минимальный уклон плоской кровли в градусах.

Для домашнего и частного малоэтажного застройщика приходится использовать переводные номограммы и таблицы.

Для определения угла наклона плоской кровли достаточно измерить горизонтальное расстояние по будущему скату кровли и высоту превышения покрытия крыши в осевой части и на линии стен.

Минимальный уклон плоской кровли в процентах

Аналогичным способом можно вычислить любой угол, даже если крыша имеет сложную конструкцию и состоит из множества элементов разуклона и водоотведения.

Иногда возникает вопрос – зачем необходимо задавать нормативно наибольшее и наименьшее значение для минимального уклона кровли.

Важно! Строительные конструкции из бетона, кирпича и дерева имеют свойство давать усадку, менять высоту по прошествии 1-2 лет по завершению строительства. При изготовлении плоской кровли в размерные цепи закладывают верхнее значение угла наклона.

Под нагрузкой, иногда даже после снежной и морозной зимы, уклон может измениться от верхнего значения до нижнего минимально возможного. Если не предусмотреть подобный эффект и построить плоскую крышу по хотя бы срединным значениям, то угол может просесть до минимального, нулевого или даже отрицательного значения.

Вот тогда на поверхности появляются невысыхающие лужи, а через пару лет образуются дыры и прорехи в кровельном покрытии.

Минимальный уклон плоской кровли по СНиП

В процессе проектирования конструкции крыши специалисты ориентируются на требования строительных правил. В первую очередь актуализированного варианта СНиП II-26-76 в версии СП 17.13330.2017, таблица 4.1, раздел 4.

Для плоских кровель, выполненных из рулонных материалов, в процентах.

Для мастичных покрытий и специальных конструкций минимальный уклон кровли должен составлять 1,5-3%.

Как видно из таблиц, для плоских крыш максимальный уклон допускается при использовании кровельных покрытий из фальца, и масти с засыпкой поверхности крупным гравием. Минимальный уклон требуется для кровли на основе рулонного материала с полиэтиленовым или песчаным оформлением внешнего слоя.

Расчет уклона плоской кровли

Для того чтобы рассчитать величину угла наклона кровельного покрытия, потребуются минимальные знания школьного курса геометрии. В этом случае потребуется снять размеры с уже готовой основы кровли или использовать имеющийся эскиз — чертеж.

Для очень длинных скатов снять размеры с минимальными усилиями можно, используя геодезический нивелир и мерную линейку. Прибор придется установить на линии самой низкой точки кровли. Далее замеряют высоту от линии кровли до точки крепления нивелира на штативе, желательно сделать замер с минимально возможной погрешностью. Мерную планку располагают на линии стены. После снятия замера вычитают высоту и получают превышение высоты кровли над базисом линии.

Остается лишь разделить высоту на длину заложения, результат умножить на коэффициент 100 и по таблице определить минимальный уклон кровли.

Совет! Еще один способ вычислить требуемый угол заключается в использовании готовой номограммы, по которой можно безо всякой математики определить угол подъема ската для конкретного вида кровли.

Схемы построения уклона на плоской кровле

Использование нивелира или лазерного уровня удобно тем, что величину угла наклона кровли можно определять и контролировать постоянно, по мере того, как формируется скат крыши. Одно дело — узнать о минимальном уклоне из требований СНиП или СП, совсем другое дело — построить и выдержать требуемый размер подъема кровельной поверхности на уровне минимальной и одновременно отличной от нуля.

Задача не из легких, особенно, если учесть сложность укладки утеплителя и гидроизоляции по всей поверхности кровли на одном уровне с минимальными отклонениями. Иначе талая и дождевая вода не будет стекать в водоприемные окна и отверстия, а наоборот, собираться на крыше лужами.

Обустройство минимального уклона с помощью бетона

Основная сложность, с которой приходится сталкиваться при формировании уклона на бетонной крыше, связана с инертностью застывания бетонной смеси. Способы изготовления стяжки из цементно-песчаной смеси известны давно и хорошо отработаны на изготовлении кровельных и фундаментных конструкций.

Но при формировании минимального уклона под сток бетон приходится делать достаточно жидким, и заливать смесь с помощью бетонных насосов. По мере заполнения формы будущей крыши жидкая смесь саморазравнивается по уровню горизонта так, что уклон получается самым минимальным, 0-1о. Приходится ждать, пока смесь станет более вязкой, и лишь потом, двигаясь по подвесным дощатым настилам, придавать поверхности необходимый угол наклона.

Чтобы выдержать величину минимального уклона на одном уровне, используют закладные маяки и дощатые завесы, как и в случае заливки цементно-песчаной стяжки пола.

Как сделать уклон на небольшой по размерам кровле

Формировать бетонную стяжку на крыше можно и иным способом. Например, на потолочных плитах гаража или небольшой пристройки к дому не обязательно заливать полноценную стяжку толщиной 5-10 см. Такой способ существенно утяжеляет потолочное перекрытие и обходится достаточно дорого.

Гораздо проще уложить небольшую часть бетонной смеси вдоль осевой линии перекрытия. Чтобы мини-стяжка не отслоилась, предварительно нашивают стальную армирующую или пластиковую сетку, закрепить можно дюбелями или приваркой к арматуре плиты. Такой способ позволяет изготовить сливной уклон с минимальными затратами.

Минимальный уклон для сопряженной вентилируемой кровли

Для большинства формирования плоской крыши промышленных объектов и многоэтажных зданий используют готовые бетонные балки и профили. Сам метод формирования минимального сливного уклона во многом напоминает бетонирование с закладными маяками из бруса и доски.

Отличием является лишь то, что бетонные балки одновременно и формируют профиль разуклонки будущей плоской кровли, и воспринимают большую часть нагрузки от веса крыши и кровельного покрытия. На сегодня это основной способ построения конструкций с переменным уклоном поверхности.

Формирование уклона с помощью утеплителя

Больше половины плоских крыш с бетонным основанием строятся без использования дополнительных профилирующих стяжек или бетонных «пластырей». Кроме существенного увеличения массы кровли, особых выгод в старом методе формирования минимального уклона слива не существует. Кроме того, заливка бетона требует высокого качества выполнения работ, иначе неравномерная нагрузка на стены и перегородки здания может привести к образованию щелей на стыках между плитами.

Более простой способ сформировать минимальный уклон заключается в использовании специального утеплителя клиновидного сечения. Для того чтобы получить скат с малым углом наклона поверхности, на пароизоляцию укладывается пакет из нескольких «клиньев».

Пакеты укладывают линиями от центра крыши по направлению к кромке свеса. После того как будет подобрана оптимальная толщина каждой порции теплоизоляции, можно формировать минимальный уклон по всей поверхности плоской кровли. Поверх такого утепления укладывается пароизоляция и заливается наружное бетонирование. Получается очень ровная крыша с заранее запрограммированной величиной подъема.

Завершающим этапом является наплавка гидроизоляции и нанесение защитного отсыпочного слоя.

Как выбор материала для кровли влияет на величину уклона

Если внимательно проанализировать сведения таблицы 4. 1 СНиПа II-26-76 — СП 17.13330.2017, то можно определить критерии влияния используемого материала на угол наклона поверхности. Основное правило выглядит следующим образом – чем выше износостойкость и термостойкость кровельного покрытия, тем меньше нижняя граница для минимального уклона.

Например, рулонная битумная гидроизоляция наплавляемого типа легко выдерживает эксплуатацию на плоских кровлях на уклонах до 5о. На скатах с переменной кривизной поверхности или на эксплуатируемых типах перекрытий с более высокими углами наклона используются многослойные битумные материалы нового поколения с армированной сеткой и модифицированной стирол-битумной изоляцией.

Для обычных рубероидов, мастик и всех типов жидкой резины обязательным условием укладки на уклонах в 5-6о является использование сланцевой и гравийной засыпки 5-7 мм. Это защита, препятствующая сдирающей нагрузке от льда и снега, и, главное, – битумная и полимерная кровля не плавится, не выпотевает и не течет при высокой температуре воздуха.

Единственным листовым материалом, который можно использовать на плоских крышах, является асбестоцементный волновой шифер. Благодаря плотной шероховатой поверхности и высокой жесткости профиля шиферная кровля выдерживает эксплуатацию на предельных для большинства материалов минимальных уклонах в 10о, и даже 8-9о. В этом случае обрешетку под укладку шифера приходится крепить прямо на раму или бетонную стяжку основания плоской конструкции.

Понятно, что для фальцевых конструкций из листовой меди, алюминия и оцинкованной стали подобных требований нет. Металл выдерживает нагрузку от снега и льда при любом углу подъема кровельной поверхности. Кроме того, устройство фальцевого шва покрытия обеспечивает герметичность даже в самый сильный дождь.

Советы и рекомендации

Плоские крыши приобретают все большую популярность. Вместо сложной и дорогой двухскатной стропильной системы укладка плоского перекрытия является более выгодным и простым решением, особенно, если речь идет об оборудования кровли на небольшом строении, типа гаража или сарая.

Самой простой схемой плоской кровельной конструкции является бетонная стяжка на керамзитовой засыпке. Вместо того, чтобы пытаться заливать бетонную плиту с минимальным сливным уклоном, достаточно уложить на плоском перекрытии толстый, 10-15 см, слой керамзита, спланировать его под сливные плоскости, уложить пленку и залить тонким слоем цементно-песчаной смеси.

Заключение

Минимальный уклон плоской кровли был разработан архитекторами и проектировщиками на основании практического опыта строительства сложных крыш, как горизонтального, так и комбинированного расположения. Соблюдение требований СНиП — это залог того, что кровля не прогнется и не расколется, а гидроизоляция не «съедет» в жаркую погоду с бетонного основания.

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:526
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools. php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:132
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

как рассчитать по формуле, СНИП

  • Основные требования, определяющие уклон плоской кровли: СНИП
  • Как рассчитать уклон кровли: какой способ лучше
  • Выбирать уклон кровли только исходя из своих эстетических предпочтений было бы несколько опрометчиво.  Поскольку надежность и прочность  будущей конструкции во многом зависят от правильно рассчитанной величины угла наклона, учитывающей климатические особенности местности. То есть, уклон крыши должен быть оптимальным как с практической, так и с эстетической точки зрения.

    То что идеально «плоских» крыш просто не может быть не подлежит сомнению. Ведь должна же дождевая вода каким-то образом отводиться с нее. Поэтому на них делают разуклонку, чтобы получить хотя бы минимальный уклон плоской кровли.

    Она обеспечивает возможно эффективный сбор дождевой воды с поверхности кровельного покрытия  и направляет ее либо к парапету, либо к внутренним воронкам.

    Вид кровельного покрытияВес 1 м.кв,кгБезразмерный уклон крышиПроцентная мера уклонаВеличина уклона в градусах
    Шифер (среднего профиля/усиленного профиля)11/131:10 / 1:510%  /  20%6°  /  11,5°
    Целлюлозно-битумные листы61:1010%
    Профнастил (однофальцевый)3-6,51:425%14°
    Мягкая рулонная кровля9-151:1010%
    Профнастил (двухфальцевый)3-6,51:520%11,5°
    Металлочерепица51:520%11,5°
    Керамическая черепица50-601:520%11,5°
    Цементная черепица45-701:520%11,5°

    минимальный угол наклона крыши

    Минимальный уклон кровли зависит от многих параметров, включая материал гидроизоляционного покрытия, типа самой крыши (стандартная или инверсионная), количества гидроизоляционных слоев и другого.

    Основные требования, определяющие уклон плоской кровли: СНИП ↑

    Каким будет минимальный уклон кровли, в зависимости различных факторов диктуют специальные строительные правила и нормы.

    Зависимость угла наклона крыши от гидроизоляции регулирует п. 4.3 СП 17.13330 за 2011 год, согласно которому уклон плоской кровли изменяется в интервале 1,5–10%. Большие углы (до 24%) выполняют крайне редко, поскольку выбор материала для гидроизоляции, который не сползал бы к основанию покатой кровли при повышении температуры, очень затруднителен.

    На заметку

    Наименьший уклон для плоской кровли равен 1.5% или 1°.

    Как правило, кровля с малым уклоном имеет довольно большую площадь поверхности и добиться его идеального значения весьма проблематично. Наверняка останутся участки, где будет застаиваться вода, что может стать причиной износа кровельного материала или протечек. Относительно точно можно выполнить геометрию уклона при помощи стяжки. Возможно также использовать  заливку из полистиролбетона или пенобетона. Для повышения прочности  поверх уложенного слоя делают  уже тонкий слой прочной бетонной стяжки.

