Элеватор в системе отопления принцип работы: Что такое элеватор в системе отопления: устройство, принцип работы, расчет
Элеватор отопления принцип работы | Всё об отоплении
Для чего нужны элеваторы в системе отопления?
Виды элеваторов отопления
Как ни странно, но об элеваторах отопления знают даже не все сантехники, обслуживающие многоэтажные дома. В лучшем случае, они имеют представление о том, что этот прибор устанавливается в системе. Но как он устроен и какую функцию выполняет, известно далеко не всем, не говоря уже о простых людях.
Поэтому давайте ликвидируем подобный пробел в знаниях об отопительных системах и разберем это устройство подробнее.
Что такое элеватор?
Если говорить простым языком, то элеватор — это специальное устройство, относящееся к отопительному оборудованию и выполняющее функцию инжекционного или водоструйного насоса. Ни больше, ни меньше.
Его основная задача — повысить давление внутри отопительной системы. То есть, увеличить прокачку теплоносителя по сети, что приведет к росту его объема. Чтобы было понятнее, приведем простой пример. Из подающего водопровода забирается 5-6 кубометров воды в качестве теплоносителя, а в систему, где расположены квартиры дома, попадает 12-13 кубометров.
Как такое возможно? И за счет чего происходит увеличение объема теплоносителя? Данный феномен основан на некоторых законах физики. Начнем с того, что если в системе отопления установлен элеватор, значит, эта система подключена к центральным сетям отопления, по которым горячая вода движется под давлением из большой котельной или ТЭЦ.
Так вот температура воды внутри трубопровода, особенно в сильные холода, достигает +150 С. Но разве это может быть? Ведь температура кипения воды +100 С. Вот тут-то и вступает в силу один из законов физики. При такой температуре вода закипает, если она находится в открытой емкости, где отсутствует какое-либо давление. Но в трубопроводе вода движется под давлением, которое создается работой подающих насосов. Поэтому она и не закипает.
Идем дальше. Температура +150 С считается очень высокой. Подавать такую горячую воду в систему отопления квартир нельзя, потому что:
- Во-первых, чугун не любит больших перепадов температур. И если в квартирах установлены чугунные радиаторы, они могут выйти из строя. Хорошо, если они просто дадут течь. Но их может разорвать, поскольку под действием высоких температур чугун становится хрупким, как стекло.
- Во-вторых, при такой температуре металлических элементов отопления не составит большого труда получить ожог.
- В-третьих, для обвязки отопительных приборов сейчас часто используют пластиковые трубы. А максимально, что они смогут выдержать, это температура +90 С (к тому же при таких цифрах производители гарантируют 1 год эксплуатации). Значит, они просто расплавятся.
Поэтому теплоноситель необходимо остудить. Вот здесь и потребуется элеватор.
Для чего служит элеваторный узел
Схема присоединения элеваторного узла
Вот мы и подошли к вопросу о том, для чего нужны элеваторы в системе отопления?
Эти приборы предназначены для того, чтобы понизить температуру подводимой воды до необходимой. И уже охлажденная она подается в систему отопления квартир. То есть, в элеваторе происходит охлаждение теплоносителя. Каким образом?
Все достаточно просто. Это устройство состоит из камеры, где происходит смешение горячей перегретой воды и воды, поступающей из обратного контура отопительной системы. То есть, смешиваются теплоноситель из котельной с теплоносителем из обратки этого же дома. Так можно, не забирая много горячей воды, получить нужный объем теплоносителя необходимой температуры.
Теряем ли мы температуру? Да, теряем, и здесь нельзя отрицать очевидное. Но теплоноситель подается через сопло, которое намного меньше диаметра трубы, поставляющей в дом горячую воду. Скорость в этом сопле настолько большая за счет давления внутри трубопровода, что теплоноситель очень быстро распределяется по всем стоякам. Поэтому независимо от того, где расположена квартира, близко или далеко от распределительного узла, температура в отопительных приборах будет одинаковой. Равномерное распределение, таким образом, обеспечивается на все 100%.
А знаете, что иногда делают сантехники-всезнайки? Они убирают сопло и устанавливают металлические заслонки, тем самым стараясь регулировать вручную скорость подачи теплоносителя. Хорошо, если устанавливают. А в некоторых домах заслонки вообще отсутствуют, и тогда начинаются проблемы.
В квартирах, расположенных ближе к элеваторному узлу, будет климат Африки. Здесь даже в самые лютые морозы всегда открыты форточки. А в дальних квартирах, особенно угловых, люди ходят в валенках и включают электрические отопительные приборы или газовую плитку. Они ругают все на свете, не подозревая, что в этом виноваты компании, обслуживающие их дом. Вот вам результат незнания и простой некомпетентности.
Как же работает элеватор?
Принцип работы элеватора
Принцип работы элеватора
Элеваторный узел представляет собой достаточно объемную емкость, чем-то похожую на горшок. Но это не сам элеватор, хотя его так и называют. Это целый узел, в состав которого также входят:
- Грязеуловители — ведь вода из трубы поступает не совсем чистая.
- Сетчато-магнитные фильтры — узел должен обеспечить определенную чистоту теплоносителя, чтобы не забивались батареи и трубы.
Очистившись, горячая вода поступает через сопло в камеру смешения. Здесь она движется с большой скоростью, в результате чего подсасывается вода из обратного контура, который присоединен к камере смешения сбоку. Процесс подсасывания, или инжекции, происходит самопроизвольно. Теперь понятно, что изменяя диаметр сопла, можно регулировать и объем подаваемого теплоносителя, и его температуру на выходе из элеватора.
Как вы понимаете, для системы отопления элеватор — это насос и смеситель одновременно. И что важно — никакой электроэнергии.
Есть еще один момент, на который специалисты обращают внимание — это соотношение напора внутри подающего трубопровода и сопротивление элеватора. Этот показатель должен быть равен 7:1. Только такое соотношение обеспечивает эффективность работы всей системы.
Но это еще не все, что касается эффективности. Обратите внимание на тот факт, что давление внутри системы — а это подающий контур и обратный — должно быть одинаковым. Допустимо, если в обратке оно будет немного меньше. Но если разница существенна, например, в подающем трубопроводе 5,0 кгс/см2, а в обратке ниже 4,3 кгс/см2, это означает, что трубопроводная система и отопительные приборы забиты грязью.
Схема включения регулируемого элеватора водоструйного типа
Возможна и другая причина — при проведении капитального ремонта были изменены диаметры труб в меньшую сторону. То есть, подрядчик таким образом сэкономил.
Можно ли регулировать температуру теплоносителя? Можно, и для этого лучше использовать регулируемый элеватор водоструйного типа.
В конструкции такого прибора установлено сопло, диаметр которого можно изменять. Иногда диапазон регулировки, и это относится больше к зарубежным аналогам, достаточно большой, что не так уж и необходимо. Отечественные элеваторы имеют сдвиг диапазона меньше, но, как показала практика, этого достаточно на все случаи жизни.
Правда, регулируемые элеваторы редко устанавливают в жилых зданиях. Намного эффективнее их монтаж в общественных или производственных помещениях. С их помощью можно сэкономить расходы на отопление до 25% только за счет того, что они позволяют снижать температуру в ночное время, а также в выходные и праздничные дни.
Элеваторный узел отопления — что это такое и как работает
Элеваторный узел отопления
Сегодня невозможно представить свою жизнь без отопления. Еще в прошлом столетии самым популярным было печное.
В наше время его используют не многие. Самым главным недостатком печного отопления является холодный пол. Весь воздух поднимается вверх, и, таким образом, пол не обогревается.
Технический прогресс продвинулся далеко вперед. И теперь самым выгодным и популярным является система водяного отопления. Безусловно, для обеспечения комфорта в доме, тепло имеет огромное значение.
В не зависимости от того квартира это, или частный дом. Однако нужно помнить, что вид обогрева зависит именно от типа и категории жилища. В частных домах устанавливают индивидуальное отопление.
Но большинство жителей квартир все еще пользуются услугами централизованной отопительной системы, которая требует не меньшего внимания.
Элеваторный узел является одним из главных составляющих системы. Однако не многие знают о том, какие функции он выполняет. Давайте рассмотрим его функциональное предназначение.
Что это такое и для чего используется
Рабочее устройство в подвале
Самый простой способ узнать о том, что же такое элеваторный узел — побывать в подвале обычного многоэтажного дома.
Среди множества деталей отопительной системы будет несложно отыскать этот важный компонент.
Рассмотрим простую схему. Каким образом в дом поступает тепло? Существует два трубопровода: подающий и обратный. По первому осуществляется подводка горячей воды к дому. С помощью второго в котельную попадает уже холодная вода из системы.
Тепловая камера осуществляет подачу горячей воды в подвальное помещение дома. Обратите внимание на то, что на входе необходимо установить запорную арматуру.
Это может быть простая задвижка, или же шаровые стальные краны. Температура теплоносителя определяет то, как он будет работать дальше. Различают три основных уровня тепла:
Если температура теплоносителя не выше 95° С, то остается только распределить тепло по всей отопительной системе. Здесь пригодиться коллектор с балансировочными кранами.
Однако все становится не так просто, если температура теплоносителя выходит за пределы норма 95° С. Такую воду нельзя запускать в отопительную конструкцию, поэтому нагрев нужно делать меньшим. Именно в этом и заключается важная функция элеваторного узла.
