Аккумулятор тепла для системы отопления своими руками: Теплоаккумулятор своими руками: размеры, материалы, утепление

Содержание

Теплоаккумулятор для отопления своими руками

На этой вкладке сайта мы попбробуем выбрать для дачи определенные компоненты системы. Сборка отопления дачи насчитывает определенные устройства. Монтаж обогрева включает котел отопления, расширительный бачок терморегуляторы, фиттинги, провода или трубы, механизм управления тепла, радиаторы, циркуляционные насосы, крепежную систему, автоматические развоздушиватели. Каждый узел роль. Исходя из этого подбор каждой части системы важно делать обдуманно.

Теплоаккумулятор для отопления своими руками

Для большинства любая отопительная система состоит из трех основных частей:

  1. Радиаторов отопления
  2. Трубных магистралей
  3. Отопительного прибора или котла

Однако современные системы могут оснащаться множеством других полезных устройств, одним из которых является тепловой аккумулятор. С его помощью удается накапливать тот избыток энергии, который вырабатывается в котле и расходуется совершенно напрасно.

Большинство моделей представляют собой не что иное, как стальной бак. оснащенный несколькими нижними и верхними патрубками. К первым подключаются источники тепла, ко вторым – потребители. Внутри него располагается жидкость, которую можно использовать в желаемых целях. Изготовить теплоаккумулятор своими руками не составит труда – достаточно времени, рабочих материалов с инструментом и желания.

Вводное видео по установке

В основе принципа работы теплового аккумулятора лежит высокая теплоемкость воды. Описать его можно следующим образом:

  • Трубопровод котла подключается к верхней части бака, в которую поступает горячая вода – максимально нагретый теплоноситель
  • Внизу располагается циркулирующий насос, который выбирает холодную воду и пускает по системе отопления обратно в котел
  • Очень быстро остывшая ранее жидкость сменяется вновь нагретой

Когда котел прекращает работать, вода в трубопроводных магистралях системы отопления начинает постепенно остывать. Циркулируя, она попадает в бак, в котором начинает выдавливать горячий теплоноситель в трубы. Таким образом, обогрев помещений будет продолжаться определенный временной промежуток.

Функции, которые выполняет теплоаккумулятор

Современные тепло накопительные устройства – сложные аппараты, которые выполняют не одну полезную функцию:

  1. Способны обеспечивать дом горячим водоснабжением
  2. Стабилизируют температурный режим в помещениях
  3. Позволяют увеличить КПД систем отопления до максимально возможного, снижая денежные затраты на топливо
  4. Способны объединять более одного источника тепла в общий контур и наоборот
  5. Накапливают избыточную энергию, вырабатываемую котлом

Несмотря на все положительные функции, которые выполняет тепловой аккумулятор в системе отопления, он имеет два существенных недостатка:

  • Ресурс воды напрямую зависит от вместимости установленного бака, тем не менее он остается ограниченным и имеет быстрое свойство заканчиваться. Будет не лишним дополнительная система подогрева из вне
  • Из первого недостатка плавно появляется второй: более ресурсоемкие установки требуют большой свободной площади для их размещения, например, отдельного помещения в виде котельной

В дополнение советуем прочитать наше руководство по сборке солнечного коллектора своими руками

Самый простейший теплоаккумулятор своими руками можно изготовить, основываясь на принципе работы термоса – он за счет своих непроводящих тепло стенок не позволяет жидкости остывать на протяжении продолжительного временного периода.

Для работы необходимо подготовить:

  • Бак желаемой емкости (от 150 л)
  • Теплоизоляционный материал
  • Скотч
  • Тэны или медные трубки
  • Бетонную плиту

Вначале очередь следует подумать над тем, что будет представлять собой непосредственно бак. Как правило, используют любую имеющуюся под руками металлическую бочку. Объем ее каждый определяет индивидуально, но брать емкость менее 150 л не имеет практического смысла.

Выбранную бочку необходимо привести в порядок. Ее следует почистить, удалить изнутри пыль и прочий мусор, обработать участки, на которых начала образовываться коррозия.

Затем готовится утеплитель, которым будет оборачиваться бочка. Он будет отвечать за то, чтоб тепло как можно дольше сохранялось внутри. Для самодельной конструкции прекрасно подойдет вата минеральная. Окутав с внешней стороны емкость, необходимо ее хорошенько обмотать скотчем. Дополнительно поверхность накрывают листовым металлом или окутывают фольгированной пленкой.