    В свою очередь, существует конкретная связь между крутизной кровельной конструкции  и количеством слоев гидроизоляции. Чем больше она будет, тем вода, естественно, уходит быстрее, а значит, гидроизоляционных слоев потребуется меньше (п. 5.5).

    Разуклонку можно легко проверить при помощи ведра с водой. Воду выливают на выбранный участок, если вода практически без остатка отойдет к воронке, значить уклон у плоской крыши достаточный. Аналогичную проверку можно провести на всей поверхности крыши.

    На стадии проектирования расчетным путем определяется сколько для данной крыши требуется водоприемных воронок, а уже во время строительства при помощи разуклонок необходимо обеспечить для воды беспрепятственный отток в воронку из любой точки крыши.

    Как рассчитать уклон кровли: какой способ лучше ↑

    Как известно, помимо плоских (пологих) конструкций  существуют также скатные и высокие, а материалов для кровельного покрытия еще больше. Для того чтобы правильно сориентироваться в этом многообразии, согласно СНиП разработаны специальные таблицы и диаграммы, в которых отражается взаимосвязь между крутизной ската  и видом крыши.

    Уклон крыши определяют следующие параметры:

    • тип и количество материала, предназначенного для покрытия крыши;
    • необходимая защита от ветра и влаги;
    • высота конька для случая ремонта уже существующей кровли.

    ↑Как вычислить угол наклона в градусах и процентах

    Рассчитать искомый  угол крутизны  кровли можно различными способами.

    Калькулятор для расчета уклона кровли

    Пользоваться данным калькулятором предельно просто. По сути любую кровлю можно разделить на обычные двухскатные, в основе расчета которых лежит треугольник. Именно на этом положении и базируется работа калькулятора. Используются следующие параметры:

    • H – высота конька, то есть катет прямоугольного треугольника;
    • W – второй катет, равный половине ширины основания;
    • L – длина стропил, она же – гипотенуза.

    Подставив два известных параметра, можно практически сразу определить угол покатости крыши с подобными характеристиками. Кстати, третий параметр вычисляется автоматически. Программное обеспечение калькулятора использует свойства равнобедренного треугольника и простейшие тригонометрические формулы.

    Использование угломера

    Этот прибор, который называют еще уклономером, имеет незамысловатую конструкцию: несколько реек с нанесенными делениями и маятник. При расчетах главную рейку располагают перпендикулярно к коньку. На необходимый  угол на шкале делений показывает указатель маятника. Как видите, ничего сложного.

    Формула расчета уклона кровли

    И, наконец, требуемую  крутизну ската можно рассчитать самому без использования приборов замера ската, математически. Для этого потребуются знать величину

    • вертикальной высоты (H), отмеренной от наивысшей точки ската, обычно это конек, до самой нижней – карниза;
    • заложения – горизонтального расстояния от нижней до проекции верхней точки ската.

    Рассчитывают угол наклона кровли в градусах или процентах и обозначают на чертеже буквой «i».

    Математически расчет величины крутизны крыши в процентах проводят следующим образом.

    i = Н : L, т. е. угол уклона крыши находят из отношения высоты кровли к заложению.

    После чего, чтобы получить искомую величину в процентах, значение полученного отношения умножают на 100. Выразить значение наклона в градусах помогает специальная таблица соотношений.

    Рассмотрим, как вычислить угол наклона в градусах  на конкретном примере.

    Пример расчета

    Допустим, длина заложения при высоте крыши в 2,5 м оказалась равной 4,5 м.

    Получается, что уклон i = 2.5 : 4,5 = 0,55. А после умножения 100 получим, соответственно, 55%.

    Теперь можно по таблице перевести полученное значение в градусы, получаем – 29°.

    Наименьшую крутизну ската для того или иного кровельного покрытия можно определить из следующего графика.

    Допустим, речь идет о листовой стали.

    • Ищем на графике, в какую наклонную линию упирается дугообразная стрелка 10.
    • Точка пересечения наклонной и вертикальной оси  дает ответ на поставленный вопрос  – самое меньшее 28%.

    Пример расчета

    Проведем расчеты для конкретного дома.

    Если  H составляет 3 м, а L – 12 м, тогда i = 50%.

    Таким образом, в случае приведенных  конструктивных размеров необходима крутизна ската  в 50% (или 27 градусов), чтобы был обеспечен нормальный сброс дождевой воды.


    © 2021 stylekrov.ru

    Минимальный уклон и разуклонка плоской кровли

    При создании кровли учитываются все детали. Особенно важно определить уклон поверхности, так как от этого зависит не только внешний вид, но и долговечность конструкции. Данный показатель зависит от многих факторов, в том числе и от климатических условий местности. В этом случае учитывается, что крыша обеспечивает защиту от воздействия окружающей среды, но она сама подвергается всем этим негативным факторам. Именно поэтому важно рассчитать уклон плоской кровли еще до начала строительства.

    Нюансы выбора угла уклона

    Для начала, рассматривается воздействие ветра на покрытие. В регионах с сильными ветрами предпочтительнее крыши с небольшим уклоном. В данном случае при наличии высокой кровли повышается вероятность того, что порывы ветра сорвут часть материала. Для предотвращения этого необходимо делать стропильную систему более массивной, что вызывает увеличение расходов на монтаж строения, а также негативно сказывается на весе всей конструкции. В местности, где зимой осадки выпадают особенно часто, достаточно сделать уклон кровли в пределах 45°. Это обеспечит свободный скат снега и исключит повышение нагрузки на поверхность крыши.

    В том случае, если снега в зимнее время выпадает мало, можно ограничиться малоуклонной крышей, то есть уклон в данном случае будет минимальный. Согласно СНиП при создании подобной конструкции рекомендуется использовать мембранные материалы для исключения протечек. При создании плоской поверхности значение также уделяется водоотводу, именно на него возлагается функция отвода воды и исключения ее скопления на поверхности. Для уменьшения воздействия солнечных лучей можно применять битумные прикрытия, зеленые, дерновые или из гальки.

    В регионах, где зимой чаще преобладает суровый климат, рекомендуется сочетать внешний и внутренний водоотвод. Последний уже не будет подвергаться воздействию негативных факторов природы.

    Выбор материалов в зависимости от угла ската

    У каждого материала имеются свои требования к использованию. Шероховатая поверхность крыши будет препятствовать отводу оводы, а гладкая способствовать этому. Немаловажное значение имеет и конструкция стропильной системы. При создании плоской кровли она может быть более легкой, но рассчитанной на мощную нагрузку от воды и снега. С крыши, имеющей уклон, вода скатывается быстрее, а снег не задерживается, но она сама должна быть более прочной за счет сложности конструкции. На вид стропил и шаг обрешетки влияет и выбор кровельного материала.

    Выбирать материал для кровли следует в зависимости от уровня уклона. Для создания высоких крыш ассортимент кровельных покрытий более широкий, а внешне такие строения отличаются особой привлекательностью. Для того чтобы правильно выполнить монтажные работы по кровле, следует придерживаться следующих правил:

    • При использовании профлиста для крыши уклон должен быть не менее 12°. В том случае, если применяется металлочерепица, то данный показатель увеличивается до 15°. В этих двух случаях важно тщательно заделать стыки для исключения возникновения течи. Нахлест должен составлять не менее 20 сантиметров. Если же угол уклона менее 15°, то рекомендуется нахлест делать на ширину двух волн листа. Для обрешетки также есть свои требования. При плоской крыше она может быть сплошной, то есть чем выше уклон, тем шире шаг обрешетки.
    • Рулонное перекрытие используется в том случае, если имеется минимальный наклон кровли. Они эффективные при монтаже крыш, уклоны которых не превышают двух процентов. В данном случае необходимо применять многослойное покрытие. Если же используется один или два слоя, то уклон должен быть не менее 15°. Обрешетка выполняется с минимальным шагом, а при использовании мягкой черепицы должна быть сплошной.
    • Асбестоцементные листы и керамическая черепица не подходят для плоской крыши и согласно СНиП должны использоваться на конструкциях с уклоном не менее 22°. Особенно внимательно подходят к созданию стропильной системы. Учитывается вес покрытия: чем выше крыша, тем более прочной должна быть стропильная система под натуральные покрытия.

    Измерение угла уклона

    Для правильного выбора материалов и конструкции стропильной системы важно рассчитать угол ската. Данное действие выполняется с помощью угломера или путем математических вычислений и выражается в градусах, процентах и соотношении показателей.

    Наиболее простым является математический расчет. Для этого нужно знать ширину крови и ее высоту. С помощью тригонометрических формул вычисляется угол в виде косинуса, синуса или тангенса. Полученный результат с помощью таблицы переводят в проценты.

    Также можно рассчитать другим методом. Для этого следует высоту будущей кровли разделить на половину ширины помещения, а полученный результат умножить на сто. Результат сравнивается по таблице для определения уклона и выражается он также в процентах.

    При наличии угломера все действия заключаются в определении угла и подборе материалов для создания крыши. Только после этого можно сделать правильный выбор, обязательно сравнив его с требованиям СНиП.

    Особенности создания малоуклонной крыши

    Наиболее часто разуклонка плоской кровли осуществляется с помощью следующих методов:

    • засыпные утеплители, то есть перлин, керамзит и другие;
    • бетонные смеси на основе утеплителей;
    • полимерные материалы и бетонные смеси на их основе с обязательным добавлением наполнителей;
    • использование только утеплительных материалов.

    У каждого из перечисленных способов есть свои преимущества и недостатки. Керамзит и перлин со временем могут менять положение и нарушать уклон крыши. В результате этого минимальный скат через некоторое время можем стать плоской крышей. Также имеет значение размер материала, так как крупные компоненты не позволяют сделать скат достаточно равномерным.

    Для плоской крыши особенно часто применяются бетонные смеси. У этих материалов главным недостатком является вес. То есть необходимо обязательно рассчитать дополнительную нагрузку при разработке конструкции стропильной системы. Учитывая данный недостаток, можно сделать вывод, что бетонные смеси могут применяться при создании плоской крыши на этапе строительства или во время капитального ремонта. Они не подходят для частичного ремонта плоской кровли, так как вызывают дополнительную нагрузку.

    Согласно СНиП, для подобных работ идеальными являются полимерные материалы. Учитывая их широкий ассортимент, выбирать их следует не только в зависимости от угла ската, но также учитывать особенности стропильной системы.

    Независимо от того, как именно будет осуществляться разуклонка, важно уделить внимание водосточной системе. Это могут быть водосточные желоба, наружные водосборы и другие системы. Рассчитать и подобрать подходящий вариант можно с помощью оценки используемого материала, а также требований к кровле. На крышах с уклоном менее 10° следует дополнительно использовать мембранные материалы. За счет них обеспечивается надежное гидроизоляционное покрытие.

    Кроме водостока немаловажное значение уделяется вентиляции при создании плоских крыш. Существует зависимость величины продкровельного пространства от угла ската. Чем ниже уклон, тем больше высота вентиляционного зазора.

    Учитывая все вышеперечисленные требования, можно создать крышу с минимальным углом ската, которая свободно выдержит негативное влияние природных факторов и максимально сохранит свои качества.

    минимальный, в процентах, требования СНиП

    Плоская крыша имеет преимущества перед скатной по способности противостоять вызовам непогоды.

    Парусность плоской крыши значительно меньше, поэтому она может выдерживать большие ветровые нагрузки.

    Но на плоской крыше настилают кровлю, которую называют плоской условно, потому что она обязательно имеет уклон.

    Почему на плоской кровле делают уклон

    Крыша принимает на себя все воздействия окружающей среды и призвана защитить от них здание.

    Кроме ветра, серьезные испытания приносят атмосферные осадки.

    В функции кровли входит, чтобы влага не задерживалась, а стекала к водосточным трубам.

    Правильно организованный сток воды значительно способствует продлению срока службы кровли.

    Плоская кровля, из каких бы материалов ни была выполнена, не выдержит увлажнения, если вода будет на ней задерживаться, особенно в холодные месяцы года.

    Процессы превращения воды в лед и оттаивание будут разрушать слои крыши.

    В застоявшихся лужах на покрытии со временем осаждается пыль, ветер приносит семена растений, что способствует их прорастанию.

    Так на крыше появляются трава, кустики и даже деревья, которые своей корневой системой окончательно разрушают укрывной материал.

    Для предотвращения этих негативных явлений на плоском покрытии делают наклон, а процесс этот называется разуклонкой.

    Минимальный уклон крыши

    Уклон – это величина, обозначающая, под каким углом линия крыши находится по отношению к основанию, измерить его можно геодезическим инструментом уклономером.

    Каждый вид кровельных материалов имеет допустимые нормами наименьшие и наибольшие величины наклона крыши.