Принцип и схема работы
Схема и принцип работы
Элеватор способствует охлаждению перегретой воды до температуры, соответствующей норме.
Затем теплоноситель подает ее в отопительную систему жилых помещений. В тот момент, когда горячая вода в элеваторе из подающего теплопровода смешивается с охлажденной из обратного трубопровода, и происходит охлаждение.
Схема размещения элеватора позволяет более детально ознакомиться с его функциональными возможностями. Не сложно понять, что именно эта деталь отопительной системы обеспечивает эффективность ее работы.
Он работает одновременно как 2 устройства:
- Циркуляционный насос
- Смеситель
Конструкция элеватора довольно простая, но эффективная. Отличается приемлемой ценой. Для ее работы не нужно подключать электрический ток. Однако имеются и некоторые недостатки, на которые необходимо обращать внимание:
- Давление в трубопроводах прямой и обратной передачи необходимо поддерживать в пределах 0,8-2 Бар;
- Выходная температура не поддается регулировке;
- Каждый элемент элеватора нужно точно рассчитывать.
Можно с уверенностью сказать, что устройства получили широкое применение в коммунальной отопительной системе.
Принципиальная схема элеватора
На эффективность их работы не влияют колебания теплового и гидравлического режима в тепловых сетях. Кроме того, устройства не требуют постоянного наблюдения. Выбрав правильный диаметр сопла, осуществляется вся регулировка.
Основные элементы элеватора
Основные элементы узла
Основными составляющими устройства являются:
- Струйный элеватор
- Сопло
- Камера разрежения
Элеваторный узел отопления состоит из запорной арматуры, контрольных термометров, манометров. Его еще называют «обвязкой элеватора».
Новые технические идеи и изобретения стремительно внедряются в нашу жизнь. Теплофикация не является исключением.
На смену привычным элеваторным узлам приходят устройства, которые осуществляют регулировку теплоносителя в автоматическом режиме.
Их стоимость значительно выше, но, в то же время, эти устройства более экономны и энергомичны. Кроме того, для их работы обязательно требуется электропитание. Иногда необходима его большая мощность. Надежность с одной стороны и технический прогресс — с другой.
Что в итоге окажется важнее, узнаем со временем.
Что такое элеватор отопления и как он работает?
Элеватором отопления называют струйный насос, используемый в отопительных системах многоквартирных домов с централизованной подачей тепла.
Применение элеватора отопления позволяет решить одновременно несколько задач:
- оптимизировать процесс потребления тепловой энергии, поступающей от котельной
- обеспечить безопасный режим работы системы отопления, снизив температуру теплоносителя в подающем трубопроводе до безопасного уровня (95С и ниже)
- равномерно распределить тепло по всему многоквартирному дому
Решение перечисленных задач требуется только в случаях централизованной подачи тепла в жилые дома и строения. В частных домах и небольших отопительных системах, в которых температура нагрева воды позволяет подавать теплоноситель напрямую в радиаторы, струйные насосы не используются.
Основные особенности систем центрального отопления
Тепло от котельной потребителям передается с помощью нагретого теплоносителя, движущегося по трубопроводу от котлов к тепловым пунктам жилых домов. Как правило, домов много, а котельная одна, к тому же в большинстве случаев, расположенная на расстоянии нескольких километров или сотен метров от потребителя.
При одном и том же объеме теплоносителя, количество тепла, поступающее в дома, прямо пропорционально температуре его нагрева: чем она выше, тем больше тепла передано потребителям. При минусовой температуре воздуха теплоноситель может быть нагрет до 130-150 градусов Цельсия.
Для предотвращения процесса парообразования теплоноситель в системе отопления находится под давлением.
Чем больше число потребителей, тем больший объем теплоносителя необходимо нагревать и перекачивать. При этом энергетики должны не просто подать тепло в дома, но и обеспечить его безопасное потребление, что возможно только при температуре воды в радиаторах 60-70С. При более сильном нагреве приборов отопления контакт с их поверхностью может вызвать ожог.
Возникает ситуация, при которой со стороны котельной в дома под высоким давлением подается теплоноситель с температурой 130-150 С, а в квартиры поступает вода с температурой не выше предельно допустимого значения (для жилых домов 70-80С, для детских учреждений и больниц не выше 55-60С). Именно для решения этой задачи в подавляющем большинстве случаев в нашей стране используют элеватор отопления (он же струйный насос)
Как работает элеватор отопления?
Элеватор отопления состоит из корпуса сопла, сопла и смесительного тройника. Принцип действия элеватора отопления предельно прост: теплоноситель, движущийся от котельной под высоким давлением, подается в сопло, выходной диаметр которого меньше входного диаметра трубы. Сужение диаметра приводит к увеличению скорости движения жидкости и возрастанию ее кинетической энергии.
Затем жидкость с высокой скоростью поступает в смесительную камеру, размер которой намного больше выходного диаметра сопла, что приводит к резкому падению давления до уровня ниже атмосферного давления. Создается разрежение, за счет которого происходит подсос жидкости из обратного трубопровода, подведенного к камере смешения.
В результате нагретый теплоноситель «захватывает» часть обратной воды, движущейся к котлу, и увлекает ее в следующую камеру, где обе жидкости смешиваются, обмениваясь энергией, а затем поступают в подающий трубопровод отопительной системы дома, продолжая свое движение к отопительным приборам.
За счет смешения холодной обратной воды и горячего теплоносителя из подающего трубопровода удается получить нужную температуру теплоносителя и обеспечить его циркуляцию без использования дополнительных циркуляционных насосов .
При этом в систему отопления дома поступает весь теплоноситель от котельной и часть обратной уже остывшей воды, а ее оставшаяся часть, не «захваченная» элеватором, продолжает движение по обратному трубопроводу и движется к котельной, откуда, после нагрева, вновь повторяет движение к потребителю.
В результате удается уменьшить количество циркулирующей воды в теплотрассе между котельной и потребителями, что позволяет повысить эффективность всей отопительной системы в целом.
Преимущества и недостатки элеватора отопления
Конструкция элеватора отопления проста, а его стоимость невелика. Для его работы не нужно подключение к электрической сети – элеватор отопления энергонезависимое устройство. Оценивают эффективность работы элеватора по коэффициенту подсоса или безразмерному расходу среды. Как правило, КПД элеватора невелик и составляет в среднем 30%. но, несмотря на это отказываться от их применения преждевременно.
Недостатком струйного насоса в системе отопления считают отсутствие возможности управления температурой теплоносителя, но для решения этой проблемы можно использовать элеваторы с регулируемым диаметром сопла, что позволяет управлять скоростью движения потока, менять уровень разрежения в камере смешения и, следовательно, контролировать температуру воды.
Для изменения диаметра сопла в конструкцию элеватора включают электрический привод, а также датчик температуры и устройство автоматического контроля.
Элеваторный узел
Элеваторы отопления устанавливаются в составе элеваторного узла, включающего дополнительное оборудование:
- запорную арматуру
- манометры
- термометры
- фильтры (уловители грязи)
Схемы обвязки элеваторов являются частью проекта системы отопления и выполняются в соответствии с ним. Никакие самостоятельные действия посторонних лиц при этом недопустимы.
К сожалению, внешний вид элеватора, представляющий собой сужение трубопровода, часто вызывает недоумение не только у случайных граждан, но и у неграмотных сотрудников ЖЭУ.
Нередки случаи попыток «все исправить» и демонтировать элеватор или изменить его конструкцию (например, рассверлив сопло).
Результатом подобных действий бывает нарушение работы отопительной системы, при котором отопительные приборы, расположенные вначале системы перегреты, а последние радиаторы едва теплые.
Источники: http://gidotopleniya.ru/kotly-i-kotelnoe-oborudovanie/elevator-otopleniya-dlya-chego-nuzhny-1761, http://otoplenievdoma.ru/ehlevatornyjj-uzel-otopleniya-chto-ehto-takoe-i-kak-rabotaet.html, http://aquagroup.ru/articles/chto-takoe-elevator-otopleniya-i-kak-rabotaet.html
Элеваторный узел отопления, чертеж, узлы ипринципиальная схема работы
Отопительная система является одной из важнейших систем жизнеобеспечения дома. В каждом доме применяется определенная система отопления, но не каждый пользователь знает, что такое элеваторный узел отопления и как он работает, его назначение и те возможности, которые предоставляются с его применением.
Элеватор отопления с электроприводом
Принцип функционирования
Наилучшим примером, который покажет элеватор отопления принцип работы, будет многоэтажный дом. Именно в подвале многоэтажного дома среди всех элементов можно отыскать элеватор.
Первым делом, рассмотрим, какой в данном случае имеет элеваторный узел отопления чертеж. Здесь два трубопровода: подающий (именно по нему горячая вода идет к дому) и обратный (остывшая вода возвращается в котельную).
Схема элеваторного узла отопления
Из тепловой камеры вода попадает в подвал дома, на входе обязательно стоит запорная арматура. Обычно это задвижки, но иногда в тех системах, которые более продуманы, ставят шаровые краны из стали.
Как показывают стандарты, есть несколько тепловых режимов в котельных:
- 150/70 градусов;
- 130/70 градусов;
- 95(90)/70 градусов.
Когда вода нагреет до температуры не выше 95-ти градусов, тепло будет распределено по отопительной системе при помощи коллектора. А вот при температуре выше нормы – выше 95 градусов, все становится намного сложнее. Воду такой температуры нельзя подавать, поэтому она должна быть уменьшена. Именно в этом и состоит функция элеваторного узла отопления. Заметим также и то, что охлаждение воды таким образом – это самый простой и дешевый способ.