Для того, чтобы вода внутри подогревалась, необходимо выбрать один из вариантов:

  1. Установка электрических тэнов
  2. Установка змеевика, по которому будет пускаться теплоноситель

Первый вариант достаточно сложен и не безопасен, поэтому от него отказываются. Змеевик же можно соорудить самостоятельно из медной трубки диаметром 2-3 см и длиной около 8-15 м. Из нее сгибается спираль и помещается в внутрь.

В изготавливаемой модели тепловым аккумулятором является верхняя часть бочки – из нее необходимо пустить отводной патрубок. Снизу устанавливается еще один патрубок – вводной, через который будет поступать холодная вода. Следует их оснастить кранами.

Простое устройство готово к использованию, но перед этим предстоит решить вопрос, связанный с пожарной безопасностью. Располагать такую установку рекомендуется исключительно на бетонной плите, по возможности отгородив стенками.

Человек, который много раз сталкивался с устройством систем отопления, без труда должен изготовить тепловой аккумулятор своими руками и произвести дальнейшее подключение. Не должна составить особой сложности подобная работа и для новичка.

Словами схему подключения можно описать следующим образом:

  1. Транзитом сквозь весь бак должен проходить по тепловому аккумулятору обратный трубопровод, на его концах должны быть предусмотрены полуторадюймовый вход и выход
  2. Вначале между собой соединяются обратка котла и бак. Между ними должен размещаться циркуляционный насос, гонящий воду из бочки в отсекающий кран, расширительный бак и отопительный прибор
  3. Циркуляционный насос и отсекающий кран также монтируют со второй стороны
  4. Соединять подающий трубопровод необходимо по аналогии с предыдущим, однако теперь тепловые насосы не устанавливаются

Стоит отметить, что подобным образом подключается теплоаккумулятор к отопительной системе, работающей на базе всего одного котла. Если их количество увеличивается, схема значительно усложнится.

Емкость должна дополнительно оснащаться термометром, датчиками давления внутри и взрывным клапаном. Накапливая постоянно тепло, бочка может со временем перегреться. Чтобы не допустить взрыва, необходимо сбрасывать периодически избыточное давление.

Теплоаккумулятор и разные виды отопительных систем

Устанавливать тепловой аккумулятор можно совместно с различными отопительными системами. Взаимодействуя с каждой из них, он предоставляет ряд преимуществ и быстро окупается.

Наиболее распространены теплоаккумуляторы, установленные совместно отопительным оборудованием, работающем на твердом топливе, у которых количество остатков минимально. Доведя КПД до максимально-возможного, они очень быстро разогревают отопительные радиаторы, которые вскоре изнашиваются. Часть вырабатываемой энергии лучше копить и воспользоваться, когда в ней действительно возникнет потребность.

Двукратный ночной тариф за электроэнергию – проблема для владельцев электрических отопительных котлов. Таким образом в дневное время теплоаккумулятор будет накапливать в себе тепло по более выгодной стоимости, а в ночное – отдавать его отопительной системе.

Применяются подобные установки в многоконтурных системах, распределяя воду между контурами. Если установить патрубки на разных высотах, можно осуществить отбор воды с разной температурой.

Варианты модернизации

Глядя на простейший теплоаккумулятор своими руками, человек с инженерным образованием наверняка задумается о вариантах его модернизации. Сделать это можно следующими способами:

  • Внизу устанавливают еще один теплообменник, посредством которого может происходить аккумуляция энергии, полученной солнечным коллектором
  • Можно разделить внутреннее пространство бака на несколько секций, сообщающихся между собой, чтобы расслоение жидкости по температурам было более выраженным
  • Тратиться на теплоизоляцию или нет – каждый решает сам для себя. Но несколько сантиметров пенополиуретана существенно снизят тепловые потери
  • Увеличив количество патрубков, можно будет монтировать установку к более сложным отопительным системам с несколькими контурами, работающими независимо
  • Можно сделать дополнительный теплообменник, в котором будет накапливаться питьевая вода

Видео — Тепловой аккумулятор в доме с периодической топкой

Подводим итоги

Собирать теплоаккумуляторы своими руками может абсолютно каждый. Для него нет необходимости покупать дорогостоящее оборудование, а самая простая модель состоит из комплектующих, которые у хорошего человека всегда в гараже или кладовой.