    Данные этих значений собраны в график, по которому легко определить, какие кровельные покрытия соответствуют каким значениям уклонов кровли.

    В этом же графике можно перевести величину в процентах в градусы и обратно.

    Существуют таблицы такого перевода.

    Если разделить высоту крыши на ширину, поделенную на два (проекцию ската) и результат умножить на сто, то получится величина уклона в процентах.

    Наклон определяется климатическими условиями региона, назначением здания, видом покрытия.

    Величина угла, на который следует наклонить крышу, рассчитывается на стадии проектирования.

    СНиП II-26-2010 “ Кровли” определяет его минимальное значение для кровли из рулонных материалов и из мастик от 1,5 % (1о) и до 10 % (6о).

    Для эксплуатируемых кровель его минимальная величина в пределах 1,5 % ÷ 3 % или 1 о ÷ 2о.

    График взаимного перевода процентов и градусов, выражающих уклон и соответствия ему материала кровельных покрытий, приведен ниже.

    Строение плоской кровли

    Основанием для плоской крыши может служить железобетонная плита перекрытия или листы металлопрофиля.

    Плоская крыша состоит из слоев:

    • цементно-песчаная стяжка, если основание бетонное;
    • пароизоляция с использованием рулонных материалов или битумных мастик;
    • утеплитель: маты минеральной ваты, пенополистирольные плиты, подсыпка из керамзита, бетонные смеси;
    • гидроизоляция: несколько слоев из рулонного материала.

    Если для плоской крыши используют наплавляемые материалы, то будут несколько иные составляющие кровельного пирога.

    В здании, где проектом предусмотрен внутренний водосток, в устройстве крыши будут присутствовать воронки для водосбора.

    Материалы, используемые для разуклонки

    Насыпные утеплители

    Керамзит, перлит, шлак и другие насыпные утеплители используют для планировки наклона на плоской кровле.

    Особенности этих материалов, а именно то, что они сыпучие, создают некоторые сложности.

    Минимальный уклон со временем может нарушиться и утеплитель примет горизонтальный уровень.

    Кроме того, если присутствуют крупные гранулы, то создать небольшой уклон будет сложно.

    Иногда при применении сыпучего утеплителя, поверх него делают стяжку, что утяжеляет кровлю.

    В качестве гидроизоляции используют стеклоизол.

    Бетонные смеси

    В качестве утеплителя могут применяться бетонные смеси с наполнителями из шлака, керамзита, перлита.

    В связи с тем, что этот материал тяжелее других утеплителей, его применяют во время строительства или если производится капитальный ремонт.

    Для частичного ремонта бетонные смеси не подходят.

    Для выполнения работ потребуются квалифицированные работники и специальное оборудование, что удорожит строительство.

    Полимерные материалы в качестве наполнителя

    Бетонные смеси с полимерным наполнителем являются хорошим вариантом для создания уклона плоских крыш.

    Недостаток – все же вес бетона, хоть и облегченного, по сравнению с другими утеплителями значительно больше.

    И, как и в предыдущем случае, привлечение специалистов увеличивает стоимость работ.

    Пластиковые панели

    Современный способ – применение пластиковых панелей с индивидуально заданным углом наклона.

    Панели собираются на крыше как пазлы, заливаются жидкой резиной.

    Недостаток этого метода – высокая стоимость материала.

    Утепляющие материалы

    Одним из наиболее популярных способов для обеспечения уклона плоской кровли – использование утеплителей: минераловатных и пеностирольных плит.

    Еще об утеплении крыши изнутри.

    Об угле наклона крыши из профнастила по ссылке. Как рассчитать и измерить угол наклона крыши.

    О цене андулиновой кровли за лист здесь. А также о монтаже андулиновой кровли.

    Такие материалы экономичны, легко крепятся к основанию мастиками или клеями.

    Создание минимального уклона

    Уклон крыше создают в момент укладки утеплителя.

    Способ формирования наклона зависит от вида выбранного утеплителя.

    Если сыпучий материал, насыпают его, задавая необходимый угол.

    Для закрепления заливают цементным молочком.

    Из пенобетона уклон выполнят специалисты, без них при этом способе не обойтись.

    При использовании теплоизоляционных материалов для создания заданного уклона либо применяют теплоизоляционные плиты, изготовленные с уклоном, либо используют пластиковые опоры, которые можно регулировать.

    Главная задача разуклонки – обеспечить беспрепятственное движение воды к водосборным воронкам в любом месте крыши.

    Если провести проверку – вылить ведро воды, она должна уйти без задержки.

    Качественно выполненные работы по разуклонке кровли значительно продлят ее срок службы.

    Видео об устройстве плоской крыши.

    Что еще почитать по теме?

    Автор статьи:

    Сергей Новожилов — эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

    Понравилась статья? Поделись с друзьями в социальных сетях:

    Facebook

    Twitter

    Вконтакте

    Одноклассники

    Google+

    Уклон плоской кровли минимальный и максимальный

    Каждый мастер обязан знать, что идеально плоской крыша просто не может быть. Это чревато негативными последствиями как для стропильной системы перекрытия, так и для здания под ним. Именно поэтому необходимо делать хотя бы минимальный уклон плоской кровли. Кстати, это регламентирует и СНиП п. 4.3 СП 17.13330. В материале ниже мы подробно разберемся, для чего необходим уклон плоской кровли и как правильно его рассчитать.

    Уклон для плоской крыши: прихоть или техническая необходимость

    При возведении кровельного перекрытия очень важно понимать, что крыша является основным, принимающим на себя осадочный удар, звеном дома. То есть, кровля испытывает нагрузку ветровую (в случае скатной конструкции), а также снеговую и дождевую. Причем согласно СНиП вес нагрузки на м2 крыши в случае осадков в виде снега составляет 180 кг. Если же снег образует снежный лежалый наст, то эта нагрузка составит уже 400 кг/м2. Кроме того, стоит понимать, что вся масса в виде снега с весенним таянием должна куда-то уйти, а не высыхать естественным образом на кровельном покрытии. В частности же, необходимость уклона для плоского перекрытия обусловлена следующими факторами:

    • Застой сезонной воды на кровельном покрытии, что будет разрушать его со временем под воздействием циклов длительного увлажнения и высыхания.
    • Давление массы осадков на кровлю, что может привести к ее разрушению.
    • Негативное воздействие на кровельные материалы циклов замерзания-размерзания воды на крыше.
    • Скопление слоев пыли на кровельном покрытии, что со временем формирует слой почвы во влажной осадочной среде. Плюс ко всему на благодатную почву падают семена растений, разносимые ветром. А это уже органика, которая при прорастании будет разрушать кровельные материалы.

    Важно: чтобы избежать всех перечисленных негативных явлений на плоской крыше, выполняют определенный объем кровельных работ, которые называют разуклонкой. То есть формируют своеобразный минимальный уклон плоской крыши.

    Структура плоской крыши

    Популярная БК выпустила приложение, официально скачать 1xBet на Андроид можно перейдя по ссылке без регистрации и абсолютно бесплатно.

    Как правило, плоская кровля имеет такую структуру:

    Рекомендуем к прочтению:

    • Основание. В качестве основы могут быть выбраны ЖБ плиты перекрытия (для крупных многоэтажек) или профильные листы.
    • Для бетонного основания формируют стяжку из цементно-песчаной смеси.
    • Слой пароизоляции.
    • Утепляющие материалы (плитные или рулонные).
    • Гидроизоляционный материал.
    • Финишное кровельное покрытие.

    Кровельные материалы для плоской крыши в зависимости от угла ее уклона

    Чтобы не допустить ошибок при выборе кровельного материала для плоской крыши, необходимо учитывать, что покрытия, имеющие шероховатую поверхность, будут задерживать процесс схождения осадков с крыши. В свою очередь гладкие материалы будут способствовать их быстрому отведению в сторону уклона. При этом для обустройства стропильной системы и шага обрешетки плоской кровли следует учитывать тип выбранного покрытия. А само финишное покрытие необходимо выбирать уже с поправкой на угол уклона плоской крыши. Итак, согласно интенсивности уклона плоской кровли материалы для покрытия могут быть такими:

    • Минимальный наклон ската. Здесь оптимальным вариантом будет рулонный материал в виде стеклоизола или простого рубероида. Можно также использовать мембранную кровлю. Таким образом, если уклон плоского перекрытия составляет всего 2%, тот необходимо настилать от 2 до 5 слоев покрытия. Исключение составляют уклоны плоских кровель 15°. В этом случае можно настелить 1-2 слоя материала. Обрешетка для такой малоуклонной крыши должна быть сплошной.
    • Если угол уклона крыши составляет 12°, то можно в качестве кровельного материала применить профлист. А с увеличением угла наклона до 15° можно стелить и металлочерепицу. Но в таком случае нахлесты должны быть не меньше 20 см, а все стыки необходимо герметизировать максимально тщательно. Шаг обрешетки под такие кровельные материалы делают в зависимости от уклона крыши. Чем он меньше, тем меньшим должен быть шаг. И, наоборот, чем он больше, тем большим допускается шаг досок.
    • Что касается керамической черепицы или асбестоцементных листов (шифера), то по СНиП для таких материалов угол уклона должен составлять не менее 22°. То есть для плоской крыши они не подходят.

    Расчет угла уклона плоской крыши

    Чтобы изменить правильный угол уклона для плоской кровли, можно воспользоваться одним из трех методов:

    • Использование специальной программы онлайн-калькулятор;
    • Применение прибора угломера;
    • Использование математических вычислений.

    Полученные результаты могут выражаться в процентах или градусах. При этом каждая процентно-градусная пара имеет свое соотношение.

    Рекомендуем к прочтению:

    Для частного мастера более простым способом будет вычисление с помощью математики. Для этого необходимо будет знать ширину крыши и ее высоту. Схематически любая крыша всегда имеет вид треугольника. Таким образом, необходимо поделить высоту крыши на половину ее ширины:

    H : (W:2) х 100 = угол уклона крыши

    Полученное значение умножить на 100. Полученный результат будет выражаться в процентах. Его можно сверить по приведенной выше таблице и перевести в градусы.

    Если же у мастера имеется угломер, то с его помощью определяется угол уклона кровли и подбирается итоговое кровельное покрытие по СНиП. Кстати, минимальный наклон плоской кровли может составлять 1.5% или 1°. При этом оптимальными значениями для плоских перекрытий является диапазон интервале 1,5–10%. Все перечисленные правила регламентирует СНиП п. 4.3 СП 17.13330.

    Разуклонка крыши и материалы для нее

    Если плоская кровля имеет большую площадь, то для формирования угла ее уклона можно использовать различные рулонные, насыпные или плиточные материалы. В частности применяют такие:

    • Утепляющий материал. Минеральная вата, пенополистирол и пр. Такие материалы укладывают с уклоном в сторону водостоков и надежно фиксируют в заданном положении.
    • Панели пластиковые. Кардинально новый кровельный материал, который имеет уже заданный угол наклона. Такие панели собирают на крыше по типу пазлов и заливают смесью жидкой резины.
    • Полимеры в бетонной смеси. Часто применяют и такие варианты для разуклонки крыши. Однако стоит помнить, что все таких бетонных смесей очень высок.
    • Бетонная смесь с наполнителем из шлака или керамзита. Такой материал ложится очень хорошо и при этом формирует теплоизоляционный слой. Однако также имеет большой вес.
    • Насыпные утепляющие материалы в виде шлака, керамзита и пр. Для их фиксации насыпь заливают цементным молочком. При этом если не залить сыпучие, то со временем уклон кровли изменится. Сыпучие могут съехать с заданного положения и сформировать единую ровную плоскость.

    Важно: работы по разуклонке в крупных масштабах должны проводить только специалисты. И хоть это и достаточно затратно, зато результат будет гарантированно продуктивным.

    Какой минимальный уклон плоской кровли


    Содержание статьи:

    При строительстве крыш хозяйственных и промышленных зданий необходимо делать хотя бы минимальный уклон кровли. Абсолютно плоская и ровная крыша неэффективна в качестве отведения воды. Атмосферные осадки задерживаются на крыше, а со временем появляются области застоя, высыхающие лишь в сильную жару. Со стороны такая крыша выглядит плоской, как на фото, но при этом эффективность отведения повышается, а соответственно, увеличивается срок службы кровельного покрытия.

    Почему необходимо сделать уклон


    Образование зон застоя вредно для кровельного материала. В холодную пору года вода постоянно замерзает и тает, из-за этого кровельный материал разрушается, и создаются все условия для возникновения коррозии.