Рекомендуем к прочтению:
Назначение и характеристики
Элеватор отопления охлаждает перегретую воду до расчетной температуры, после этого подготовленная вода попадает в отопительные приборы, которые размещены в жилых помещениях. Охлаждение воды случается в тот момент, когда в элеваторе смешивается горячая вода из подающего трубопровода с остывшей из обратного.
Принципиальная схема элеваторного узла
Схема элеватора отопления наглядно показывает, что данный узел способствует увеличению эффективности работы всей отопительной системы здания. На него возложено сразу две функции – смесителя и циркуляционного насоса. Стоит такой узел недорого, ему не требуется электроэнергия. Но элеватор имеет и несколько недостатков:
- Перепад давления между трубопроводами прямого и обратного подавания должен быть на уровне 0,8-2 Бар.
- Нельзя регулировать выходной температурный режим.
- Должен быть точный расчет для каждого компонента элеватора.
Элеваторы широко применимы в коммунальном тепловом хозяйстве, так как они стабильны в работе тогда, когда в тепловых сетях изменяется тепловой и гидравлический режим. За элеватором отопления не требуется постоянно следить, все регулирование заключается в выборе правильного диаметра сопла.
Элеваторный узел в котельной многоквартирного дома
Элеватор отопления состоит из трех элементов – струйного элеватора, сопла и камеры разрежения. Также есть и такое понятие, как обвязка элеватора. Здесь должна применяться необходимая запорная арматура, контрольные термометры и манометры.
На сегодняшний день можно встретить элеваторные узлы системы отопления, которые могут с электрическим приводом отрегулировать диаметр сопла. Так, появится возможность автоматически регулировать температуру носителя тепла.
Подбор элеватора отопления такого типа обусловлен тем, что здесь коэффициент смешения меняется от 2 до 5, в сравнении с обычными элеваторами без регулирования сопла, этот показатель остается неизменным. Так, в процессе применения элеваторов с регулируемым соплом можно немного снизить расходы на отопление.
Строение элеватора
Конструкция данного вида элеваторов имеет в своем составе регулирующий исполнительный механизм, обеспечивающий стабильность работы системы отопления при небольших расходах сетевой воды. В конусообразном сопле системы элеватора размещается регулирующая дроссельная игла и направляющее устройство, которое закручивает струю воды и играет роль кожуха дроссельной иглы.
Рекомендуем к прочтению:
Этот механизм имеет вращающийся от электропривода или вручную зубчатый валик. Он предназначен для перемещения дроссельной иглы в продольном направлении сопла, изменяет его эффективное сечение, после чего расход воды регулируется. Так, можно повысить расход сетевой воды от расчетного показателя на 10-20%, или уменьшить его практически до полного закрытия сопла. Уменьшение сечения сопла может привести к увеличению скорости потока сетевой воды и коэффициента смешения. Так температура воды снижается.
Исполнительный механизм узла элеватора отопления
Неисправности элеваторов отопления
Схема элеваторного узла отопления неисправности может иметь такие, которые вызваны поломкой самого элеватора (засорение, увеличение диаметра сопла), засорением грязевиков, поломкой арматуры, нарушениями настройки регуляторов.
Небольшой элеваторный узел отопления
Поломка такого элемента, как устройство элеватора отопления, может быть замечена по тому, как появляются перепады температуры до и после элеватора. Если разница большая – то элеватор неисправен, если разница незначительная – то он может быть засорен или диаметр сопла увеличен. В любом случае, диагностика поломки и ее ликвидация должны быть произведены только специалистом!
Если сопло элеватора засоряется, то он снимается и прочищается. Если расчетный диаметр сопла увеличивается вследствие коррозии или своевольного сверления, то схема элеваторного узла отопления и отопительная система в целом – придет в состояние разбалансированности.
Приборы, которые установлены на нижних этажах, перегреются, а на верхних – недополучат тепло. Такая неисправность, которую претерпевает работа элеватора отопления, ликвидируется заменой на новое сопло с расчетным диаметром.
Обслуживание элеваторного узла отопления
Засорение грязевика в таком устройстве, как элеватор в системе отопления, можно определить по тому, как увеличился перепад давления, контролируемого манометрами до и после грязевика. Такое засорение удаляется при помощи сброса грязи через краны спуска грязевика, которые размещены в его нижней части. Если так засор не удаляется, то грязевик разбирается и очищается изнутри.
Элеваторный узел системы отопления: особенности, предназначение, схема пункта
Содержание статьи:
Система центрального отопления жилых помещений предусматривает одну общую котельную, из которой нагретый теплоноситель распределяется по трубам в дома к потребителям. Роль регулятора температуры теплоносителя выполняет элеваторный узел системы отопления.
Устройство и принцип работы
Элеваторный узел похож на чугунный несимметричный тройник
Элеватор теплового узла – цельная отливка из чугуна – представляет собой механическое приспособление, внешне похожее на несимметричный тройник. Единственная изменяемая часть – диаметр сопла, влияющий на степень разряжения и определяющий режим подсоса охлажденной воды из обратки. Величина разряжения не должна превышать 2 бар, для чего диаметр сопла, как единственный регулятор, высчитывается с высокой степенью точности.
В зависимости от решаемых задач элеватор теплового узла изготавливается в нескольких стандартных размерах, которым присвоены номера от 0 до 7.
- Длина самого маленького элеватора №0 – 256 мм при весе 6,43 кг.
- Длина самого большого элеватора №7 равняется 720 мм, вес – 34 кг.
Выбирают элеватор, ориентируясь на диаметр теплотрубопровода, чтобы не понижать пропускную способность системы.
Манометры контролируют температуру воды и превращение ее в пар
По техусловиям, магистральные теплосети могут работать в трех режимах:
- 150/70 °С;
- 130/70 °С;
- 95/70 °С.
Первая цифра указывает температуру воды в прямом трубопроводе, а вторая – охлажденной жидкости в обратной трубе.
Конечный потребитель может располагаться на значительном расстоянии от котельной – высокие температурные показатели в прямом трубопроводе устанавливаются для компенсации теплопотерь при передаче на расстояние и рассеивании в холодных климатических условиях. При этом бытовое обогревательное оборудование (батареи, трубы) по своим техническим характеристикам и санитарным нормам не может эксплуатироваться при температурах выше 95°С.
Причин для ограничений несколько:
- при более высоких температурах чугунные батареи становятся хрупкими, а алюминиевые не способны поддерживать давление системы и выходят из строя;
- современные металлопластиковые и полипропиленовые трубы не могут работать при температурах свыше 95°С – они начинают деформироваться, возможно образование трещин;
- перегретые отопительные приборы могут вызвать при контакте ожоги.
Внутреннее давление в магистрали теплотрассы не позволяет перегретой воде превратиться в пар. При передаче за счет потерь температура носителя снижается, но незначительно, вопрос получения теплоносителя рабочей температуры не решает. Для решения задачи применяют элеватор отопления, в котором перегретый теплоноситель из котельной разбавляется охлажденной жидкостью из обратного трубопровода.
Узел тепловой элеваторный
Оборудование, окружающее элеватор, формирует систему смешивания и носит название “узел тепловой элеваторный”.
Принцип работы устройства:
- Перегретый теплоноситель подается на вход элеваторного узла, проходя через сопло, он теряет давление.
- Понижение давления вызывает подсос охлажденной воды из обратки в зону разряжения.
- В смешивающей камере (длинная часть) потоки перемешиваются до заданных параметров.
- Через диффузор (расширяющаяся часть) теплоноситель рабочей температуры поступает в систему отопления.
В общей схеме элеваторный узел располагается на входящей трубе магистрали. Перед ним устанавливают грязевик, выполняющий функцию ловушки для грязи и мелкого мусора, содержащихся в потоке теплоносителя.
Задача окружающего оборудования – задвижек, датчиков давления и температуры – обеспечивать безопасную работу устройства и осуществлять принципы контроля.
Конструктивные особенности
Изменять температуру подачи можно подвижной иглой, которая находится в сопле
Кроме цельнолитого чугунного варианта существуют другие конструкции, позволяющие мобильно изменять диаметр сопла. Такие модели решают вопросы быстрой регулировки температуры теплоносителя, но они конструктивно сложны и имеют высокую цену.
Для примера:
- Элеваторный узел с конусообразной подвижной иглой. При ее перемещении регулируется величина просвета сопла и степень разбавления теплопотока охлажденной водой обратки. Положение иглы может регулироваться вручную или автоматически.
- Устройство с сервоприводом, мобильно изменяющее просвет сопла по сигналу с термодатчиков.
Устройства, работающие в автоматическом режиме, повышают мобильность системы и ее возможности в части точной настройки. Но из-за конструктивной сложности и высокой стоимости они не нашли пока широкого применения.
Возможные неисправности
Работа узла может нарушаться из-за засорения грязевика или поломки датчиков, манометров
Сам элеватор – устройство надежное, работающее в стабильном режиме. Единственной его неисправностью может быть повреждение сопла, так как перегретая вода является достаточно агрессивным агентом.
Неисправности могут быть в окружающем оборудовании:
- засорение грязевика;
- поломка задвижки;
- некорректная работа датчиков.