Все те, кто не доверяет самодельным устройствам, могут ознакомиться с богатым выбором моделей на рынках. Их стоимость более чем приемлемая, а вложенные средства быстро окупаются.

Источник: http://v-teplo.ru/teplovoi-akkymylyator-kak-sdelat.html

Теплоаккумулятор для отопления своими руками

Содержание

Начнем с главного, что может аккумулировать тепло? Да практически все: стены, потолок, пол, мебель, одежда и т. д. Весь вопрос насколько эффективно. Здесь действуют законы термодинамики, показывающие насколько каждое из физических тел может накапливать тепло. Аккумулируемое количество тепла определяется формулой:

W = m c (ϑ 2 – ϑ 1)

  • W аккумулируемое тепло J
  • m масса аккумулирующего вещества kg
  • c удельная теплоемкость
  • аккумулирующего вещества J / (kg K)
  • ϑ 2 конечная температура нагрева C
  • ϑ 1 начальная температура нагрева или
  • конечная температура охлаждения C
  • Удельная аккумулирующая способность равна, следовательно,

w = W / m = c (ϑ 2 –ϑ 1) .

Из приведенной формулы видно, что оптимально максимально повышать температуру вещества ϑ 2, увеличивая теплоемкость. Что мы можем реально применить в качестве накопителя тепла.

Сравним теплоемкость ( кДж/(м3*K)) популярных в строительстве материалов на основе равных объемов:

  • Вода – 4187,
  • Бетон – 2375,
  • Кирпич – 1750,
  • Магнетит – 3312,
  • Мрамор – 2375.

Из приведенных показателей видно, что лидером по способности накапливать тепло является обыкновенная вода. К ее преимуществам следует отнести доступность, дешевизну, способность растворять и смешиваться с добавками, улучшающие теплофизические свойства. Есть материалы с более высоким показатели теплоемкости, например на основе сульфата натрия (глауберовая соль). Однако они стоит денег, эффективная работа не в нашем диапазоне температур 60-90С.

Итак, мы определились с материалом аккумуляции тепла – это вода.

Куда поместить воду для теплоотдачи? Здесь возможно два пути способа построения конструктива корпуса. Как наиболее эффективный вид корпуса для сохранения тепла – это шар. Как наиболее удобное размещение емкости – где найдем место. Совместить их вряд ли получится, нужно придерживаться главного принципа – форма емкости должна быть как можно ближе к шару, в крайнем случае, к кубу.

Где найти готовые, подобные формы. Лучше поискать в сфере общепита нержавеющие емкости, лучше с наружным кожухом для горячей воды или пара, нагревающим основную емкость. Это идеальный вариант, который попадается редко, но рассмотрим и его.

«Общепитовская» емкость лучше всего подходит для открытой системы отопления, при работе без повышения давления. Пространство между двумя стенками заполняем любым утеплителем – от монтажной пены до минеральной ваты. В комплекте такого котла есть крышка, которую легко утеплить. Здесь есть свои тонкости, обусловленные необходимостью периодического осмотра емкости. Крышку необходимо не только утеплить, но и периодически подымать. Нужно предусмотреть механизм подымания крышки с утеплителем, которая будет весить около 50кг.

Для самодельной емкости лучше выбрать форму куба, открывающей доступ к осмотру створчатой формой половиной верхней крышки. Для продления срока эксплуатации металлической емкости предохраняем ее от коррозии. Механически зачищаем металл от ржавчины, обрабатывает ортофосфорной кислотой, наносим 3-5 слоев грунтовки с просушиванием на солнце или в сушильной камере. Или наносим краски Хаммерайт или Зинг. Указанные мероприятия задержат окисление металла, но не исключат его.

Емкость из 4мм металла наполненная водой гарантированно прослужит 30 лет, но для желающих подстраховаться сообщим, что есть пластиковые емкости с рабочей максимальной температурой в 80С. Эти емкости одеты в металлический каркас, удерживающий форму при повышенной температуре. В сформированных местах удобно устанавливать врезки для подачи и обратки, устанавливать теплообменники.

Удобно использовать трубы большого диаметра, заглушенные с торцов металлом такой же толщины. Такие емкости удобно использовать в закрытых системах отопления с циркуляционным насосом, подразумевая работу с повышенным давлением. Толщина стенок таких труб- 6-10мм, позволяющих гарантировать работу в водной среде без антикоррозийного покрытия не менее 35 лет. Такая жесткая и прочная конструкция нашла неожиданное применение не только в качестве теплоаккумулятора, но и в качестве опорных конструкций, колонн – декоративных и функциональных.