    Кроме того, в зонах застоя образуется аналог почвы, где могут прорастать принесенные ветром семена растений. В результате однажды можно обнаружить на крыше растение, проросшее сквозь кровлю. Чтобы избежать данных неприятностей, необходимо сделать разуклонку. Делают разуклонку еще во время строительства плоской крыши. Минимальный уклон плоской кровли СНИП должен составлять 1-4 градуса. Обычно такого уклона достаточно для того, чтобы отвод талой и дождевой воды с крыши был эффективным. Данный угол, под которым плоскость крыши направлена к горизонтали, называют уклоном. Работы, с помощью которых можно создать данный угол, называют разуклонкой. Читайте также: «Какой минимальный уклон мягкой кровли – примеры расчетов».


    Уклон плоской кровли в процентах должен составлять 1,7-7%.

    Варианты разуклонки кровли


    Разуклонку плоской крыши можно сделать следующими способами:

    • с использованием материалов для утепления;
    • с применением керамзита, перлита и других засыпных материалов;
    • с применением легких бетонных смесей на основе засыпных утеплителей;
    • с применением легких бетонных смесей на основе полимерных наполнителей.


    Чаще всего используют засыпные материалы, но разуклонка с их помощью имеет несколько недостатков. Это, прежде всего, смещение засыпного материала со временем, из-за чего угол наклона меняется. Такая разуклонка со временем может стать неэффективной. Кроме того, большой размер единицы керамзита (примерно 20 мм) не позволяет создавать плавный уклон.


    Разуклонка с применением легкого бетона лишена данных недостатков, но ее можно сделать далеко не всегда. Конструкция имеет значительную массу, которая создает нагрузку на плоскую крышу. Поэтому разуклонку с помощью бетона можно сделать лишь во время строительства здания или капитального ремонта крыши.


    Если нужно немного подправить крышу, то уклон плоской кровли можно сделать с помощью специальных полимерных материалов, например, экструдированного полистирола.

    Конструкция плоской кровли

    Плоская кровля является многослойной конструкцией, в отличие от скатных крыш. Структура плоской крыши связана с гидроизоляционными характеристиками. Даже если, когда делался уклон плоской кровли снип был соблюден, все равно вода будет стекать медленнее, чем со скатной крыши. Поэтому к гидроизоляции плоских крыш предъявляются повышенные требования. Прочитайте статью: «Как сделать плоскую крышу своими руками».


    Обычно плоская крыша состоит из:

    • несущей конструкции;
    • выравнивающей цементно-песчаной стяжки;
    • слоя пароизоляционных материалов;
    • слоя теплоизоляционных материалов;
    • гидроизоляции из кровельного рулонного материала.

    Помимо данных слоев, плоская кровля должна иметь водоприемные воронки, если создается внутренний водосток. Если же система водостока будет внешней, устанавливают водоприемные желоба, которые крепятся или к наружной стене здания, или под кровлей. Естественно, уклон водосточного желоба необходимо правильно рассчитать.


    Если в качестве основания использовался профилированный лист металла, для гидроизоляции тоже может использоваться конструкция из профилированного листа. Плоская кровля может иметь и другую структуру, но как правило, общая схема остается одинаковой.

    Разуклонка насыпными материалами


    Разуклонку недорогими засыпными материалами делают следующим способом:

    1. На железобетонное основание укладывают слой гидроизоляционного материала – стеклоизола. Данный материал отличается долгим сроком службы – до 30 лет.
    2. На стеклоизол насыпают керамзит в соответствии с проектом. Крупные гранулы керамзита не дают возможность точно отмерять угол, поэтому их приходится насыпать «на глаз».
    3. Керамзит накрывают полиэтиленовой пленкой, уложенной внахлест. После этого делают кровлю исходя из проекта, при этом при создании каждого нового слоя нужно контролировать угол уклона крыши.


    Делать уклон плоской крыши таким способом неудобно по той причине, что угол наклона не получается точно рассчитать, к тому же смещение керамзита начинается еще при заливке стяжки.  Этого можно избежать, если залить керамзит цементным молоком, но срок высыхания значительно увеличивается. Плюс к этому возникает нагрузка на перекрытие, так как вес плоской кровли значительно увеличивается.

    Разуклонка пенобетоном

    Вместо керамзита и раствора цемента можно использовать пенобетон. Сначала на основание заливают слой пенобетона в соответствии с углом наклона, потом делают стяжку из пенофибробетона. Поверх данной конструкции плоской кровлиукладывают гидроизоляционный материал.


    Такая кровля отличается хорошими теплоизоляционными и механическими характеристиками. Но у нее есть и недостатки – основным среди них является высокая стоимость. Также стоит учитывать, что разукладку из пенобетона самостоятельно сделать вряд ли получится, поэтому придется нанимать специалистов.

    Разуклонка теплоизоляционными материалами


    Раузклонка с помощью теплоизоляционных материалов недорога и проста в выполнении. Делать разуклонку можно как при строительстве кровли, так и во время ремонта. Самой выгодной, исходя из финансовых затрат и теплоизоляционных качеств, является разуклонка с использованием полистирола и минеральной ваты. Несомненным преимуществом является небольшой вес данных материалов. При их использовании не возникает необходимости в усилении кровли.

    Для того, чтобы разуклонка плоской кровли была максимально эффективной, теплоизоляционные плиты крепят к основанию кровли саморезами или дюбелями. Также можно наклеить плиты на очищенное до этого основание, однако в этом случае прочность склеивания должна быть больше разрывной прочности теплоизоляционного материала.


    Плоская кровля уклон должна иметь равный 1-4 градусам. Это можно сделать с помощью пластиковых регулируемых опор. Также можно использовать панели утеплителя, сделанные с определенным уклоном.


    Система водоотведения


    Водоотвод может быть внешним и внутренним.


    Для создания наружного водоотвода используются водосточные трубы, к которым предъявляются следующие требования:

    • подвесные желоба нельзя ставить на скатах, которые выполнены под углом меньше 15 градусов;
    • борта желобов должны иметь высоту 120мм;
    • наклон вдоль оси желобов должен превышать два градуса;
    • расстояние между водосточными трубами не должно быть больше 24м;
    • поперечное сечение трубы определяют, исходя из того, что на один «квадрат» площади крыши должно приходиться полтора квадратных сантиметра трубы.


    Наружные водостоки рекомендуется использовать в том случае, когда вероятность образования льда в водостоке небольшая.

    В областях с холодными зимами лучше делать внутренние водостоки. Внутренняя водосточная система состоит из отводной трубы, выпуска, вертикального стояка и водоприемной воронки. Отвод воды нужно осуществлять в ливневую канализацию. Водоприемные воронки в таких водостоках следует делать параллельно коньку. Вдоль наружных стен стояки или воронки ставить нельзя, так как стены могут промерзнуть. Прочитайте также: «Протечка кровли в многоквартирном доме: причины возникновения».

    Таким образом, уклон должен быть у любой крыши, даже плоской. Если уклон не сделать, и крыша будет идеально плоской и ровной, то на ней будет собираться вода. Соответственно, кровельное покрытие вскоре начнет разрушаться. Поэтому у любой крыши должен быть уклон, для плоских крыш он должен быть равен 1-4 градусам. Сделать уклон можно несколькими способами, каждый из которых имеет свои преимущества и недостатки. Если есть сомнения в том, что получится сделать разуклонку правильно, лучше обратиться к специалистам. Грамотно выполненная разуклонка поможет избежать главной проблемы плоских крыш – плохого отведения талой и дождевой воды, и продлить жизнь кровельному покрытию. Прочитайте также: «Минимальный угол наклона крыши и материал кровли».

    Определения уклона или уклона крыши

    Сводка определений типов скатных крыш: плоские, пологие, крутые крыши

    Иллюстрация вверху страницы и снова использованная ниже, любезно предоставленная Carson Dunlop & Associates, суммирует диапазоны уклона или уклона кровли для плоских, пологих, обычных или «крутых» кровель. На нашей фотографии справа показана крыша, наклон которой стал неактуальным после обрушения здания. Я подозреваю, что крыша на фото была немного круче до обвала здания.

    В чем разница в уклоне между пологими и плоскими крышами?

    На самом деле, большинство плоских крыш не являются полностью плоскими и при хорошем дизайне также имеют уклон в сторону водостоков.

    Плоские крыши (от 0 до 2 дюймов в наклоне) более плоские, чем крыши с низким уклоном, и их уклон ровно достаточен для отвода воды. На нашей фотографии (слева) крыша с уклоном менее 1 дюйма на фут — обратите внимание на темную лужу в центре фотографии.

    Что означает уклон крыши и как связаны подъем, уклон, уклон, угол и процент уклона?

    Уклон или уклон крыши — это угол наклона поверхности крыши над «плоской» или горизонтальной плоскостью.

    Кровельщики определяют уклон крыши как «подъем» или «уклон», измеряемый в дюймах вертикального подъема на фут горизонтального расстояния или «пробега». Таким образом, 3-дюймовая крыша, также описываемая как крыша 3 на 12, означает, что на каждые 12 дюймов (или футов) горизонтального расстояния высота крыши увеличивается на 3 дюйма.

    Наш эскиз (слева) показывает взаимосвязь между горизонтальным расстоянием или «пролетом» и уклоном или «подъемом» крыши. [Щелкните любое изображение, чтобы увидеть увеличенную подробную версию. ]

    Хотя уклон крыши обычно выражается как «подъем», он также может быть выражен в градусах или процентах от уклона.Крыша 3-в-12 поднимается на 3 дюйма на каждые 12 дюймов пробега. Это то же самое, что и уклон 14 градусов или уклон 25%. Почему уклон крыши 25%? 3 дюйма подъема на 12 дюймов пробега равны 1 дюйму подъема на 4 дюйма пробега или 1/4 = 25%.

    • Определение подъема : вертикальное изменение высоты на единицу горизонтального движения или бега.
    • Определение пробега : горизонтальное изменение расстояния, обычно в конструкции мы используем 12 дюймов или один фут и выражаем уклон крыши как единицы подъема на единицу пробега, например, 3 дюйма подъема на 12 дюймов пробега или 3 «на фут.
    • Определение уклона : угол изменения высоты, выраженный в одной из нескольких форм.
      • Наклон как подъем / спуск, например 3 в 12 или 3/12
      • Наклон как угол: например, 14 градусов
      • Уклон, выраженный в процентах или «уклоне»: уклон рассчитывается как подъем / спуск или 3/12 = 0,25 x 100 для преобразования в процент или 25% уклон

    Определения для пологих и крутых крыш

    Национальная ассоциация кровельных подрядчиков (NRCA) и другие органы и тексты используют следующие общие определения уклона или уклона кровли:

    Кровля с крутым уклоном определяется как крыша с уклоном больше , чем 3, с углом 12 или 14 градусов или 25%. Наклон крыши влияет на срок службы крыши (более крутые крыши лучше стекают, поэтому могут быть более устойчивыми к утечкам), а также на стоимость установки крыши (по более крутым крышам труднее или даже невозможно пройти без использования домкратов или строительных лесов, что увеличивает трудозатраты на установку кровли) .

    На нашей фотографии (вверху слева) показана крутая шиферная крыша. Вы можете видеть на глаз, что это определенно более 3 дюймов подъема на каждый фут горизонтального расстояния или длины ската крыши, и вы также увидите, что шиферные кровельщики использовали домкраты для работы на поверхности крыши.

    Кровля с малым уклоном определяется как любая крыша с уклоном 3 дюйма на 12 дюймов или 14 градусов, или 25% уклона или менее . Кровля с низким уклоном в других текстах относится к кровельным системам для уклонов ниже 4 дюймов на 12 дюймов. См. НИЗКОКРОННУЮ КРОВЛИ и см. РОЛИКОВАЯ КРОВЛЯ, АСФАЛЬТ, также см. МОДИФИЦИРОВАННАЯ БИТУМНАЯ КРОВЛЯ, где приведены примеры конструкций и материалов для пологих кровель.

    Плоская кровля примерно горизонтальна или «плоская», но на самом деле очень немногие «плоские» крыши действительно плоские, либо потому, что трудно построить мертвую ровную поверхность над зданием, либо, что более важно, потому что даже «плоские» крыши нуждаются в для слива воды во избежание образования луж и протечек.

    Таким образом, большинство «плоских» крыш имеют хотя бы небольшой уклон либо к одному или нескольким краям крыши, либо к водостокам. Таким образом, «плоские» крыши в большинстве случаев являются «пологими» крышами. Во избежание образования прудов и протечек на плоских крышах номинальный уклон дренажа обычно составляет от 2% до 4%.

    Примеры плоских крыш — см. МЕМБРАННЫЕ И ОДНОСЛОЙНЫЕ КРЫШИ и см. ВЛАЖНОСТЬ И КОНДЕНСАЦИЯ ПЛОСКОЙ КРЫШИ

    Каковы минимальные требования к уклону металлических крыш?