Нарушения в работе элеватора и оборудования узла проявляются как колебания температуры теплоносителя и решаются ревизией устройства, заменой сопла, прочисткой грязевика или ремонтом задвижек.
Для предупреждения сбоев в работе проводят регулярное (раз в год) техобслуживание элеваторного узла – очищают и удаляют грязь, образующуюся из-за низкого качества теплоносителя, проверяют диаметр сопла, следят за герметичностью всех соединений.
Преимущества и недостатки
Чугунная деталь слабо реагирует на горячую воду, не склонна к коррозии
Элеваторный узел как регулятор теплопотока в системе отопления используется продолжительное время, за которое были выявлены сильные стороны системы и ее недостатки.
К достоинствам такой регулировки температуры относят:
- простота конструкции и надежность;
- бесшумно функционирует;
- не требует электропитания для работы;
- слабый отклик на агрессивную среду перегретой воды;
- способность поддерживать постоянные характеристики теплоносителя на выходе;
- совмещает функции насоса и смесителя.
Слабые стороны выражены в нескольких пунктах:
- необходим перепад давления прямой и обратной линии в 2 бар;
- работает только в одном режиме;
- при нарушениях на магистрали теплопровода система не работает, что может привести к перемерзанию;
- для каждого здания требуется отдельный узел.
Недостатки элеваторного узла отопления незначительны и полностью перекрываются достоинствами, что объясняет его широкое применение.
Схемы подключения
Теплоузел используется в системах с различными параметрами, где для устойчивой работы применяются специальные схемы подключения элеваторного узла, требующие использования дополнительного оборудования.
Схема теплоузла с регулятором расхода воды
Регулятор расхода воды требует ручной коррекции для поддержания нужной температуры
Основной фактор, позволяющий регулирование температуры теплопотока системы отопления, – расход воды. Измерение этого показателя вызывает колебания теплоносителя в приборах и делает работу системы отопления нестабильной.
Для устранения таких явлений в системе перед элеваторным узлом монтируется регулятор, обеспечивающий постоянство расхода теплоносителя.
Такая схема крайне важна в домах с горячим водоснабжением, где существуют периоды активного водозабора из системы (утро, вечер, выходные и т.д.).
Недостаток – при снижении температуры водящего теплопотока схема не эффективна.
Схема теплового узла отопления с регулирующим элеватор соплом
Возможность мобильно регулировать пропускную способность сопла позволяет поддерживать постоянными показатели теплоносителя на выходе при изменениях температуры в магистральном трубопроводе.
Регулировка соплом эффективна только при полной автоматизации процесса с привлечением дополнительного оборудования:
- термодатчик;
- манометр;
- сервопривод и др.
Подобные схемы не находят широкого применения из-за требований к высокому давлению в системе, в разы увеличивающейся нагрузке на сопло и высокой стоимости.
Схема элеваторного узла с регулирующим насосом
Схема с регулирующим циркуляционным насосом
Такая схема подключения используется в автономных системах отопления частных домов. Она позволяет механизму узла нормально функционировать при недостаточном давлении в теплосети (меньше 2 бар между входом и обраткой).
Монтируется перемычка между прямым теплопроводом и обраткой, на которую устанавливается насос, обязательно использование терморегулятора.
Использование схем подключения с дополнительными возможностями не всегда оправдано – они усложняют систему, требуют подводки электричества. Надежность системы и ее сложность находятся в обратной зависимости друг от друга. Следует учесть также значительное увеличение стоимости теплоузла и расходы на электроэнергию.
Меры безопасности и эксплуатация
Несколько общих правил для обеспечения безопасной работы оборудования теплового пункта:
- персонал должен иметь соответствующую квалификацию;
- работники должны быть ознакомлены с правилами эксплуатации оборудования.
Элеваторный узел системы отопления не требует особого внимания – достаточно текущих осмотров. После проведенной плановой проверки систему целесообразно опечатать, чтобы зафиксировать настройки и избежать несанкционированного вмешательства.
принципиальная схема системы теплоузла, элеватор теплового узла, устройство
Содержание:
Обеспечить в квартирах многоэтажных домов оптимальную температуру в зимнее время можно только путем подачи в радиаторы горячего теплоносителя. Нагрев воды до рабочих показателей осуществляется с помощью специального теплового узла – элеватора, установленного в подвальном помещении дома или в котельной. О том, что это за приспособление и как оно функционирует, расскажем далее в статье.
Как работает элеваторный узел
Прежде чем разбираться с устройством элеваторного узла, отметим, что данный механизм предназначен для соединения конечных потребителей тепла с тепловыми сетями. По конструкции тепловой элеваторный узел представляет собой своего рода насос, который входит в систему отопления наряду с запорными элементами и измерителями давления.
Элеваторный узел отопления выполняет несколько функций. В первую очередь, он перераспределяет давление внутри системы отопления, чтобы вода конечным потребителям в радиаторы поставлялась с заданной температурой. При прохождении по трубопроводам от котельной до квартир, количество теплоносителя в контуре возрастает практически вдвое. Это возможно только, если есть запас воды в отдельном герметичном сосуде.
Как правило, из котельной подается теплоноситель, температура которого достигает 105-150 ℃. Такие высокие показатели недопустимы для бытовых целей с точки зрения безопасности. Максимальная температура воды в контуре согласно нормативным документам не может превышать 95 ℃.
Примечательно, что в СанПин в настоящее время установлен норматив температуры теплоносителя в пределах 60 ℃. Однако с целью экономии ресурсов активно обсуждают предложение снизить этот норматив до 50 ℃. Согласно экспертному заключению разница не будет ощутима для потребителя, а в целях дезинфекции теплоносителя ее каждые сутки нужно будет прогревать до 70 ℃. Тем не менее, данные изменения в СанПин еще не приняты, поскольку нет однозначного мнения насчет рациональности и эффективности такого решения.
Схема элеваторного узла отопления позволяет привести температуру теплоносителя в системе до нормативных показателей.
Этот узел позволяет избежать следующих последствий:
- слишком горячие батареи при неосторожном обращении могут привести к ожогам кожных покровов;
- не все отопительные трубы рассчитаны на длительное воздействие высокой температуры под давлением – такие экстремальные условия могут привести к преждевременному их выходу из строя;
- если разводка выполнена из металлопластиковых или полипропиленовых труб, она не рассчитана на циркуляцию горячего теплоносителя.
Преимущества элеватора
Некоторые пользователи утверждают, что схема элеватора является нерациональный, и намного проще было бы подавать потребителям теплоноситель меньшей температуры. В действительности же такой подход предусматривает увеличение диаметра магистральных трубопроводов для подачи более холодной воды, что приводит к дополнительным расходам.
Выходит, что качественная схема теплового отопительного узла дает возможность смешивать с подающим объемом воды долю воды из обратки, которая уже успела остыть. Несмотря на то, что отдельные источники элеваторных узлов отопительных систем относятся к старым гидравлическим агрегатам, по факту они являются эффективными в работе. Имеются и более новые агрегаты, пришедшие на замену схем элеваторного узла. Такая схема теплоснабжения многоквартирного дома более эффективна и экономична.
К ним относятся следующие типы оборудования:
- теплообменник пластинчатого типа;
- смеситель, оснащенный трехходовым клапаном.
Как работает элеватор
Изучая схему элеваторного узла системы отопления, а именно то, что он собой представляет и как функционирует, нельзя не отметить схожесть готовой конструкции с водяными насосами. При этом для работы не требуется получение энергии из иных систем, а надежность можно будет наблюдать в конкретных ситуациях.
Основная часть приспособления с внешней стороны похожа на гидравлический тройник, установленный на обратке. Через простой тройник теплоноситель спокойно попадал бы в обратку, минуя радиаторы. Такая схема теплоузла была бы нецелесообразной.
В обычной схеме элеваторного узла отопительной системы имеются такие детали:
- Предварительная камера и подающая труба с установленным на конце соплом определенного сечения. Через нее подается теплоноситель из обратной ветки.
- На выходе встроен диффузор. Он предназначен для передачи воды к потребителям.
На данный момент можно встретить узлы, где сечение сопла корректируется электроприводом. Благодаря этому можно автоматически подстраивать приемлемую температуру теплоносителя.
Подбор схемы узла отопления с электроприводом делается исходя из того, чтобы можно было изменять коэффициент смешения теплоносителя в пределах 2-5 единиц. Этого нельзя будет добиться в элеваторах, в которых сечении сопла нельзя изменять. Получается, что системы с регулируемым соплом дают возможность в значительной степени сократить средства на отопление, что очень актуально в домах с центральными счетчиками.
Принцип работы схемы теплового узла
Рассмотрим принципиальную схему элеваторного узла – то есть схему его работы:
- горячий теплоноситель подается из котельной по магистральному трубопроводу к входу в сопло;
- перемещаясь по трубам небольшого сечения, вода постепенно набирает скорость;
- при этом образуется несколько разряженная область;
- образовавшийся вакуум начинает подсос воды из обратки;
- однородные турбулентные потоки сквозь диффузор поступают к выходу.
Если в системе отопления применяется схема теплового узла многоквартирного дома, то ее эффективную работу можно обеспечить только при условии, что рабочее давление между подающим и обратным потоками будет больше расчетного гидросопротивления.