Применение накопителей тепла в качестве конструктива здания широко не освещалось, требует более детального изучения. Не бойтесь применять нововведения – хуже не будет.

Теплоаккумуляторы можно устанавливать везде, где имеется место. Есть опыт установки в ванных комнатах после выхода с котла, служит не только теплоаккумулятором, но и обогревателем, исключая необходимость установки отопительных приборов. Можно установить в чердачном пространстве, утеплив потолок спальни.

Интересен опыт установки на входе в помещение с улицы, когда наружные грани утепляются пенопластом или минватой не менее 100мм, грани в сторону помещения с двух сторон от двери имеют меньший слой утеплителя, обогревая помещение. Достигается эффект тепловой завесы холодного воздуха с улицы.

В качестве соединяющего элемента используют клеящую смесь «церезит», можно нанести монтажной пеной равномерные точки на поверхность листа и прижать к емкости на 5 минут. Можно просто примотать пенопласт к емкости скотчем – эффект почти одинаков. Главное – пенопласт должен плотно прилегать к поверхности теплоаккумулятора, не образовывать щелей между листами утеплителя.

Устанавливать теплоемкости лучше по центу разбора тепла, как правило – по центру жилища. Большая емкость с теплом позволяет реализовать функцию гребенки, подключая через соответствующие термодатчики: теплые полы, подключение радиаторов, теплая вода для бытовых нужд.

Применение теплоаккумулятора в сочетании с твердотопливным котлом позволит значительно улучшить показатели качества отопления, снизить количество топок до 2-3шт в сутки. Лучше применять в качестве накопительной емкости трубы большого диаметра с толщиной стенок от 5мм.

При определении емкости теплоаккумулятора нужно исходить из максимальных расчетных показателей наполнения – 50л жидкости на 1 кВт мощности котла. Для экономии места и функционального использования конструктива емкости аккумулятор тепла можно использовать в качестве декоративных, опорных конструкций.

Насколько сложно устанавливать аккумуляторы тепла? Давайте рассмотрим на практическом примере, достойном повторения. При ремонте дома демонтировали старую печь, на ее место по дымоходу установили твердотопливный котел. В качестве теплоаккумулятора использовали стальную трубу диаметром 0,8м, заваренную с торцов.

Аккумулятор установили в непосредственной близости к котлу, используя его еще и как демпфер возможных скачков температуры. С тыльной стороны стен, снизу и сверху утеплили цилиндр минватой. С лицевой стороны на профили закрепили изразцы, получилась очень красивая печь – голландка. Никто не догадывается, что это просто бочка с горячей водой.

Источник: http://www.proterem.ru/avtonomnyj-dom/akkumuljator-tepla-tverdotoplivnogo-kotla.html

Так же интересуются

12 ноября 2020 года

Для чего нужен теплоаккумулятор в системе отопления дома

При переходе с газового отопления на систему с твердотопливным котлом стоит задача сделать новую отопительную систему более эффективной, чем предыдущая. Планируя бюджет необходимо учитывать не только начальные вложения, но и расходы, которые будут сопровождать эксплуатацию. Возможно, что вложив больше средств на этапе установки, можно получить по итогу большую экономию, сохранив комфорт при обслуживании системы. Все нужно считать.

Установка теплоаккумулятора в систему отопления – один из примеров выгодного вложения средств на этапе закупки оборудования.

Теплоаккумулятор обеспечивает повышение эффективности работы комплекса отопления за счет сбора и перераспределения во времени тепла, полученного от разных источников. Емкость принимает излишки тепла во время горения твердотопливного котла на полную мощность с максимальным КПД.

Что дает установка теплоаккумулирующего бака в частном доме:

  1. Собирать временные излишки тепла и использовать их тогда, когда они нужны.
  2. Защитить систему отопления от перегрева в пиковый период горения топлива.
  3. Увеличить цикл сжигания топлива – уменьшить общий расход топлива.
  4. Обеспечить дом горячей водой через контур, подключенный к верхнему теплообменнику.

Правильная установка буферной емкости и принцип действия

На этапе нагрева контуров отопления

Подключить теплоаккумулятор в системе отопления необходимо между котлом и потребителями тепла. Образуются два контура: котловой и радиаторный (теплого пола).