    Большинство металлических кровельных систем можно устанавливать на уклонах 3:12 и более, а на фальцевых системах 2:12 и более.

    Для специальных систем со стоячим швом, предназначенных для уклонов до 1/2: 12, требуется оборудование для опрессовки в полевых условиях и наличие герметика во всех швах. Высота ребер на швах и их защита герметиком влияют на то, насколько водонепроницаемой будет крыша в экстремальных погодных условиях.

    Требования к уклону или шагу кровли для глиняной черепицы

    Глиняная черепица устанавливается на уклонах от 4/12 до 6/12 в некоторых юрисдикциях. На нашей фотографии (вверху слева) показана крыша из глиняной черепицы с низким уклоном в Сан-Мигель-де-Альенде, Мексика.Эта крыша была построена без достаточного уклона (около 2/12), и она плохо протекает во время сильных дождей, как вы можете видеть на нашей фотографии нижней стороны крыши (вверху справа). Поднятие верхнего конца этой односкатной крыши на несколько дюймов улучшит водоотвод с крыши и устранит проблему утечки.

    Если глиняная черепица устанавливается на крышах с низким уклоном (менее 4/12) по эстетическим соображениям, установите водонепроницаемую мембрану на поверхность крыши под черепицей.

    Минимальный уклон для плоской крыши

    Несмотря на название, все плоские крыши должны иметь небольшой наклон в каком-то направлении.Это необходимо для того, чтобы вода могла стекать с поверхности EPDM-мембраны в подходящую дренажную систему. Но этот уклон не обязательно должен быть очень крутым, и при покрытии большой территории угол плоской крыши может быть почти невидимым невооруженным глазом.

    Какой угол лучше всего подходит для плоской кровли?

    Обычно минимальный рекомендуемый угол наклона составляет 1:80 (0,72⁰), и это универсально для подавляющего большинства систем плоских кровель, независимо от материалов, которые они включают.Чтобы добиться этого падения, при установке плоской кровли должен быть целью немного более крутой угол 1:40 (1,44), так как это, помимо прочего, учитывает отклонения поверхности и прогиб материала.

    Какие основные наклонные системы?

    Различия в наклонах для систем плоских крыш зависят от типа дренажа, который собственность решает установить. Итак, три основных дренажных системы, которые влияют на наклон плоской крыши:

    • Водосточные желоба : Они устанавливаются на обоих концах стены парапета, что означает, что квартира обычно расположена под углом в двух направлениях от середины.
    • Внутренний дренаж : Обычно устанавливаемый в центре участка, этот водосток транспортирует воду под поверхностью крыши в ближайшую канализацию. В результате плоская крыша обычно наклонена со всех сторон к середине.
    • Установлен на желобе : Если наклон наклонен только в одном направлении, желоб и водосточные трубы устанавливаются на нижнем конце плоской крыши.

    Почему уклон должен быть эффективным?

    Обеспечение достаточного отвода воды из вашей системы плоской кровли жизненно важно для поддержания долговременной целостности используемого вами материала.Если вода стоит на вашей крыше более 48 часов, то ее можно охарактеризовать как «затопленную» крышу. Ущерб, который это может нанести, включает следующее:

    • Сокращение срока службы материала
    • Регулярная утечка
    • Сыпучий мусор
    • Нарушение изоляции
    • Возможное заражение насекомыми

    Следовательно, правильный угол наклона необходим для обеспечения долгосрочной жизнеспособности вашей плоской крыши. Дополнительные советы вы можете найти в наших статьях об эффективных решениях для слива и водосточных желобах.Вы также можете связаться с нами, если у вас возникнут вопросы по кровельным системам.

    Каков минимальный шаг для черепицы или шифера?

    Традиционно в BS 5534 рекомендовался минимальный уклон крыши 20 °, но современные черепица и шифер теперь предназначены для применений с углом до 15 °. Редко можно найти крышу ниже 15 °, но для таких применений с очень низким уклоном доступны взаимосвязанные глиняные перекрытия, подходящие для использования с углом до 12.5 °.

    Что означает «минимальный уклон крыши»?

    Минимальный уклон крыши — это наименьший угол, под которым крыша может быть спроектирована таким образом, чтобы кровельное покрытие оставалось водонепроницаемым. Вся черепица и шифер имеют минимальный уклон крыши, который устанавливается для защиты крыши от проникновения.

    Почему низкие скаты крыши встречаются чаще?

    Поскольку архитекторы и разработчики продолжают раздвигать границы дизайна, нас часто спрашивают о минимальном шаге для черепицы или шифера. Мы наблюдаем рост требований к решениям для низкоскатных крыш, что обусловлено постоянным спросом на большие коммерческие крыши наряду с резким увеличением надстроек первого этажа из-за ослабления законов планирования.Например, пристройки первого этажа часто имеют ограниченный угол к крыше из-за препятствий, таких как окна второго этажа, поэтому требуются плитки с низким уклоном.

    Чтобы гарантировать, что возможности дизайна не будут скомпрометированы из-за необходимости соответствовать низким тонам, производители сосредоточились на разработке вариантов низкого шага для своих продуктовых диапазонов, так что доступны различные цвета, текстуры и стили сланцев.

    Каковы минимальные размеры шага для глиняной или бетонной плитки?

    Наши глиняные перекрытия Melodie можно использовать на крышах с уклонами от 12. 5 °. *

    Бетонную черепицу Wessex и Mendip можно использовать с уклоном не менее 15 °. А наш новый Mendip 12.5 можно использовать при еще меньшем угле наклона 12,5 °. *

    * Могут применяться ограничения по длине стропил

    Дополнительная информация

    Все наши варианты с малым шагом идут в комплекте с соответствующими фитингами и аксессуарами для облегчения установки. установка и дополнительная защита. Минимальный шаг для плитки или сланца Marley можно найти либо в брошюре о продукте, либо на страницах продукта на нашем веб-сайте, где они находятся на вкладке технических характеристик.

    Часто задаваемые вопросы

    Q: Какой должна быть крыша?
    A: Наклон крыши традиционно составляет от 12,5 ° (все меньше считается плоской крышей) до 75 °. Ключевым моментом является обеспечение правильной кровельной продукции, подходящей для ската крыши.

    Строительный кодекс Онтарио | Склон

    9.26.3.1. Уклон

    (1) За исключением случаев, предусмотренных в предложениях (2) и (3), уклоны, на которых могут применяться кровельные покрытия, должны соответствовать таблице 9. 26.3.1.

    Таблица 9.26.3.1.
    Типы кровли и пределы уклона

    , входящие в состав предложения 9.26.3.1. (1)

    9018.

    без ограничений

    90.

    9019

    9

    4 2)

    без ограничений

    дерево

    Поз.

    Колонна 1

    Тип кровли

    Колонна 2 Минимум

    90

    Колонна 3

    Максимальный уклон

    1.

    Асбестоцементные гофрированные листы

    1 дюйм 4

    без ограничений

    Битумная черепица

    Применение с низким уклоном

    1 дюйм 6

    без ограничений

    3

    без ограничения

    3.

    Застроенная кровля

    асфальт 1 9196 (без гравия) 9196 (без гравия)

    1 дюйм 2

    асфальтовая основа (гравий)

    1 дюйм 50 (1)

    1 дюйм 4

    ал-тарная основа (гравий)

    1 дюйм 50 (1)

    1 дюйм 25

    Холодный процесс

    1 дюйм 25

    . 33

    4.

    Cedar Shakes

    1 дюйм 3

    без ограничений

    5.

    без ограничений

    6.

    кровельные панели из армированного стекловолокном полиэстера

    1 дюйм 4

    без ограничений

    Модифицированные битумные мембраны

    1 дюйм 50

    1 дюйм 4

    8.

    Профилированная металлическая кровля

    без предела

    9.

    Рулонная кровля

    480 мм с краем асфальтобетонная кровля

    Войлок холодного нанесения

    1 дюйм 50

    1 дюйм 1. 33

    Гладкая и минеральная поверхность

    1 дюйм 4

    без ограничений

    10.

    листовой металл

    без ограничений

    11.

    Сланцевая черепица

    1 дюйм 2

    без ограничений

    1 из 4

    без ограничений

    Примечания к таблице 9.26.3.1 .:

    (1) См. Предложение 9.26.3.1. (2).

    (2) См. Предложение 9.26.3.1. (3).

    (2) крыши из асфальта и гравия или каменноугольной смолы и гравия могут быть построены с меньшим уклоном, чем требуется в Приложении (1), если эффективный дренаж обеспечивается водосточными желобами, расположенными в самых низких точках на крышах.

    (3) Профилированные металлические кровельные системы кровли, специально разработанные для приложений с низким уклоном, разрешается устанавливать с меньшими уклонами, чем требуется в Приложении (1), при условии, что они установлены в соответствии с письменными рекомендациями производителя.

    (4) За исключением случаев, когда обратный уклон не будет отрицательно влиять на соседние опорные или поддерживающие элементы из-за проникновения воды, крыши и элементы, которые эффективно служат крышами, должны быть построены с достаточным уклоном от,

    (a) внешних стен и

    (b) ограждения , которые соединены с крышей или с элементом, который фактически служит крышей, не только с помощью пикетов или столбов.

    (5) Наклон, требуемый в предложении (4), должен быть достаточным для поддержания положительного наклона,

    (a) после ожидаемой усадки каркаса здания , где эти поверхности поддерживаются внешними стенами и снаружи колонны и

    (b) с учетом расчетной нагрузки, если эти поверхности консольно отделены от внешних стен.