Немного о недостатках
Несмотря на то, что тепловой узел имеет много преимуществ, есть у него и один существенный недостаток. Дело в том, то элеватором невозможно регулировать температуру выходящего теплоносителя. Если измерение температуры воды в обратном трубопроводе показывает, что она слишком горячая, необходимо будет ее понизить. Осуществить такую задачу можно только путем уменьшения диаметра сопла, однако, это не всегда возможно ввиду конструкционных особенностей.
Иногда тепловой узел оборудуют электроприводом, с помощью которого удается подкорректировать диаметр сопла. Он приводит в движение основную деталь конструкции – дроссельную иголку в виде конуса. Эта игла перемещается на заданное расстояние в отверстие по внутреннему сечению сопла. Глубина перемещения позволяет изменять диаметр сопла и тем самым контролировать температуру теплоносителя.
На валу может быть установлен как привод ручного типа в виде рукоятки, так и электрический дистанционно управляемый двигатель.
Стоит отметить, что установка такого своеобразного регулятора температуры позволяет модернизировать общую систему отопления с тепловым узлом без существенных финансовых вливаний.
Вероятные неполадки
Как правило, большинство неполадок в элеваторном узле возникает по следующим причинам:
- образование засора в оборудовании;
- изменения в диаметре сопла в результате эксплуатации оборудования – увеличение сечения усложняет регулировку температуры;
- засоры в грязевиках;
- выход из строя запорной арматуры;
- поломки регуляторов.
В большинстве случаев выяснить причину неполадок достаточно просто, поскольку они сразу отражаются на температуре воды в контуре. Если перепады и отклонения температуры от нормативов незначительны, что, вероятно, имеет место зазор или же сечение сопла несколько увеличилось.
Перепад в температурных показателях более 5 ℃ свидетельствует о наличии проблемы, решить которые могут только специалисты после проведения диагностики.
Если в результате окисления от постоянного контакта с водой или непроизвольного сверления возрастает сечение сопла, нарушается балансировка всей системы. Такой изъян нужно как можно быстрее исправить.
Стоит отметить, что в целях экономии финансов и использования отопления более эффективно, на тепловых узлах могут устанавливать электросчетчики. А приборы учета горячей воды и тепла дают возможность дополнительно снизить расходы на коммунальные платежи.
видео-инструкция по выбору своими руками, особенности расчета, подбора, схема элеваторного узла, цена, фото
В этой статье нам предстоит выяснить, что такое элеватор в системе отопления и как он устроен. Помимо функций, мы изучим режимы работы элеваторного узла и способы его регулировки. Итак, в путь.
Элеватор в процессе монтажа.
Что это такое
Функции
Говоря простыми словами, элеваторные узлы отопления – это своеобразные буферы между теплотрассой и домовыми инженерными системами.
Они совмещают несколько функций:
- Преобразуют перепад давлений между нитками трассы (3-4 атмосферы) в необходимые для работы отопительного контура 0,2.
- Служат для запуска или остановки систем отопления и горячего водоснабжения.
- Позволяют переключаться между разными режимами работы системы ГВС.
Уточним: температура воды в кранах не должна превышать 90-95 градусов.
Летом, когда температура воды в подаче трассы не превышает 50-55 С, ГВС запитывается именно с этой нитки.
В пик холодов горячее водоснабжение приходится переключать на обратный трубопровод.
Элементы
Простейшая схема элеваторного узла отопления включает:
- Пару входных задвижек на подающей и обратной нитках. Подача всегда расположена выше обратки.
- Пару домовых задвижек, отсекающих элеваторный узел от системы отопления.
- Грязевики на подаче и, реже, на обратке.
На фото – грязевик, предотвращающий попадание песка и окалины в отопительный контур.
- Сбросники в контуре отопления, позволяющие полностью осушить его или перепустить систему на сброс, выгнав из нее при запуске существенную часть воздуха. Сбросы считается хорошим тоном выводить в канализацию.
- Контрольные вентиля, позволяющие замерить температуры и давления подачи, обратки и смеси.
- Наконец, собственно водоструйный элеватор – снабженный фланцами тройник для труб с соплом внутри.
Простейший элеваторный узел.
Как работает элеваторная система отопления? В основе принципа ее работы лежит закон Бернулли, утверждающий, что статическое давление в потоке обратно пропорционально его скорости.
Более горячая и находящаяся под более высоким давлением вода из подающего трубопровода впрыскивается через сопло в раструб элеватора и создает там, как ни парадоксально это звучит, зону разрежения, вовлекающую через подсос часть воды из обратного трубопровода в повторный цикл циркуляции.
Тем самым обеспечиваются:
- Большой расход теплоносителя через контур при минимальном его расходе из трассы.
- Выравнивание температур ближних к элеватору и дальних от него отопительных приборов.
Схема циркуляции воды.
Как распределяются давления, измеренные во время отопительного сезона? Приведем типичные параметры.
Точка измерения | Давление, кгс/см2 |
Подача после входной задвижки | 6,0 |
Обратка | 3,2 |
Смесь после элеватора | 3,4 |
Давление смеси лишь чуть выше, чем давление в обратном трубопроводе трассы.
Температуры в трассе и после элеватора подчиняются так называемому температурному графику, определяющим фактором в котором является уличная температура. Максимальное значение для подающей нитки трассы – 150 градусов: при дальнейшем нагреве вода закипит, несмотря на избыточное давление. Максимальная температура смеси – 95 С для двухтрубных и 105 для однотрубных систем.
Помимо перечисленных элементов, элеватор системы отопления может включать врезки горячего водоснабжения.
Возможны две их основных конфигурации.
- В домах, построенных до конца 70-х годов, ГВС запитано через одну врезку в подачу и одну – в обратку.
- В более новых домах присутствует по две врезки на каждой нитке. На фланце для соединения труб между врезками ставится подпорная шайба с диаметром на 1-2 мм больше, чем диаметр сопла. Она обеспечивает перепад, достаточный для того, чтобы при включении ГВС по схемам “из подачи в подачу” и “из обратки в обратку” через спаренные стояки и полотенцесушители непрерывно циркулировала вода.
Зоны ответственности
Что такое элеваторный узел отопления – мы худо-бедно разобрались.
А кто за него отвечает?
- Участок трассы внутри дома до фланцев входных задвижек – зона ответственности транспортирующей тепло организации (тепловых сетей).
- Все, что после входных задвижек, и сами задвижки – зона ответственности жилищной организации.
Однако: подбор элеватора отопления по номеру (типоразмеру), расчет диаметра сопла и подпорных шайб выполняются теплосетями.
Жилищники лишь обеспечивают монтаж и демонтаж.
Демонтированные сопла.
Контроль
Контролирующая организация – опять-таки теплосети.
Что именно они контролируют?
- Несколько раз в течение зимы проводятся контрольные замеры температур и давлений подачи, обратки и смеси. При отклонениях от температурного графика расчет элеватора отопления проводится заново с расточкой или уменьшением диаметра сопла. Разумеется, этого не стоит делать в пик холодов: при -40 на улице подъездное отопление может прихватить льдом уже через час после остановки циркуляции.
- В рамках подготовки к отопительному сезону проверяется состояние запорной арматуры. Проверка предельно проста: все задвижки в узле перекрываются, после чего открывается любой контрольный вентиль. Если вода из него поступает – нужно искать неисправность; кроме того, в любом положении задвижек у них не должно быть течей по сальникам.
- Наконец, в конце отопительного сезона элеваторы в системе отопления наряду с самой системой проходят испытания на температуру. Теплоноситель при отключенной подаче ГВС разогревается до максимальных значений.
Управление
Приведем порядок выполнения некоторых операций, связанных с работой элеватора.
Запуск отопления
Если система заполнена, достаточно лишь открыть домовые задвижки – и циркуляция начнется.
Несколько сложнее инструкция по запуску сброшенной системы.
- Открывается сброс на обратном трубопроводе и закрывается сброс на подаче.
- Медленно (во избежание гидроудара) открывается верхняя домовая задвижка.
- После того, как в сброс пойдет чистая, без воздуха, вода, он закрывается, после чего открывается нижняя домовая задвижка.
Полезно: если на стояках стоят современные шаровые вентиля, направление работы контура на сброс не имеет значения.
А вот у винтовых быстрым противотоком может оторвать клапана, после чего слесарю предстоит долгий и мучительный поиск причин остановки циркуляции в стояках.
Шаровые вентиля на стояках отопления.
Работа без сопла
При катастрофически низкой температуре обратки в пик холодов практикуется работа элеватора без сопла. В систему поступает теплоноситель из трассы, а не смесь. Подсос глушится стальным блином.
Элеватор со снятым соплом и заглушенным подсосом.
Регулировка перепада
При завышенной обратке и невозможности оперативной замены сопла практикуется регулировка перепада задвижкой.
Как выполнить ее своими руками?
- Замеряется давление подачи, после чего манометр ставится на обратку.
- Входная задвижка на обратке полностью закрывается и постепенно открывается с контролем давления по манометру. Если просто прикрыть задвижку – ее щечки могут не полностью опуститься по штоку и соскользнуть вниз позже. Цена неправильного порядка действий – гарантированно размороженное подъездное отопление.
Щечки подвижно закреплены на штоке и могут сместиться под собственной тяжестью.
За один раз следует убирать не более 0,2 атмосфер перепада. Повторный замер температуры обратки проводится через сутки, когда все значения стабилизируются.
Заключение
Надеемся, что наш материал поможет читателю разобраться в схеме работы и порядке регулировки элеваторного узла. Как обычно, дополнительную информацию его вниманию предложит прикрепленное видео. Успехов!