В первую очередь нагревается бак. Затем тепло начинает поступать в контур радиаторного отопления. Настроив трехходовой распределительный клапан на большом кольце, обеспечиваем постоянную температуру в подаче (например +40 0С) независимо от температуры в аккумулирующей емкости, которая выше, чем в подаче, и может быть от +40 0С до +90 0С. В этом случае, буферная емкость и термостат защищают пластиковые трубы от перегрева.

На этапе максимального горения

Одинаковый объем топлива даст одно и то же количество тепла при любой интенсивности сжигания. Будет отличаться время горения закладки.

Максимальную мощность и КПД твердотопливный котел выдает при пламенном горении топлива. Чем активнее огонь в топке, тем быстрее перегорит закладка. При этом очень важно сохранить полученное тепло. Вот эту задачу и выполняет теплоаккумулирующий бак. Он сохраняет в себе временные излишки тепла и отдает их тогда, когда котел уже не работает и контур отопления остывает.

Без теплоаккумулятора увеличить время горения котла можно, если перевести работу в тлеющий режим. Однако, время, в течение которого теплоаккумулятор будет отапливать помещение без сжигания топлива, покроет эту разницу с запасом. Выходит, что регулировка мощности не даст преимущества по времени. А вот побочных негативных эффектов не избежать.

Нужно учитывать, что для того, чтобы обеспечить работу твердотопливного котла не на полную мощность, мы ограничиваем подачу кислорода в камеру сжигания топлива. В этом случае топливо сгорает не полностью. Увеличиваются выбросы в окружающую среду оксида углерода СО и сажи С. Угарный газ является ядом для организма. А сажа, кроме загрязнения воздуха, которым дышит человек, засоряет коммуникации самого котла и дымохода. Чистить котел и дымоход придется чаще.

Кроме того, сажа перемешиваясь на стенках топочной камеры и теплообменника с конденсатом образуют агрессивную кислотную среду, которая съедает металлические поверхности котла. Это приводит к преждевременному износу и прогоранию конструкции. Получается, что установка буферного бака продлевает срок эксплуатации котельной установки вдвое.

Дополнительные возможности теплоаккумулирующих емкостей

Помимо аккумулирования тепла от твердотопливного котла, накопительные емкости могут выполнять и множество других важных функций, которые делают систему универсальной. Для этого служат встроенные теплообменники: верхние, нижние, комбинированные.

Теплоаккумуляторы могут работать в связке:

  1. С контуром нагрева (ГВС для бытовых нужд). Для этого служит верхний теплообменник из цветного металла. Нержавеющая сталь обеспечивает чистоту горячей воды, соответствующую санитарным требованиям.
  2. С электрическим котлом. При наличии многотарифного счетчика электроэнергии, бак нагревается в ночное время, когда действует дешевый тариф с понижающим коэффициентом. Днем, электрокотел отключается.
  3. С тепловым насосом гидроаккумулятор отбирает тепла в постоянном режиме.
  4. С гелиоколлектором – подогрева воды в баке происходит в дневное время, когда солнечная активность максимальная.
  5. С теплыми полами через нижний теплообменник из черного металла буферная емкость работает в качестве гидрострелки, обеспечивая отдельный контур с низкой температурой подачи.

Нагрев воды может происходить непосредственно и в самом баке. Для этого служит фланцевый теплообменник или электрический тэн, которые устанавливаются на специальный фланец на корпусе емкости.

Нужен ли теплоаккумулятор в системе отопления вашего дома – решать вам. Мы устанавливаем отопление с 1999 года. По нашему опыту, установка бака имеет лишь один недостаток – дополнительные расходы на его приобретение и установку. Проведя расчеты, можно точно сказать о сроке окупаемости затрат. Но кроме возврата денег, уже с первых дней эксплуатации вы получите приятный бонус в виде комфорта и безопасности, которые обеспечивает теплоаккумулятор. А к хорошему быстро привыкаешь!

Заказать теплоаккумулятор с установкой в Днепре.

До покупки мы поможем определиться с оптимальными для вас параметрами буферного бака и подобрать нужную модель.

Теплоаккумулятор для котлов отопления своими руками

Главная » Статьи » Теплоаккумулятор для котлов отопления своими руками

Теплоаккумулятор для котлов отопления своими руками

Установив теплоаккумулятор для котлов отопления, хозяева значительно повышают эффективность всей греющей системы, оптимизируют общие расходы на содержание недвижимости и существенно экономят на покупке необходимого топлива.