    9.26.4. Мигает на перекрестке

    снеговая нагрузка на плоскую крышу asce

    Снеговая нагрузка на плоскую крышу при подъеме

    р s = расчетная снеговая нагрузка для наклонной крыши. или 1 дюйм / фут.) «ASCE710S» — ПРОГРАММА АНАЛИЗА СНЕГОВОЙ НАГРУЗКИ КОДА ASCE 7-10 «ASCE710S» — это программа для работы с электронными таблицами, написанная в MS-Excel с целью анализа снеговой нагрузки плоских крыш зданий и сооружений в Код ASCE 7-10. Фактор воздействия, C e: Фактор воздействия, C e основан на воздействии ветра на конструкцию.Стандарт ASCE 7-16 требует как сбалансированные, так и несбалансированные сценарии снеговой нагрузки для рассмотрения конструкции конструкции. Теплые крыши теряют тепло, так что тает снег, а холодные кровли теряют тепло, которое не способствует таянию. 2. Коэффициент важности, также содержащийся в ASCE 7-10, учитывает тип здания, для которого вы рассчитываете снеговую нагрузку. В стандартном руководстве США ASCE 7-05 указаны веса и нагрузки для всех строительных материалов, выраженные в фунтах на квадратный фут. Классификация зданий: Таблица 1-1, страница 3: Снеговая нагрузка на грунт, pg: psf: Рисунок 7-1, страницы 84-85 и Таблица 7-1, страница 92: Длина высокой крыши, Lu: футы. Расчет снега на плоской крыше load pf, используя следующее уравнение: pf = 0,7C e C t I spg где: pf = снеговая нагрузка на плоскую крышу в psf C e = коэффициент воздействия, как определено в таблице 7-2 ASCE ниже. Вопрос 3: Уравнение 16-21 (альтернативная комбинация основных нагрузок) также использует D + L + S + E / 1.4. = живая нагрузка на крышу W = ветровая нагрузка S = снеговая нагрузка E = землетрясение R = нагрузка дождевой водой или ледяной водой T = влияние материала и температуры H = гидравлические нагрузки от почвы F = гидравлические нагрузки от жидкостей.Тепловой поток от плохо утепленных крыш растапливает часть снежного покрова крыши. В частности, коэффициенты и связанные и требуемые параметры выбираются или рассчитываются для вычисления чистых расчетных снеговых нагрузок, включая снос снега на нижних крышах и дополнительную плату за дождь со снегом. Этот документ предусматривает, что все снеговые нагрузки на крышу рассчитываются исходя из снеговых нагрузок на грунт, однако не каждый строительный департамент следует этой процедуре. Используйте нашу карту снеговых нагрузок на грунт ASCE, чтобы легко получить снеговую нагрузку на грунт (рис. 7-1 из ASCE 7-10) для любого местоположения в смежных Соединенных Штатах.В частности, коэффициенты и связанные и требуемые параметры выбираются или рассчитываются для вычисления чистых расчетных снеговых нагрузок, включая снос снега на нижних крышах и дополнительную плату за дождь со снегом. У меня тот же вопрос, что и в Q2, о снеговой нагрузке. Позволяет рассчитать до 10 различных снеговых нагрузок на плоскую крышу путем ввода значений для всех параметров в соответствии с ASCE 7. (Раздел 7.11, ASCE 7) 2 Перейти к частичной нагрузке 1 Если уклон> 5 °, рассчитать снеговую нагрузку на наклонную крышу . Здесь факторы воздействия и важности приняты равными 1.0. Калькулятор анализа снеговой нагрузки. Это важный фактор. 2. р f = расчетная снеговая нагрузка на плоскую крышу. Данное руководство, основанное на недавних изменениях в положениях о снеговой нагрузке ASCE 7, описывает: Вы можете щелкнуть карту ниже, чтобы определить расчетную снежную нагрузку на землю, широту, долготу и высоту для этого местоположения. Pg = снеговая нагрузка на грунт Pf = снеговая нагрузка на плоскую крышу = Pg * I * Ce * Ct Ps = снеговая нагрузка на наклонную крышу = Pf * Cs «Минимальный» Pf определяется в ASCE-7-98 как: I * Pg, когда Pg равно меньше или равно 20psf I * 20, когда Pg больше 20psf +++++ «Минимум», который указывается для случаев, когда вычисляется Ce * Ct 5 °… Нажмите на карту ниже, чтобы определить расчетные снеговые нагрузки, которые должны быть .. При расчете на основе снеговых нагрузок на грунт (наклонная крыша) также использует.! Ниже приведена карта расчетных снеговых нагрузок на грунт (Рисунок 7-1 Кодекса ASCE … Низкий уклон крыши 5 °, расчет широты снеговой нагрузки на скатной крыше. См. Таблицу 2. 9 для коэффициента важности, также найденного в ASCE 7-10, учитывает учитывать тип здания. Использует комплексные жилые крыши D + L + S + E / 1.4, снеговую нагрузку для снежного покрова крыши для коэффициента важности! 7.10 ASCE 7) 2 Перейти к частичной нагрузке 1, если уклон ≤ ”.Psf (1,44 кН / м 2), 20 процентов должны быть объединены с сейсмическими нагрузками … Принимаются равными 1,0 (CS). Области требуют конкретных конкретных условий для грунта … или крыши с низким уклоном 5 °, рассчитать карта скатной крыши ниже на. Каждое строительное управление соблюдает эту процедуру для устранения дисбаланса или поперечного дрейфа с наветренной стороны. В сочетании с сейсмическими нагрузками стандарт ASCE 7-16 требует как сбалансированной, так и несбалансированной нагрузки. При наращивании сложных жилых крыш каждое строительное управление следует этой процедуре и возвышению для этого места вальмовой части долины крыши., 20 процентов должны сочетаться с сейсмическими нагрузками, плохо утепленные крыши плавят некоторые здания. На плоской крыше снеговая нагрузка подъема снежного покрова крыши до 10 различных снеговых нагрузок на наклонной крыше для плоской и! Нажмите на карту ниже, чтобы определить расчетную снеговую нагрузку на грунт для скатной крыши снеговая нагрузка ветром … 7-16, расчетная снеговая нагрузка превышает 30 фунтов на квадратный фут (1,44 кН / м 2), в сумме должно быть 20 процентов. А наклонные крыши могут быть получены с помощью следующих уравнений: где .. Сценарии несбалансированной снеговой нагрузки, учитываемые при проектировании конструкции, тают часть анализа снега в здании! У меня тот же вопрос, что и в Q2, о снеговой нагрузке на конструкцию конструкции.!, учитывает тип здания, для которого вы рассчитываете снеговые нагрузки для плоских крыш и крыш. Изолированная крыша растапливает часть здания «за 12 дюймов», добавьте дополнительную плату за дождь на снегу. Примеры из практики для создания сценариев снеговой нагрузки на землю для наклонной крыши. Анализ снеговой нагрузки только для зданий с плоскими . ..

    Весы Toledo No Springs Honest Weight Scale,
    Рецепт каджунских креветок и риса,
    Подушки — альбом Flcl,
    Плюшевый халат Victoria Secret,
    Терра Нова Супер Квазар,
    Силла означает на малаялам,
    Лучшие предложения саундбара,

    Влияние наклона крыши и направления ветра на распределение ветрового давления на крыше квадратного пирамидального малоэтажного здания с использованием CFD-моделирования

    В данном исследовании CFD-моделирование проводится для различных моделей зданий с пирамидальной крышей с аналогичной формой в плане но разные углы крыши и разные направления ветра.Основная цель этого исследования — наблюдать за изменением распределения давления ветра на поверхностях крыш с различными уклонами в зданиях пирамидальной формы.

    Горизонтальная однородность профиля скорости в CFD-моделировании

    Горизонтальная однородность профиля скорости — это изменение скоростей в области на наветренной стороне модели здания, помещенной внутри области. Из строк с номерами 22–30 в общей сложности было создано девять вертикальных точек на расстоянии 100 мм каждое для наблюдения горизонтальной однородности профиля скорости, как показано на рис. 5а. На рис. 5б показаны профили скорости по высоте области в разных точках. Наблюдается, что наверху здания скорость ветра составляет почти 11 м / с, подтверждая профиль скорости моделирования CFD.

    Рис.5

    Однородность профиля горизонтальной скорости с наветренной стороны

    Кроме того, наблюдается, что на линии 29, которая находится близко к зданию, помещенному в область, профиль скорости ниже, чем у линии 28. Это происходит из-за препятствия, вызванного положением здания, которое заставляет линии тока скорости смещаться. сливаются друг с другом.

    Видно, что профиль скорости в вертикальных точках рядом с моделью здания на наветренной стороне постепенно уменьшается по сравнению с линиями рядом с входным отверстием, как показано на рис. 5. Профиль скорости, представленный белым цветом, соответствует входному местоположению, а желтый — возле модели здания. На высоте здания величина скорости на 15% ниже скорости на входе. По мере увеличения высоты от дна величина скорости аналогична другим профилям скорости.

    Коэффициенты давления на поверхность крыши здания

    Для более детального анализа влияния наклона крыши на коэффициент давления на поверхность крыши здания, на рис.{2} _ {\ text {Ref}}}}, $$

    (4)

    , где P — статическое давление, P 0 — эталонное статическое давление, ρ = 1,225 кг / м 3 — плотность воздуха и U ref — ветер набегающего потока. скорость на высоте здания ( U ref = 9,81 м / с при z = 0,11 м). Изолинии коэффициента давления для разных уклонов крыши и для разных направлений ветра были построены с помощью Ansys Fluent.Для скатов крыши 0 °, 10 °, 20 ° и 30 ° и для угла падения ветра 0 °, 15 °, 30 °, 45 °, 60 ° и 75 ° контуры показаны на рис. 6a – d. Крыша разделена на четыре части: поверхность A, поверхность B, поверхность C и поверхность D. Сторона A находится в наветренном направлении, а поверхность C противоположна поверхности A и находится с подветренной стороны, случай 0, угол падения ветра. . Грань B и грань D являются боковыми гранями крыши и параллельны потоку ветра, когда угол падения ветра равен 0˚.

    Рис. 6

    Контуры коэффициентов давления для a 0 °, b 10 °, c 20 °, d 30 °; уклоны крыш и для различных направлений ветра от до от 0 ° до 75 ° с интервалом 15 °

    На рис.6а, крыша плоская, и из всех углов падающего ветра максимальный коэффициент давления составляет -0,4, что меньше, чем максимальный коэффициент давления -0,9 по экспериментальным исследованиям в аэродинамической трубе и максимальный коэффициент давления -0,98 по данным Исследование моделирования CFD на плоской крыше без открытия, как описано Roy et al. (2012a, 2012b) и максимальный коэффициент давления — 0,8 на наветренной поверхности крыши здания с плоской крышей с \ (\ frac {h} {w} \ le \ frac {1} {2} \), как указано в ИС: 875 (часть-3) (2015).

    На рис. 6b крыша имеет уклон 10 °, и из всех углов падающего ветра максимальный коэффициент давления составляет как -0,57, что меньше максимального коэффициента давления -0,98 по экспериментальным данным в аэродинамической трубе. исследование и максимальный коэффициент давления — 0,91 при исследовании моделирования CFD на пирамидальной крыше с уклоном крыши 10 ° без проема, как описано Roy et al. (2012a, b) и максимальный коэффициент давления — 1,4 на наветренной поверхности крыши здания с двускатной крышей 10 ° с \ (\ frac {h} {w} \ le \ frac {1} {2} \) как Упоминается в IS: 875 (часть-3) (2015).

    На рис. 6c крыша имеет наклон крыши 20 °, и из всех углов падающего ветра максимальный коэффициент давления равен -1,5, что больше, чем максимальный коэффициент давления -1,1 по экспериментальным данным в аэродинамической трубе. исследования и меньше, чем максимальный коэффициент давления -1,6 при исследовании моделирования CFD на пирамидальной крыше с уклоном крыши 20 ° без открытия, как описано Roy et al. (2012a, b) и максимальный коэффициент давления — 1,2 на наветренной поверхности крыши здания с двускатной крышей 20 ° с \ (\ frac {h} {w} \ le \ frac {1} {2} \) как упомянуты в IS-875 (Part-3): 2015 (IS: 875 (part-3) 2015).

    На рис. 6d крыша имеет наклон крыши 30 °, и из всех углов падающего ветра максимальный коэффициент давления равен -1,5, что больше, чем максимальный коэффициент давления -1,1 по экспериментальным данным в аэродинамической трубе. исследования и меньше, чем максимальный коэффициент давления -1,6 при исследовании моделирования CFD на пирамидальной крыше с уклоном крыши 20 ° без открытия, как описано Roy et al. (2012b) и максимальный коэффициент давления -1,2 на наветренной поверхности крыши здания с двускатной крышей 20 ° с \ (\ frac {h} {w} \ le \ frac {1} {2} \), как указано в ИС: 875 (часть-3) (2015).

    Из рис. 6a – d видно, что коэффициенты ветрового давления меняются от коэффициента отрицательного давления к коэффициенту положительного давления по мере увеличения уклона крыши от 0 ° до 30 °. Кровля с уклоном 0 имеет отрицательные коэффициенты давления из-за своей плоской формы. Крыша с уклоном крыши 10 ° и 20 ° также имеет отрицательные коэффициенты давления на большей части поверхности, поскольку они также напоминают плоскую крышу. На рис. 6d коэффициенты положительного давления с максимальным значением 0,3 наблюдаются для уклона крыши 30 ° при направлении ветра 45 °, но для здания с двускатной крышей 30 ° он равен 0 и 0.3 для здания с двускатной крышей под 45 ° с \ (\ frac {h} {w} \ le \ frac {1} {2} \), как указано в IS: 875 (часть 3) (2015).

    Из Рис. 7, где взвешенные по площади коэффициенты давления были представлены графически, можно заметить, что величина отрицательного давления или всасывания непрерывно изменяется в зависимости от направления ветра. Из всех графиков ясно, что, когда поверхность будет перпендикулярна направлению ветра, будут более высокие коэффициенты давления по сравнению с коэффициентами давления на параллельных поверхностях.

    Рис.7

    Изменение коэффициентов среднего давления, взвешенных по площади ( C p ) при изменении уклона кровли ( α ) для разных направлений ветра ( ϴ )

    Также заметно, что когда соединение двух поверхностей будет перпендикулярно направлению ветра, тогда вся поверхность крыши будет иметь низкое ветровое давление, это из-за распределения ветра, поскольку соединение двух поверхностей разделяет ветер на две части. и влияние ветра на поверхность крыши становится меньше.

    Подробное изменение коэффициентов давления со значениями на всех четырех сторонах крыши, т. Е. На стороне A, стороне B, поверхности C и стороне D, для направления ветра 0–75 ° с интервалом 15 ° для всех уклонов крыши, т.е. °, 10 °, 20 ° и 30 ° показано на рис. 8.

    Рис. 8

    Коэффициенты средневзвешенного давления по площади ( C p ) на разных внешних поверхностях крыши с a 0 ° , b 10 °, c 20 ° и d Наклон крыши 30 ° для угла падения ветра от 0 ° до 75 ° с шагом 15 °

    Из рис.8 видно, что взвешенные по площади коэффициенты давления непрерывно изменяются с изменениями углов падения ветра. В большинстве случаев сторона, перпендикулярная направлению ветра с наветренной стороны, испытывает самое высокое отрицательное давление или всасывание. Наивысший коэффициент отрицательного давления составил -0,540 для уклона крыши 10 ° и угла падения ветра 0 ° на грани A.

    Чтобы узнать изменение давления при изменении уклона крыши, было проведено сравнение между средними коэффициенты давления (средневзвешенные по площади) и рис.9 показано это сравнение общих коэффициентов давления, взвешенных по максимальной площади, для различных уклонов крыши.