Элеваторный узел: устройство, схема работы, неисправности
Отопительная система — это ключевой момент, от которого напрямую зависит комфортное нахождение в доме или квартире.
В квартирах отопление — централизованное, а владельцы частных домов отдают предпочтение системам отопления автономного типа. Знать, каким образом устроена отопительная система и что представляют ее ключевые узлы необходимо. В данной статье речь пойдет об элеваторном узле отопления.
Элеваторный узел отопления — что это такое?
В отопительной системе элеватор — это специальное устройство, главной функцией которого является обеспечение оптимальных показателей давления внутри самой системы. Помимо этого, он еще задает максимально допустимый температурный режим воды (теплоносителя).
Посредством элеваторного узла увеличивается объём циркулирующей жидкости.
Для того, чтобы более четко для себя представить работу элеватора, можно спуститься в подвал любой многоэтажки. Вы сможете увидеть все детали теплового узла и отыскать требуемый элемент.
Для лучшего понимания рассмотрим пример:
- из основного водопровода для теплоносителя движется примерно 5 м³ жидкости;
- в рабочую среду попадает вдвое больше этой жидкости;
- увеличенный объем обусловлен обычными законами физики;
- элеватор в тепловой системе – это подключение к центральным тепловым сетям, где действует главная ТЭЦ под давлением или в котельной.
Конструктивные особенности и принцип функционирования
В устройстве элеваторного узла имеются такие детали как:
- струйный элеватор;
- сопло;
- камера разрешения.
Также еще один составной элемент элеваторного узла — «обвязка элеватора», в комплектацию которой входят контрольные манометры, термометры и запорная арматура.
Ежегодно разработчиками придумываются новые идеи на счет того, как сделать отопительные системы более продуктивными, и теперь на рынке есть элеваторы, которые снабжены электроприводом, отвечающим за регулировку диаметра сопла.
Подобные изделия позволяют осуществлять автоматическую регулировку температуры циркулирующей по трубам жидкости, попадающее в отопительную систему. Однако, пока подобные вариации элеваторов не нашли широкого распространения. Обусловлено это тем, что они не могут похвастаться высокими показателями надежности.
Элеватор способствует снижению температуры перегретой воды до расчетной, после этого уже подготовленный теплоноситель движется в отопительные агрегаты. Суть принципа, по которому построено действие элеваторного узла, состоит в том, что здесь происходит процесс смешивания перегретого теплоносителя из подающего трубопровода с холодной водой из обратки.
На рисунке представлена схема элеваторного узла. Видно, что элеватор одновременно справляется с 2 функциями, что в целом способствует увеличению продуктивной работы системы обогрева.
Схема устройства элеваторного узла
Первая функция — данный элемент выступает как циркуляционный насос, а вторая функция — смешение жидкостей.
Данный элемент имеет ряд достоинств:
- Во-первых, устройство элеваторного узла очень примитивное, при этом эффективность очень высокая.
- Во-вторых, стоит такой узел недорого, поэтому в случае повреждения эта деталь подлежит замене.
- Для работы элеватору не нужна электрическая энергия.
Нельзя не учитывать и негативные стороны элеваторного узла отопления:
- Он не может регулировать температуру воды на выходе.
- Должен соблюдаться четкий баланс, перепад давления между подающей трубой и обраткой, должен находиться в промежутке 0,8-2 Бар.
- Эффективное функционирование данного узла будет только в том случае, если расчет произведен максимально точно.
Сегодня, элеваторы все также активно используются в тепловых узлах жилых домов, поскольку на производительности их работы не скажутся никакие погрешности тепловых и гидравлических режимов в тепловых сетях.
За работой узла не нужен постоянный контроль, а чтобы регулировать его функционирование достаточно просто подобрать нужный диаметр сопла.
Схема работы элеватора отопления
Неисправности
Зачастую все поломки в элеваторном узле связаны с тем, что деталь просто ломается. Происходит это по причине изменения диаметра сопла или его засорения.
Также может испортиться арматура, грязевики, а также очень часто происходит сбой настроек регуляторных элементов. Очень часто поломки и сбои происходят из-за перепадов температур до подключения к системе и после нее.
Если параметры значительно разнятся, то это уже явный звонок того, что в работе блока произошли недочеты. Если расхождение в показателях совсем незначительное, то вероятнее всего сложности кроются в обычном загрязнении сопла.
Чтобы избавить сопло элеваторного узла от загрязнений, необходимо его снять и хорошенько прочистить ветошью и щеткой. Если диаметр описываемого элемента изменился по причине появления ржавчины, работа все системы отопления будет прервана.
При этом температура в квартирах на нижних этажах будет слишком высокой, а в квартирах наверху, наоборот, — тепла будет недостаточно. Чтобы устранить проблему нужно просто установить новое сопло.
Манометры отопительной системы устанавливаются перед грязевиком и за ним. Если показания на приборах свидетельствуют о сильном перепаде давления, значит загрязнен грязеочистительный элемент. Чтобы очистить его от загрязнений, нужно удалить весь мусор через спусковые краны, которые располагаются в нижней части узла. В случае, если решить проблему таким способом не удается, грязевик нужно разобрать и почистить.
Подводя итог всего вышеописанного, стоит сказать, что элеваторный узел — один из важнейших узлов отопительной системы, качественная работа которого очень важна.
Что такое система HVAC?
Акроним HVAC означает отопление, вентиляцию и кондиционирование воздуха. Иногда также добавляется «R» охлаждения, и оно становится «HVACR».
HVAC — это в основном климат-контроль замкнутого пространства с учетом потребностей людей или товаров в нем.
Система
HVAC предназначена не только для нагрева и охлаждения воздуха, но и для поддержания качества воздуха в помещении (IAQ).
Обычно воздух нагревается зимой, а охлаждение — летом.
Система
HVAC работает на принципах термодинамики, механики жидкости и теплообмена.
Все эти поля используются в различных компонентах HVAC. IAQ Качество воздуха в помещении — это качество воздуха внутри здания или строений, которое в основном связано со здоровьем и безопасностью находящихся в нем людей или размещенных предметов / товаров. IAQ меняется из-за включения или загрязнения газами и неконтролируемой массо- и энергетической передачей.
Системы
HVAC используются для отопления, охлаждения и кондиционирования воздуха в домах, зданиях, промышленности, транспортных средствах, аквариумах и многом другом.С течением времени применение систем отопления, вентиляции и кондиционирования воздуха увеличивается, и в этой области проводятся дополнительные исследования.
Бизнес
HVAC также растет такими же темпами, как и область применения.
Что такое система HVAC?
Система
HVAC — это, по сути, сборка различных типов оборудования, установленного вместе для обеспечения отопления и охлаждения, а также контроля микроклимата в помещении. Системы отопления, вентиляции и кондиционирования воздуха включают в себя механические, электрические компоненты и компоненты КИПиА, чтобы обеспечить комфорт жителям здания / помещения или сохранить товары, продукты или предметы, размещенные в пространстве.
Системы охлаждения
HVAC могут быть интегрированы с системами отопления HVAC или могут быть установлены отдельно в зависимости от конструкции HVAC. Система HVAC также служит в промышленных масштабах, чтобы поддерживать работу оборудования, поддерживая температуру помещения / зала / комнаты, где установлены машины. Водоохладители HVAC стали незаменимыми в любой отрасли для удовлетворения различных потребностей.
Основные компоненты системы HVAC
Система HVAC может включать следующие основные компоненты или блоки.
- Чиллеры и водонагреватели HVAC
- Генератор горячей воды (если чиллер производит только охлажденную воду) или печь
- Насосы охлажденной воды
- Насосы охлаждающей воды
- Блок управления электропитанием или Центр управления двигателем (ЦУД)
- Градирни
- Трубопровод для охлажденной воды и охлаждающей воды или воды со стороны конденсатора
- Клапаны для сторон охлажденной и охлаждающей воды
- Приточно-вытяжные установки, нагревательные змеевики и охлаждающие змеевики
- Воздуховоды в системе вентиляции (приточные и возвратные)
- Фанкойлы (FCU) и термостаты
- Диффузоры и решетки HVAC
- Элементы управления HVAC (контрольно-измерительные приборы и компоненты управления), установленные в различных местах
- Программное обеспечение HVAC для построения системы управления HVAC или системы управления зданием (BMS)
- Сборка всех вышеперечисленных компонентов образует систему HVAC.
Принцип работы системы HVAC
В основе системы HVAC, чиллер для воды HVAC производит охлажденную воду, которая затем циркулирует по всему зданию или пространству до охлаждающих змеевиков в установках кондиционирования воздуха. Воздуходувки перемещают воздух по охлаждающим змеевикам, который затем распределяется по различным частям пространства или здания для обеспечения комфорта или сохранения товаров / предметов в соответствии с конструкцией HVAC.
Воздух распределяется по приточным каналам, а возвратный воздух собирается в приточно-вытяжных установках с помощью возвратных каналов.Насосы охлажденной воды и охлаждающей воды обеспечивают энергию для поддержания движения охлажденной и охлаждающей воды.
Клапаны
HVAC также устанавливаются в различных точках трубопровода для облегчения обслуживания системы HVAC или для контроля системы. Нагрев воздуха можно производить с помощью теплового насоса HVAC, генератора горячей воды или просто печи. Некоторые промышленные чиллеры также служат обогревателями в зимний период. Нагревательные змеевики заменяют охлаждающие змеевики в режиме нагрева.