Обслуживать котел можно в удобное для себя время суток, не ощущая при этом понижения уровня комфорта в жилых помещениях.

Что такое теплоаккумулятор?

Теплоаккумулятор – это буферный резервуар, предназначенный для накопления избыточных объемов тепла, образующихся во время работы котла. Сохраненный ресурс потом используется в отопительной системе в период между плановыми загрузками основного топливного ресурса.

Подключение правильно подобранного аккумулятора позволяет уменьшить расходы на закупку топлива (в некоторых случаях до 50%) и дает возможность перейти на режим одной загрузки в день вместо двух.

Помимо функции накопления выделяющегося тепла, буферная емкость осуществляет защиту чугунных агрегатов от растрескивания в случае неожиданного и резкого перепада температуры рабочей сетевой воды

Если оснастить оборудование интеллектуальными регуляторами и температурными датчиками, а подачу тепла из накопительного резервуара в отопительную систему автоматизировать, теплоотдача существенно возрастет, а количество порций топлива, загружаемых в камеру сгорания греющего агрегата, заметно уменьшится.

Особенности внутреннего и внешнего устройства

Теплоаккумулятор представляет собой резервуар в форме вертикального цилиндра, сделанный из черной или нержавеющей листовой стали высокой прочности.

На внутренней поверхности прибора имеется слой бакелитового лака. Он предохраняет буферную емкость от агрессивного влияния технической горячей воды, слабых растворов солей и концентрированных кислот. На внешнюю сторону агрегата наносится порошковая краска, стойкая к высоким термическим нагрузкам.

Объем бака варьируется от 100 до нескольких тысяч литров. Самые вместительные модели имеют крупные линейные размеры, затрудняющие размещение оборудования в ограниченном пространстве домашней котельной

Внешняя теплоизоляция изготовляется из вторично-вспененного пенополиуретана. Толщина предохранительного слоя составляет около 10 см. Материал имеет специфическое сложное плетение и внутреннее поливинилхлоридное покрытие.

Такая конфигурация не дает частичкам грязи и мелкого мусора скапливаться между волокнами, обеспечивает высокий уровень водонепроницаемости и повышает общую износостойкость теплоизолятора.

Теплоизолятор не всегда входит в комплект теплоаккумулятора. Иногда его приходится покупать отдельно, а потом самостоятельно монтировать на агрегат

Поверхность защитного слоя закрывается чехлом из кожзаменителя хорошего качества. Благодаря этим условиям вода в буферной емкости остывает гораздо медленнее, а уровень общей теплопотери всей системы существенно снижается.

Принцип работы теплосберегающего изделия

Тепловой аккумулятор функционирует по самой простой схеме. Сверху к агрегату подводится труба от газового, твердотопливного или электрического котла.

По ней в накопительный бак поступает горячая вода. Остывая в процессе, она опускается вниз к месту расположения циркулярного насоса и с его помощью подается обратно в магистральный проход, чтобы вернуться к котлу для следующего подогрева.

Установка теплоаккумулятора предупреждает перегрев теплоносителя в момент, когда котел работает на полную мощность и обеспечивает максимальную теплоотдачу при экономном расходовании топлива. Это снижает нагрузку на отопительную систему и продлевает срок ее службы

Котел любого

Основы всасывающих аккумуляторов в домашних тепловых насосах

Первоначально опубликовано 10 декабря 2013 г.

Для поиска и устранения неисправностей компонентов системы теплового насоса вы должны сначала понять их. Поскольку большая часть Северной Америки перешла в отопительный сезон, сейчас самое подходящее время для обзора компонента, обычно встречающегося в бытовых тепловых насосных системах: всасывающего аккумулятора.

Что такое всасывающий аккумулятор?

Накопители на всасывании являются критически важными компонентами тепловых насосов типа воздух-воздух и воздух-вода.

Что делает всасывающий аккумулятор?

Тепловые насосы с воздушным источником должны поддерживать тонкий баланс и надлежащий контроль жидкого хладагента в условиях низкого нагрева окружающей среды, чтобы обеспечить охлаждение компрессора и избежать чрезмерного обратного перетока хладагента. Если жидкий хладагент может протечь через систему и вернуться в компрессор без испарения, это может вызвать повреждение компрессора. В зависимости от типа компрессора это повреждение может варьироваться от забивания жидкости, потери масла (в компрессоре) или вымывания подшипника.