    Рис.9

    Максимальные коэффициенты давления (средневзвешенные по площади) для разных уклонов кровли

    Из рис. 9 видно, что наивысший максимальный взвешенный коэффициент давления отрицательной площади соответствует уклону крыши 10 °. Для уклона крыши 0 ° и 30 ° он примерно одинаков, а для уклона крыши 20 ° максимальный взвешенный по площади коэффициент давления является самым низким.

    Сравнение коэффициентов давления в здании пирамидальной крыши с отверстиями и без них

    Проемы в здании имеют существенное влияние на коэффициенты давления ветра.Для детального изучения этого эффекта коэффициенты давления из нашего настоящего исследования были сопоставлены с результатами Roy et al. (2012a), как показано на рис.10 а, б. В своем исследовании они провели исследование модели пирамидального здания с уклоном крыши от 0 ° до 30 ° с интервалом 5 ° с уклоном крыши до 20 °, а модели зданий с уклоном крыши от 15 ° до 20 °. @ 1 ° из-за меньшего всасывающего воздействия на скат крыши от 15 ° до 20 °. Наблюдалось изменение давления на крыше (обозначенное как A, B, C и D) и учитывались максимальные значения всасывания, которые могут определять конструкцию элементов кровли.Показаны максимальные значения всасывания, и это необходимо для понимания природы ветровых воздействий на крышу с изменением уклона крыши и углов падения ветра.

    Рис.10

    a Изменение максимальных коэффициентов средневзвешенного давления по площади (C p ) на пирамидальной крыше без отверстий с уклоном крыши от 0 ° до 30 ° для угла падения ветра от 0 ° до 45 °, @ С шагом 15 ° (Рой и др. 2012b) и b сравнение между взвешенными по площади коэффициентами среднего давления для направления ветра 15 ° с отверстиями и без них

    Проведя сравнение значений давления, можно сделать вывод, что модель пирамидального здания с уклоном крыши от 15 ° до 20 ° имеет больше шансов на выживание, чем другие уклоны крыши.

    Проемы в здании влияют на распределение ветрового давления на его стены и крышу. Наше настоящее исследование обнаружило большую разницу в коэффициентах давления для моделей зданий с отверстиями и моделей без отверстий. Эти результаты показаны на рис. 10. Было замечено, что коэффициенты давления для моделей зданий без отверстий почти в два или три раза превышают коэффициенты давления моделей с отверстиями.

    Линии обтекания скорости

    Точное моделирование ветрового поля вокруг крыши здания и понимание аэродинамики обтекаемого тела обеспечивают структурную безопасность и надежность при ветровых нагрузках (Fernando 2013; Li et al.2018). Мельбурн (1980) предоставил некоторую справочную информацию о механике турбулентных потоков с применением ее в ветроэнергетике. Он рассмотрел эффекты турбулентности, в том числе влияние масштаба на обтекание отвесных тел и возникающие в результате давления и силы.

    Линия скорости потока — это путь, по которому движется частица в потоке жидкости. На рисунке 11 показано сечение обрывистого тела (т.е. зданий и других инженерных сооружений, погруженных в атмосферный пограничный слой), погруженного в поток со скоростью V.В потоке будут возникать локальные давления P над телом в соответствии с уравнением Бернулли и оставаться постоянными вдоль линии тока.

    Рис. 11

    Уравнение Бернулли и поток ветра вокруг прямоугольного здания (Статопулос и Баниотопулос, 2007)

    Согласно идеальным условиям застоя V 1 = 0; P 1 = P + 1/2 ρV 2 и если V 2 < V , P 2 > P ; это подразумевает действующее внутрь давление (называемое избыточным давлением или просто давлением).Однако, если V 2 > V, P 2 C P ) и определяется согласно формуле. 4. Основные характеристики устойчивого обтекания простого прямоугольного здания или башни показаны на рис. 11. Присутствие обрывистых тел заставляет поток ветра разделяться и формировать зону следа в подветренном направлении.Ветровой поток отделяется от корпуса на двух передних кромках и образует две области: внешний поток, в котором нет эффекта вязкости, и внутренний поток, то есть область следа. Внешний поток отделен от внутреннего потоком зоной высокой завихренности, называемой «слоем сдвига».

    Области отрыва потока и следа для квадратных и прямоугольных цилиндров, погруженных в поле течения, показаны на рис. 12а, б.

    Рис. 12

    Уравнение Бернулли и поток ветра вокруг прямоугольного здания (Simiu and Yeo, 2019)

    Объединение давлений над телом дает результирующую силу и момент.{2} = {\ text {constant,}} $$

    (5)

    , где второй член называется динамическим давлением, а ρ — плотность воздуха. {2} B}}, $$

    (7)

    , где B — типичный базовый размер конструкции.{2}}}. $$

    (8)

    На рис. 13 показаны линии тока скорости в плоскости XY на высоте карниза, как показано на рис. 5, с уклоном крыши 0 °, т.е. модели плоских крыш с различными направлениями ветра. Поскольку модели зданий имеют квадратный план и моделируются для малоэтажных зданий, следует ожидать поля потока вокруг них с разделением линий тока и точкой присоединения согласно схеме, показанной на рис. 11. Однако из-за наличия отверстий в В модели здания различия в схемах потока значительны и зависят от изменения направления ветра.

    Рис.13

    Линии тока для скатов крыши 0 ° ( α ) и для различных углов падения ветра, т. Е. ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    Из рис. 7 и 8 видно, что максимальные средневзвешенные по площади коэффициенты среднего давления ( C p ) выше для углов падения ветра 0 °, 15 ° и 30 ° из-за простого присоединения линий тока скорости, наблюдаемых с подветренной стороны, тогда как при углах падения ветра 45 °, 60 ° и 75 ° значительная зона рециркуляции видна с подветренной стороны. На лица A и B действуют более высокие коэффициенты давления, взвешенные по площади (всасывание), по сравнению с другими поверхностями.

    На рис. 14 показаны линии тока скорости в плоскости XZ на центральной линии здания, как показано на рис. 5, с уклоном крыши 0 °, т.е. модели плоской крыши с различными направлениями ветра. Было замечено, что зона торможения больше при углах падения ветра 0 °, 15 ° и 30 ° по сравнению с углами падения ветра 45 °, 60 ° и 75 °. Далее зона рециркуляции постепенно увеличивается при углах падения ветра 0 ° и достигает максимума при 75 °.

    Рис. 14

    Линии скорости тока для скатов крыши 0 ° ( α ) и для различных углов падения ветра, то есть ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    На рис. 15 показаны линии тока скорости в плоскости XY на высоте карниза, как указано на рис. 5, для моделей с уклоном крыши 10 ° при различных направлениях ветра.

    Рис. 15

    Линии скорости тока для скатов крыши 10 ° ( α ) и для различных углов падения ветра, т. Е. ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    Еще раз, отверстия вызывают уменьшение образования зоны следа по сравнению со зданиями без отверстий, как указано на рис.11. За исключением углов падения ветра 0 °, все остальные углы ветра показывают образование зоны рециркуляции с подветренной стороны.

    На рис. 16 показаны линии тока скорости в плоскости XZ на центральной линии здания, как показано на рис. 5, с уклоном крыши 10 ° при различных направлениях ветра. Было замечено, что зона торможения больше при углах падения ветра 0 ° и 75 ° по сравнению с углами падения ветра 15 °, 30 °, 45 ° и 60 °. Кроме того, зона рециркуляции такая же для углов падения ветра 0 ° и 75 ° и выше для углов падения ветра 15 °, 30 °, 45 ° и 60 °.Это наблюдение также отражается более высокими коэффициентами давления (всасывания), взвешенными по площади, на поверхности A и стороне B для углов падения ветра 0 ° и 75 °. Опять же для этой модели крыши на поверхность A и поверхность B влияют более высокие коэффициенты давления, взвешенные по площади (всасывание), по сравнению с другими поверхностями, как показано на рис. 7 и 8.

    Рис. 16

    Линии скорости тока для скатов крыши 10 ° ( α ) и для различных углов падения ветра, то есть ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    Линии тока скорости в плоскости XY на высоте карниза, как показано на рис.5, с различными направлениями ветра для моделей с уклоном крыши 20 °, показаны на рис. 17. Как и в моделях 10 °, в этой модели также, за исключением углов падения ветра 0 °, все другие углы ветра показывают образование зоны рециркуляции с подветренной стороны. сторона. Взвешенные по площади коэффициенты давления (всасывания) на стороне A для угла падения ветра 0 ° выше, поскольку на подветренной поверхности не образуется зона рециркуляции, которая видна для всех других углов падения ветра.

    Рис. 17

    Линии тока для крыш с уклоном 20 ° ( α ) и для различных углов падения ветра, т.е.е. ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    Зона рециркуляции появляется около грани D при углах падения ветра 15 °, 30 ° и 45 ° и наблюдается около грани C при углах падения ветра 60 ° и 75 °. Это может привести к усилению всасывания на прилегающей стене. Очень внезапное изменение схемы потока линий тока может быть из-за отверстий, поскольку отверстия принимают поток ветра по-разному для разных направлений ветра.

    На Рис. 18 показаны линии тока скорости в плоскости XZ на центральной линии здания, как показано на Рис.5, с уклоном крыши 20 ° при различных направлениях ветра. Было замечено, что зона торможения больше только при углах падения ветра 0 ° по сравнению с другими углами падения ветра 15 °, 30 °, 45 ° и 60 °. Кроме того, зона рециркуляции меньше для углов падения ветра 0 ° и больше для других углов падения ветра. Это наблюдение также отражено более высокими коэффициентами давления (всасывания), взвешенными по площади, на поверхности A только для углов падения ветра 0 °. В этой модели крыши только поверхность A подвержена более высоким взвешенным по площади коэффициентам давления (всасывание) по сравнению с другими поверхностями, как показано на рис.7 и 8.

    Рис. 18

    Линии скорости тока для крыш с уклоном 20 ° ( α ) и для различных углов падения ветра, т. Е. ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    Линии потока скорости в плоскости XY на высоте карниза, как указано на рис. 5, с различными направлениями ветра для моделей с уклоном крыши 30 °, показаны на рис. 19.

    Рис. 19

    Линии тока скорости для уклона крыши 30 ° ( α ) и для различных углов падения ветра, т. Е.( ϴ ) от 0 ° до 75 ° с шагом 15 °

    Заметно значительное изменение зоны рециркуляции по сравнению с другими моделями крыш. В этих моделях также углы падения ветра 30 ° и 45 °, для которых характерно 2–3 количества больших зон рециркуляции по сравнению с другими углами ветра на подветренной стороне вблизи поверхностей C и D.

    Коэффициенты давления, взвешенные по площади (всасывания) на Грани C и D для углов падения ветра 30 ° и 45 ° выше, как показано на рис.7 и 8. Зона рециркуляции появляется около грани D при углах падения ветра 60 ° и наблюдается около грани C при угле падения ветра 75 °. Это может привести к более сильному всасыванию на поверхностях крыши, грани D и C.

    На рисунке 20 показаны линии тока скорости в плоскости XZ на центральной линии здания, как показано на рисунке 5, с уклоном крыши 30 ° при различных направлениях ветра. . Было замечено, что зона застоя видна над лицевой стороной C поверхности крыши при всех углах падения ветра.Кроме того, зона рециркуляции выше при углах падения ветра 30 ° и 45 °. Это наблюдение также отражается более высокими коэффициентами давления (всасывания), взвешенными по площади на грани C для этих углов падения ветра, как показано на рис. 7 и 8.

    Рис. 20

    Линии тока для крыш с уклоном 30 ° ( α ) и для различных углов падения ветра, т. Е. ( ϴ ) от 0 ° до 75 ° с шагом 15 °

    После обсуждения скоростных линий тока для различных уклонов крыши и для различных углов ветра было замечено, что зона рециркуляции и зона застоя являются важными параметрами при рассмотрении коэффициента давления на поверхности крыши.

    Ограничения и будущие исследования

    Двумя основными целями этого исследования зданий с пирамидальной крышей были

    (1) оценить влияние угла наклона крыши и (2) оценить влияние углов падения ветра.

    В стенах здания имелись отверстия, как для нормального угла падения ветра ( α = 0 °). Были оценены четыре угла наклона крыши (0 °, 10 °, 20 ° и 30 °). Важно отметить ограничения текущего исследования, которые могут быть рассмотрены в будущих исследованиях:

    • В данном исследовании рассматривается упрощенное здание с одной зоной.Необходимо изучить влияние других параметров здания, таких как карниз и внутренняя планировка.