Стоимость системы
HVAC может варьироваться в зависимости от применения в зависимости от нагрева и охлаждения помещения или окружающей среды.Поиск дешевых систем HVAC может включать небольшое исследование типов систем HVAC и поставщиков HVAC, иначе вы будете сетовать на трату миллионов долларов из-за неправильного выбора проектировщика и подрядчика HVAC.
.
3 задачи для разработки космического лифта> ENGINEERING.com
Художественная концепция космического лифта НАСА.
Идея лифта в космос возникла более века назад. Однако только в последние несколько десятилетий эта концепция привлекла серьезное внимание ученых и инженеров. Интерес к космическому лифту был поддержан надеждой на рентабельные методы вывода земных продуктов и ресурсов на орбиту.
Несмотря на то, что космический лифт будоражит воображение изобретателей и инженеров, он не обошелся без критиков.
Этого следовало ожидать, поскольку концепция представляет собой один из самых смелых космических проектов со времен программы «Аполлон». Мы действительно находимся на неизведанной территории, когда речь идет о масштабах такого сооружения.
Итак, мы можем построить космический лифт?
Чтобы ответить на этот вопрос, давайте рассмотрим три наиболее распространенных критики, выдвинутых против этой идеи.
1. Материалы космического лифта
Художественная визуализация космического лифта. (Изображение любезно предоставлено Японской ассоциацией космических лифтов.)
Проблема номер один, которую цитируют большинство скептиков космических лифтов, — это отсутствие у нас материалов, которые могут соответствовать свойствам прочности и плотности, необходимым для создания основного троса. Чтобы дать вам представление о действующих силах, функциональный космический лифт должен иметь центр масс в точке геостационарной орбиты, на высоте 22 236 миль над экватором Земли. Следовательно, кабель должен быть способен выдерживать натяжение от поверхности до противовеса далеко за пределами геостационарной орбиты.
Центробежная сила, действующая на противовес лифта после точки геостационарной орбиты, — это то, что «удерживает» весь аппарат, удерживая кабель в натянутом состоянии. Это постоянное натяжение троса вызывает серьезные вопросы о его долговечности.
Сочетайте это с необходимостью сохранять как можно меньшую массу кабеля, и даже наши самые современные материалы не справятся. Даже углеродные нанотрубки (УНТ), чудесный материал 21 st века, не выдерживают проверки в этом отношении.
Что еще хуже, исследователям еще предстоит найти способ синтезировать УНТ в масштабах, даже отдаленно приближающихся к тому, что было бы необходимо для кабеля: на данный момент самая длинная нанотрубка, созданная исследователями из Университета Цинхуа в Пекине, составляет колоссальную половину метр в длину.
Но даже если бы мы смогли найти способ массового производства углеродных нанотрубок, то же самое расположение атомов углерода, которое делает их такими прочными, также представляет собой серьезное препятствие для их применения в конструкции кабеля, как отметил давний автор технических наук Кейт. Хенсон в Gizmodo.
Проблема в том, что когда ковалентные связи, которые придают нанотрубкам их прочность, становятся чрезвычайно прочными, гексагональные связи становятся нестабильными. Даже при преобразовании в облигации с числом участников от 5 до 7 облигации становятся нестабильными и начинают разваливаться по швам, как в чулок.
Альтернативой обычным УНТ являются так называемые «алмазные нанонити», которые, как и УНТ, представляют собой аллотропы углерода. В алмазных нанонитях атомы углерода расположены в форме пирамиды, тетраэдра, что придает структуре невероятную твердость.
Джон Баддинг, член команды, которая изначально создавала нанонити, объясняет:
По сути, структурная «толщина» нанонити, даже на атомарном уровне, сделала бы ее значительно менее восприимчивой к распутыванию при воздействии экстремальных сил.
Еще одним преимуществом является то, что эти потоки решают проблему массового производства. Группе сотрудников Окриджской национальной лаборатории уже удалось получить их в макроскопическом масштабе, манипулируя давлением, оказываемым на образец жидкого бензола.
На момент написания этой статьи кажется, что алмазные нанонити — лучший шанс разработать кабель космического лифта, но все еще остаются без ответа вопросы.
Например, хотя они исключительно прочные и легкие, они также предположительно жестче, чем аналогичные материалы. Эта нехватка гибкости может стать проблемой в долгосрочной перспективе, что приведет к тому, что чулок будет меньше прогонять и больше ломаться от мертвых веток.
Это вызывает очередную частую критику космических лифтов.
2. Силы, действующие на космическом лифте
Строить космический лифт достаточно сложно, но трудности не заканчиваются, когда мы поднимаем его в воздух.
Вся конструкция должна будет противостоять целому ряду сил, включая гравитационные рывки со стороны Солнца и Луны и вышеупомянутое напряжение, оказываемое на кабель.
Погодные явления здесь, на Земле, только усугубят эти проблемы, поскольку штормы и ураганы раскачивают кабель туда-сюда на более низких высотах.Действительно, сама работа лифта, то есть движение механизмов, используемых для транспортировки грузов, вызывает у некоторых скептиков беспокойство по поводу последующих колебаний, которые вполне могут стать сильными.
Поскольку здесь есть несколько проблем, лучше разбить проблему на несколько частей, чтобы отдать должное каждой. Согласно отчету Брэдли Эдвардса НАСА, наиболее легко решаемая проблема касается ураганов и других атмосферных явлений.
В отчете признается ущерб, который могут нанести такие погодные условия, и предлагается просто построить основу лифта в том районе мира, где их почти нет, а именно, у тихоокеанского побережья Эквадора.
Однако в отчете также подтверждается наличие закона Мерфи в любом инженерном предприятии. В случае, если нам придется бороться с повреждениями, связанными с ветром, в отчете предлагается изменить отношение ширины к толщине кабеля, чтобы снизить сопротивление ветра и уменьшить воздействие сил на конструкцию.
По мере того, как автомобиль набирает высоту, трос слегка наклоняется из-за силы Кориолиса. Верх кабеля перемещается быстрее, чем нижний. При подъеме альпинист ускоряется в горизонтальном направлении за счет силы Кориолиса, создаваемой углами троса.Показанный угол наклона преувеличен. (Изображение любезно предоставлено Skyway / Wikimedia Commons.)
Принимая во внимание предыдущее предложение о создании якоря у береговой линии, другое предложение для решения проблемы нестабильности — сделать наземный якорь мобильным. Сторонники этой идеи говорят, что для компенсации перемещения троса якорь можно было перемещать вместе с ним.
Однако это могло создать проблемы, если бы подъемники лифта работали с помощью микроволнового лазера, как ранее предлагало НАСА.Перемещение кабеля и точки крепления может создать проблемы для надежного выравнивания лазера от нулевой точки до фотоэлектрических элементов альпиниста на таком большом расстоянии.
Количество действующих переменных затрудняет реализацию такого источника энергии, но Лео Голубович и Стивен Гнудсен из Университета Западной Вирджинии создали альтернативу. В своей статье они предлагают альпиниста, который избежал бы проблемы с выравниванием и использовал бы нестабильность троса в своих интересах, фактически используя движение троса для обеспечения собственного подъема.
Другой альтернативой является вращающийся космический лифт (RSE), в основе которого лежит провисший трос, имеющий форму эллипса. Он будет вращаться квазипериодическим образом, используя комбинацию геосинхронного вращения вокруг Земли и сил, перпендикулярных ей, чтобы обеспечить его подъем. Это инновационная потенциальная альтернатива решению проблем традиционной конструкции лифтов.
(Изображение любезно предоставлено Лео Голубовичем и Стивеном Гнудсеном.)
Последним источником неприятных движений, которые мы обсудим, являются сами лифтеры.
Критики, такие как Стивен Коэн и Арун Мисра из Университета Макгилла, полагают, что сама операция по перемещению груза может вызвать опасное хлестание; достаточно, чтобы заставить лифт разорваться в клочья или отправить его в другой космический мусор. Поскольку это остается актуальной проблемой по всей длине кабеля, решения найти не так легко, как решения проблем, ограниченных до крайностей.
Одним из часто упоминаемых решений является использование двигателей: небольших ракет, прикрепленных вдоль точек кабеля, которые могут помочь уравновесить и изменить его положение в случае любого нежелательного движения.Однако у этого лекарства не так много сторонников. Кроме того, добавление подруливающих устройств к лифтам в некоторой степени противоречит цели проекта.
Андре Йоргенсен из Института горного дела и технологий Нью-Мексико сказал, что институт двигателей будет «значительно» раздражать его работу, что приведет к необходимости дозаправки, технического обслуживания и всех рисков погоды и мусора, которые уже присутствуют для сам кабель.
Эдвардс также предостерег от их использования, заявив, что модернизация, необходимая для маневрирования альпинистов вокруг подруливающих устройств при подъеме, может оказаться невозможной.
В конечном счете, все эти меры предосторожности могут оказаться ненужными. Согласно расчетам в разделе 10.8 отчета Эдвардса, при наличии надлежащих противовесов колебания троса лифта будут перемещаться на опасную территорию только в том случае, если поднимающийся по нему груз приближается к скорости в области 10 000 км (6 000 миль в час). Тем не менее, учитывая масштабы космического лифта и соразмерные риски, кажется, лучше перестраховаться, чем сожалеть.
3. Обломки
(Изображение любезно предоставлено НАСА.)