Для защиты от обратного потока в системах, уязвимых к повреждению жидким хладагентом, таких как тепловые насосы, функция аккумулятора заключается в улавливании жидкого хладагента до того, как он достигнет компрессора. Когда требуется разморозка змеевика, компрессор подвергается внезапным скачкам жидкости, которые могут создать экстремальные напряжения в системе. Аккумулятор может действовать как приемник во время циклов нагрева и оттаивания, когда дисбаланс системы или перегрузка из-за эксплуатации на месте может привести к чрезмерному содержанию жидкого хладагента в системе.

Аккумулятор может накапливать хладагент до тех пор, пока он не понадобится, и подавать его обратно в компрессор с приемлемой скоростью. Основные движения хладагента происходят в начале и в конце цикла размораживания, и хотя останавливать это движение не обязательно или даже желательно, важно контролировать скорость, с которой жидкий хладагент возвращается в компрессор. Наряду с правильным дозированием гидроаккумулятор может эффективно поддерживать температуру картера или нижней части кожуха в приемлемых пределах.Правильно спроектированный всасывающий аккумулятор может обеспечить отличную защиту от обеих потенциальных опасностей.

Аккумулятор какого типа или размера следует использовать?

Этот компонент должен располагаться на линии всасывания компрессора между испарителем и компрессором. Он должен иметь достаточно большой объем / производительность, чтобы удерживать максимальное количество жидкости, которая может вернуться в него, и иметь условия для положительного возврата масла в компрессор.

Фактическая удерживающая способность хладагента, необходимая для данного аккумулятора, определяется требованиями конкретного применения, и аккумулятор следует выбирать так, чтобы он удерживал максимальное ожидаемое обратное вытекание жидкости. Типичные аккумуляторы, изготовленные для кондиционирования воздуха или промышленного использования, имеют отверстия для возврата масла диаметром от 0,0625 до 0,125 дюйма. Меньшее отверстие, несомненно, более уязвимо для ограничений со стороны частиц припоя или других посторонних материалов в системе, поэтому было бы целесообразно использовать входной экран, особенно в системах с трубопроводами, устанавливаемыми в поле. Также следует позаботиться о том, чтобы припой и флюс не попали в аккумулятор, поскольку чрезмерное количество посторонних материалов может закупорить измерительное отверстие, эффективно задерживая компрессорное масло в аккумуляторе.

Обратите внимание, что вход хладагента смещен от верха J-трубки. Когда хладагент и масло попадают в сосуд, происходит разделение по скоростям, и хладагент расширяется из-за окружающей температуры, создавая источник тепла. В этот момент поступающее масло (вместе с любым жидким хладагентом) отделяется от парообразного хладагента и падает на дно. Пар хладагента движется по J-трубке, поскольку компрессор вызывает перепад давления между входом и выходом аккумулятора.Когда хладагент проходит через J-образную трубку, это вызывает эффект Вентури через отверстие, втягивая масло со дна емкости. Парообразный хладагент с контролируемой скоростью переносит масло обратно в компрессор.


Читать дальше: Руководство подрядчика по ремонту или замене систем отопления, вентиляции и кондиционирования воздуха, поврежденных наводнением

Солнечные коллекторы своими руками

Разве вы не любите отапливать дом с помощью бесплатной энергии солнца? Существуют простые и недорогие солнечные проекты, которые можно сделать своими руками, которые могут снизить ваши счета за отопление.

Солнечная энергия может улавливаться самодельными солнечными коллекторами горячего воздуха и термосифонными панелями, обеспечивая бесплатное тепло. Установки направляют нагретый солнцем воздух через окно или проем в стене в соседнюю комнату.

Если вы серьезно относитесь к сокращению счетов за отопление дома этой зимой, вам поможет один из этих недорогих домашних проектов:

Захват солнечного тепла

Создайте этот простой солнечный обогреватель, который висит за окном и посылает в комнату бесплатное солнечное тепло.

План строительства для захвата солнечного тепла

Из этого подробного крупномасштабного плана можно построить теплоотвод.

План строительства солнечного коллектора горячего воздуха

Этот коллектор горячего воздуха навесного типа поможет обогреть ваш дом зимой и даст место для хранения летом.