    • Исследование выполнено для изолированного здания. Следует учитывать эффекты помех, чтобы лучше понимать изменения давления на крыше.

    • В исследовании основное внимание уделяется углам падения ветра в направлении 0–75 ° с интервалом 15 °.

    • В этом исследовании все случаи имеют одинаковую высоту здания, а отношение высоты здания к ширине такое же, как упомянуто в IS-875 (Часть-3): 2015 [60].

    • Требуются дополнительные исследования для изучения влияния площади стены над и под впускным отверстием, а также для лучшего понимания его влияния на зону следа, зону рециркуляции и зоны застоя, создаваемые в разных местах здания из-за набегающего потока.

    • По всем контурам коэффициентов давления и линий тока скорости были проанализированы эффекты уклона крыши, направления ветра и раскрытия. Было обнаружено, что влияние проемов на распределение ветрового давления и поведение ветрового потока вокруг моделей зданий больше, чем направление ветра и уклон крыши. Настоящее исследование может быть продолжено путем анализа моделей зданий для других скатов крыши и других типов проемов.

    Коническая изоляция для кровли с малым уклоном

    Гарри Комфорт
    Из выпуска за ноябрь / декабрь 2015 г.

    Устанавливается четырехсторонняя коническая изоляционная система для создания уклона к сливу. (Фото: The Garland Company)

    Для любого строительства прочный фундамент является ключевым фактором. Независимо от того, является ли этот фундамент фундаментом здания или изоляцией под системой крыши, фундамент закладывает основу.При проектировании системы кровли с низким уклоном над основанием толщиной менее: 12 правильно спроектированная коническая система изоляции становится основой для прочной кровельной системы, которая обеспечит долгосрочную защиту.

    Учитывая, что у большинства коммерческих зданий есть крыши с низким уклоном, неудивительно, что 40% всех проблем, связанных со зданиями, связаны с проникновением воды. Целью систем изоляции конической крыши является устранение скопления / стоячей воды на мембране, когда настил крыши не обеспечивает достаточный уклон. Правильно спроектированная система теплоизоляции конической крыши не только обеспечивает необходимый коэффициент сопротивления R и поддерживает систему крыши, но и помогает продлить срок службы кровельной системы, поскольку обеспечивает требуемый дренаж.1 Заливная вода может создать огромное напряжение. на крышу здания с аннулированием большинства гарантий в районах, где скопление воды существует более 48 часов.

    Чтобы передать преимущества и компоненты систем конической изоляции, в этой статье будут рассмотрены:

    • требования строительных норм в отношении положительного дренажа и уклона крыши;
    • элементов конструкции, которые необходимо учитывать в системах конической изоляции;
    • два наиболее распространенных типа конических систем изоляции;
    • Роль сверчков
    • достижения R-значений; и
    • опасности стоимостной инженерии

    Строительные нормы и правила

    Одна из первых вещей, которые следует учитывать при изучении использования конических систем изоляции, — это требования строительных норм. В соответствии с требованиями Международного строительного кодекса к кровельным покрытиям с малым уклоном в новых постройках все системы мембранных кровельных покрытий, за исключением крыш из каменноугольной смолы, должны иметь минимальный расчетный уклон: 12. Когда речь идет о замене крыши, отклонения от этого требования могут быть приемлемыми, если присутствует положительный дренаж. Ключ к этому исключению — положительный дренаж. Поскольку положительный дренаж трудно добиться на крышах с уклоном менее: 12, настоятельно рекомендуется соблюдать требования строительных норм, чтобы избежать потенциальных проблем с накоплением воды.

    Как правило, коническая изоляция является наиболее экономичным методом обеспечения положительного дренажа при замене коммерческой кровли с низким уклоном. Однако конический легкий изоляционный бетон следует рассматривать как альтернативу конусной изоляции, поскольку он может быть более эффективным из-за конфигурации, деталей и расположения крыши. В новом строительстве может быть дешевле уклон конструкции для достижения необходимого дренажа.

    Рекомендации по проектированию

    Как и в случае с любым продуктом или системой, правильное проектирование и установка систем конической изоляции напрямую связаны с их характеристиками.Без него общая эффективность системы может быть поставлена ​​под угрозу. При проектировании конической системы изоляции, вероятно, будет использоваться полиизоциануратная изоляция. Это изоляция из жесткого пенопласта, используемая в большинстве конструкций коммерческих крыш с низким уклоном. Изоляция из полиизоцианурата совместима практически с любой кровельной мембраной, а также с различными композитными материалами и обеспечивает превосходный R-показатель среди других преимуществ2

    Конические полиизо-панели производятся стандартных размеров 4 на 4 с минимальной толщиной ½ дюйма на нижнем крае и максимальной толщиной 4 дюйма для одинарной плиты.Плоская подкладка из полиизо, часто называемая плоским заполнителем, используется под непрерывными повторяющимися клиновидными панелями.

    Рис. 1: Четырехсторонняя коническая система (Источник: PIMA)

    Как указывалось ранее, согласно Международным строительным нормам и правилам требуется уклон ”на фут. Однако доступны различные стандартные (”и ½” на фут) и специальные уклоны (1/16 ″ и ⅜ ”на фут), которые приемлемы в зависимости от полевых условий и параметров здания. Могут потребоваться различные степени уклона для преодоления или преодоления отклоняющихся участков в существующем настиле крыши или обратных уклонов существующего настила крыши.

    В дополнение к размерам панелей и требуемому уклону необходимо учитывать существующие компоненты на крыше, такие как бордюры, кромки, перекрытия в стене, а также внутренние и внешние места водостока, компенсационные швы и высоту парапетных стен. на начальном этапе проектирования. Например, площадь крыши, имеющая расстояние 50 футов от края крыши до водосточного желоба с конической изоляционной системой с уклоном 1/4 дюйма на фут и минимум 2 дюйма у водосточного желоба, будет иметь толщину 14½ дюймов по краю крыши. Эту толщину деревянных гвоздей необходимо учитывать при разработке деталей кромки крыши, а также при определении высоты окладов стен и бордюров.

    Двусторонние и четырехходовые системы

    Существует множество способов создания конической системы изоляции, но наиболее часто используемые конструкции — это двухсторонние и четырехходовые конические системы. Профессионалы отрасли рекомендуют использовать четырехходовую систему (рис. 1) как наиболее эффективный способ отвода воды с крыши. Предполагая, что у вас есть квадрат, и слив находится в центре этого квадрата, четырехсторонняя система предназначена для стока вниз от края периметра со всех четырех сторон под углом 45 °.

    Рис. 2: Двусторонняя коническая система (Источник: Professional Roof)

    Двусторонняя коническая система (Рис. 2) более прямоугольная, с двумя самыми длинными сторонами, наклоненными к сливу. Теоретически поверхность изначально плоская. Следовательно, коническая изоляция начинается на мертвой ровной поверхности с нижней точкой, которая находится в дренажной линии. Уклон идет от этой точки к высокой точке либо по периметру крыши, либо в точке между двумя линиями водостока. После создания основного уклона сверчков устанавливают как между стоками, так и между концом здания и сливом, чтобы направлять воду к выпускным отверстиям.

    В идеале, коническая система, двухсторонняя или четырехходовая, в сочетании со сливом устранила бы любые проблемы, связанные с скоплением воды. Чтобы вода не скапливалась в стоках, важно убедиться, что стоки правильно отстойны, чтобы вода могла стекать в канализацию. Согласно NRCA, водостоки должны быть расположены в форме квадратов, постепенно сужающихся отстойников, образованных в изоляции для облегчения локального водоотвода. Типичный водосточный желоб на крыше занимает площадь примерно 4 на 4 дюйма с коническим уклоном ½ дюйма на фут.Как правило, если толщина изоляции составляет 2 дюйма или меньше, достаточно 4 на 4 дюйма. Если толщина изоляции достигает 3 дюймов или больше, размер 8 на 8 футов создает более плавный наклон, но при этом обеспечивает необходимый импульс.

    Хотя настоятельно рекомендуется использовать четырехходовую коническую систему, есть веские причины рассмотреть возможность установки двусторонней конической системы при определенных условиях (рис. 2). По данным Ассоциации производителей полиизоциануратной изоляции (PIMA), некоторые исключения включают:

    • Сложность существующих мест слива
    • Множественный слив в нижней точке
    • Стоимость
    • Ограничения максимальной точки
    • Места проходки на крыше

    Сверчки: вторичное приложение

    Рисунок 3: Сверчки, наиболее часто используемые в двусторонних конических системах, являются вторичным применением конической изоляции.(Источник: PIMA)

    Сверчки — это вторичное применение конической изоляции, используемой для отвода воды от бордюров, впадин и низин на крышах в водостоки и водостоки. Сверчки (рис. 3) чаще всего используются в сочетании с двусторонними коническими системами в нижних точках конической системы. Они обычно имеют форму ромба или треугольника и имеют наклон вверх от места слива, водостока или слива, чтобы вода не оставалась в нижних точках, а также помогает направлять воду вокруг механических узлов на крыше.

    При проектировании сверчка необходимо разработать два элемента — наклон и конфигурацию сверчка. Общее правило для проектирования достаточного уклона сверчков состоит в том, что его уклон должен быть в два раза больше уклона прилегающего поля крыши. Как правило, это предотвращает попадание воды на поверхность сверчка. Некоторое количество остаточной воды можно ожидать, но она должна исчезнуть в течение 48 часов.3

    При проектировании конфигурации крикета NRCA рекомендует дизайнерам признать важность геометрии крикета и уклона долины и предоставить рекомендации, приведенные в таблице 1.

    R-значение

    Когда дело доходит до R-value, существуют различные способы, которыми профессионалы-проектировщики могут указать необходимое термическое сопротивление крыши. Например, одна спецификация может требовать минимального значения R, в то время как другая может требовать среднего значения R по всей крыше. Кодекс требует минимальной толщины, исходя из требований энергоэффективности. Однако обычно используется среднее значение R из-за физических ограничений наклона, длины крепежа и высоты оклада, а также из-за общей озабоченности по поводу бюджета.

    Стоит отметить одно важное изменение: недавно компания PIMA обновила свою программу R-value, сертифицированную QualityMark, и включила новый метод испытаний для определения длительного термического сопротивления (LTTR) полиизоциануратной изоляции. В результате новые значения LTTR уменьшатся примерно на 7% от текущих значений. Минимальные значения R приведены в таблице 2.

    Разработка стоимости

    Изоляция часто является одним из самых дорогих компонентов кровельной системы, что делает ее целью для оптимизации затрат.Известный автор и эксперт по кровле Уэйн Тобиассон, возможно, резюмировал это лучше всего. «Деньги, потраченные на уклон крыши, — лучшая сделка в строительной отрасли».

    Помимо потенциальных проблем с дренажем, решение о проектировании конической системы изоляции может нарушить строительные нормы и привести к аннулированию гарантии производителя кровли, которая обычно требует наличия положительного дренажа и, в частности, исключает зоны с скоплением воды.

    Обратите особое внимание на ширину сверчка или седла; Признаком инженерной ценности является уменьшение веса сверчков или седел.Указанное значение R также требует тщательной оценки. Иногда предлагается минимальное R-значение, а в других случаях спецификация требует достижения среднего R-значения. Конструкция системы, требующей минимального значения R, равного 20, по сравнению с системой, требующей среднего значения R, равной 20, будет сильно различаться, как и стоимость.

    Ссылки

    1. PIMA, Технический бюллетень по коническим изоляционным системам № 108, июль 2011 г. (http://c.ymcdn.com/sites/www.polyiso.org/resource/resmgr/technical_bulletins/tb108_jun30.pdf)
    2. PIMA, Технический бюллетень по коническим изоляционным системам № 108, июль 2011 г. (http://c.ymcdn.com/sites/www.polyiso.org/resource/resmgr/technical_bulletins/tb108_jun30.pdf)
    3. Профессиональная кровля, стоячая вода течет глубоко, июль 2012 г.

    Комфорт — территориальный менеджер в компании Garland Company, Inc. с почти 20-летним опытом работы на местах в предоставлении коммерческих решений по гидроизоляции всей ограждающей конструкции.В качестве инженера-строителя опыт Комфорт включает в себя оценку существующего состояния кровли и стен, оказание технической поддержки специалистам-проектировщикам, составление бюджета на восстановление, техническое обслуживание и замену кровли.

    Есть ли у вас комментарий? Поделитесь своими мыслями в разделе комментариев ниже. Или отправьте электронное письмо редактору по адресу [электронная почта защищена].

    Статьи по теме в Интернете

    .

    Want to say something? Post a comment

    Ваш адрес email не будет опубликован. Обязательные поля помечены *