Есть много мусора на орбите Земли. Тысячи часов были потрачены на предыдущие миссии НАСА, гарантируя минимальное загрязнение даже мельчайшими пылинками и грязью. Типы приборов, которые будут контролировать космический лифт, также должны быть разборчивыми. Однако тот факт, что это будет постоянное приспособление, означает, что рано или поздно космический лифт пересечет пути с метеоритами и даже остатками предыдущих космических миссий, оставшимися в виде космического мусора.
Крайность этого явления даже получила название: синдром Кесслера, при котором плотность мелких земных обломков становится настолько большой, что ничто не может безопасно передать их в космическое пространство. Эта каскадная проблема столкновений космического мусора была показана в фильме «Гравитация».
Как вам могут сказать Баллок и Клуни, это явление может вызвать катастрофические повреждения всей конструкции (или вывести ее из равновесия, возвращаясь к нашим проблемам «колебания»).
Эдвардс осознал это и посвятил этому целый раздел своего отчета.Согласно отчету, частью борьбы с этим препятствием является обнаружение и отслеживание объектов на низкой околоземной орбите, достаточно больших, чтобы нанести ущерб конструкции.
Согласно разделу 10.3 отчета: «В Космическом центре Джонсона было проведено исследование по созданию системы, которая могла бы отслеживать объекты размером до 1 см с точностью до 100 м с использованием современных технологий. Это очень близко к сети слежения, которая нам понадобится для космического лифта ».
Для ситуаций, в которых уклонение не всегда возможно (количество обломков на низкой околоземной орбите значительно увеличивается с высоты примерно от 300 до 1000 миль), Эдвардс утверждает, что увеличение толщины кабеля сделает его достаточно прочным, чтобы выдерживать все, кроме самый крупный из объектов, который можно было отследить и избежать заранее с помощью упомянутых выше систем.
Результат сверхскоростного удара, имитирующий потенциальное воздействие космического мусора на орбитальные объекты. (Изображение любезно предоставлено Европейским космическим агентством.)
Даже для этих исключительных обломков Эдвардс показывает в разделе, просто помеченном как «Метеоры», только (i) прямое столкновение с объектом (ii) более 3 см в диаметре, (iii) с достаточной силой, чтобы оставаться в начальной плоскости удара. (в отличие от отклонения или перенаправления при контакте с лифтом), может вызвать катастрофические повреждения, которые мы связываем с полным разрывом кабеля.Как Эдвардс, так и несколько других отчетов о живучести, включая этот, составили для Международного консорциума космических лифтов (ISEC) 2010 года, было предложено разработать кабель с кривизной и панелями специально для прогиба. Мы надеемся, что окончательные ответы относительно эффективности этих мер появятся, но, по крайней мере, приятно знать, что есть первая, вторая и третья линии защиты, подготовленные именно для таких случаев.
Увидим ли мы когда-нибудь космический лифт?
Obayashi Corporation планирует построить морской космический лифт к 2050 году.(Изображение любезно предоставлено Obayashi Corporation.)
То есть множество рисков в строительстве и эксплуатации космического лифта является непротиворечивым. Однако это мнение относится к любому инженерному проекту, который раздвигает границы нашего технологического развития. При рассмотрении количества препятствий перед проектом лифта (а их — много), важно сделать шаг назад и взглянуть на ситуацию в контексте.
Важно не то, насколько сложна задача, но, с точки зрения истинной инженерии, мы должны задать вопрос: «Являются ли эти препятствия больше, чем у альтернатив?»
Стоит ли окупаемость инвестиций (ROI)?
Даже если ответ по-прежнему «Нет», это уже не безоговорочный ответ.Есть препятствия для строительства космического лифта, но преодоление препятствий — это и есть инженерное дело.
Что вы считаете самым большим препятствием на пути строительства космического лифта? Поделитесь своими мыслями в комментариях ниже.
.
Конструкция / принцип действия
4.4.1 Конструкция / принцип действия
Два параллельных винтовых ротора на подшипниках и взаимозацеплении (3)
имеющие противоположные резьбы синхронно и бесконтактно вращаются в противоположных направлениях
в цилиндрическом корпусе (2), который их плотно закрывает, и вместе
образуют многоступенчатый насос. Из-за встречной сетки двух
ротора объемы, запечатанные в каждой резьбе, продвигаются вдоль
роторы к выходу (4). Насос не имеет клапанов ни на входе
(1) или розетка.Когда объем вытеснения достигает выхода
при открытии давление выравнивается с атмосферным. Это означает
что атмосферный воздух поступает в рабочий объем и затем
снова разряжается при вращении ротора. Этот пульсирующий поток газа создает
высокий уровень рассеиваемой энергии и нагревает насос. Рассеянный
энергия может быть минимизирована за счет внутреннего сжатия. Эта
внутреннее сжатие достигается за счет уменьшения шага резьбы в
направление розетки.Зазоры между корпусом и роторами,
а также между роторами относительно друг друга, определить
предельное давление, которое может выдержать винтовой насос. Геометрия и
конфигурация зазора, возникающая при взаимодействии роторов друг с другом
также существенно влияют на предельное давление.
Поскольку рассеиваемая энергия, генерируемая импульсным
поток газа нагревает насос со стороны выхода, охлаждение требуется при
именно это место.Зазор между корпусом и роторами составляет
функция разницы температур между более теплыми роторами и
охлаждаемый корпус. Количество произведенного тепла и температура
являются функцией диапазона входного давления. Самые низкие температуры:
высокое давление на входе (почти атмосферное), так как практически отсутствует сжатие
здесь ведутся работы и перемещенных авиатранспортов достаточно
тепло из насоса. Кроме того, большой поток газа также предотвращает
колебание газа на последней стадии.Во время работы на пределе
давление (p <1 гПа), колебания атмосферного воздуха
производит более высокие температуры в области выхода, так как газ не
проходит через насос, поэтому тепло не передается
из насоса.
Насосы
HeptaDry — это сухие винтовые насосы с внутренним сжатием.
Винтовые роторы имеют симметричную геометрию с переменным шагом.
Эти насосы не имеют торцевой пластины с отверстиями для управления; вместо,
газ выпускается в осевом направлении против атмосферного давления.Из-за
внутреннее сжатие, объем пульсирующего газа невелик.
Это приводит к снижению энергопотребления, бесшумной работе,
равномерное распределение температуры внутри насоса и низкий уровень охлаждающей воды
потребление. Это делает эти насосы чрезвычайно экономичными, несмотря на
их прочной конструкции.
.
Конструкция / принцип действия
4.2.1 Конструкция / принцип действия
Пластинчато-роторный вакуумный насос представляет собой маслозаполненный роторный поршневой насос.
насос. Насосная система состоит из корпуса (1), эксцентрично расположенного
установлен ротор (2), лопатки (3), которые радиально перемещаются под центробежным
и упругие силы и вход и выход (4). Впускной клапан, если
в наличии, выполнен в виде вакуумного предохранительного клапана, который всегда открыт
во время операции. Рабочая камера (5) расположена внутри
корпус и ограничен статором, ротором и лопатками.В
эксцентрично установленный ротор и лопатки разделяют рабочую камеру
на два отдельных отсека с переменным объемом. Как ротор
поворачивается, газ поступает в увеличивающуюся всасывающую камеру, пока она не закупорится
от второй лопасти. Затем заключенный газ сжимается до тех пор, пока
выпускной клапан открывается против атмосферного давления. Выпускной клапан
с масляным уплотнением. Когда клапан открыт, небольшое количество масла попадает в
камеру всасывания и не только смазывает ее, но и герметизирует лопатки
против корпуса (статора).
Рисунок 4.2: Принцип действия поворотной заслонки
насос
В случае использования балластного газа отверстие снаружи
открытый, который вытекает в герметичную всасывающую камеру спереди
сторона. В результате давление, необходимое для открытия выпускного клапана, составляет
достигается при относительно низком сжатии во время компрессионной откачки
фаза. Это позволяет вытеснить вытесненную парогазовую смесь до
пар начинает конденсироваться.Конечное давление, достигнутое во время
работа с газовым балластом выше, чем работа без газа
балласт.
Рабочая жидкость, масло
Насосное масло, которое также называют рабочей жидкостью, имеет
несколько задач для выполнения в пластинчато-роторном насосе. Смазывает все
движущихся частей, заполняет мертвый объем под выпускным клапаном как
а также узкий зазор между входом и выходом. Он сжимает
зазор между лопатками и рабочей камерой и дополнительно обеспечивает
оптимальный температурный баланс за счет теплопередачи.
Многоступенчатые насосы
Пластинчато-роторные вакуумные насосы бывают одно- и двухступенчатыми.
версии. Двухступенчатые насосы достигают более низкого предельного давления, чем
одноступенчатые насосы. Кроме того, влияние газового балласта на
предельное давление ниже, так как балластный газ допускается только при
ступень высокого давления.
Вакуумный предохранительный клапан
В зависимости от типа насоса, пластинчато-роторный вакуум
насосы могут быть оснащены вакуумным предохранительным клапаном.Вакуумная безопасность
клапан изолирует насос от вакуумной камеры в случае
преднамеренная или непреднамеренная остановка, и использует вытесненный газ для
удалить воздух из насосной системы, чтобы масло не попало в
вакуумная камера. После включения насоса он открывается с задержкой.
как только давление в насосе достигнет приблизительного давления в
вакуумная камера.
.