Солнечный коллектор горячей линии

Он похож на обычный плоский солнечный коллектор, но уникальность этой панели состоит в том, что она содержит специально изогнутый отражатель, который концентрирует падающий солнечный свет на клиновидной абсорбционной трубке.

Панели солнечного обогрева штормового окна

В этой статье рассказывается, как использовать переработанные штормовые окна для создания солнечного коллектора горячего воздуха, который доставляет тепло в дом через вентиляционное отверстие, установленное в южной стене или окне.

Солнечная панель горячего воздуха

Постройте эту настенную воздушную панель с термосифонированием (TAP), чтобы обогревать комнату в вашем доме силой солнца.

Ультра-простой солнечный настенный обогреватель горячего воздуха

Это устройство сделано путем покрытия каркаса 9 на 14 футов из досок 1 на 6 дюймов прозрачным пластиком, установки панели на южной стене и установки верхних и нижних вентиляционных отверстий в доме.

Солнечный нагреватель горячего воздуха для банок из вторичного сырья

Алюминиевые банки, разрезанные пополам, используются для изготовления поглощающей пластины для этого солнечного коллектора горячего воздуха с двойным остеклением. Температура в коллекторе достигает более 200 градусов, а первоначальный блок снизил затраты на отопление церкви в Новой Англии более чем на 60 процентов.

Супер легкий, супер недорогой гофрированный коллектор горячего воздуха на солнечных батареях

Вы можете построить этот настенный коллектор горячего воздуха размером 8 на 12 футов из гофрированного стекловолокна, чтобы обогревать дом.

Автоматический контроль коллектора

Гофрированный сборник горячих волос (вверху) будет более эффективным с этим автоматическим термостатом.

Недорогой солнечный коллектор горячего воздуха

Этот настенный солнечный коллектор позволяет обогреть здание размером 30 на 40 футов.

Как работает тепловой насос | HVAC

В тепловом насосе с воздушным источником тепла используются передовые технологии и цикл охлаждения для обогрева и охлаждения вашего дома.Это позволяет тепловому насосу обеспечивать комфорт в помещении круглый год независимо от времени года.

Тепловой насос в режиме кондиционирования воздуха

При правильной установке и функционировании тепловой насос может поддерживать прохладную комфортную температуру, снижая при этом уровень влажности в вашем доме.

  1. Теплый воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  2. Компрессор обеспечивает циркуляцию хладагента между внутренним испарителем и наружными конденсаторными блоками.
  3. Теплый воздух в помещении затем направляется к воздухоочистителю, в то время как хладагент перекачивается из внешнего змеевика конденсатора во внутренний змеевик испарителя. Хладагент поглощает тепло, проходя через воздух в помещении.
  4. Этот охлажденный и осушенный воздух затем проталкивается через соединительные внутренние воздуховоды к вентиляционным отверстиям по всему дому, снижая внутреннюю температуру.
  5. Цикл охлаждения продолжается снова, обеспечивая постоянный метод охлаждения.


Тепловой насос в тепловом режиме

Тепловые насосы уже много лет используются в регионах с более мягкими зимами. Тем не менее, технология тепловых насосов с воздушным источником тепла претерпела значительные изменения, что позволяет использовать эти системы в районах с продолжительными периодами отрицательных температур.

  1. Тепловой насос может переключаться из режима кондиционирования воздуха в режим нагрева путем реверсирования цикла охлаждения, в результате чего внешний змеевик работает как испаритель, а внутренний змеевик — как конденсатор.
  2. Хладагент проходит через замкнутую систему холодильных линий между наружным и внутренним блоком.
  3. Несмотря на низкие температуры наружного воздуха, достаточное количество тепловой энергии поглощается из внешнего воздуха змеевиком конденсатора и выделяется внутри змеевиком испарителя.
  4. Воздух изнутри вашего дома втягивается в воздуховоды с помощью моторизованного вентилятора.
  5. Хладагент перекачивается из внутреннего змеевика во внешний змеевик, где он поглощает тепло из воздуха.
  6. Этот нагретый воздух затем проталкивается через соединительные каналы к вентиляционным отверстиям по всему дому, повышая внутреннюю температуру.
  7. Цикл охлаждения продолжается снова, обеспечивая постоянный способ согреться.

Детали теплового насоса

Чтобы лучше понять, как нагревается или охлаждается воздух, полезно немного узнать о деталях, составляющих систему теплового насоса. Типичная система с воздушным тепловым насосом представляет собой раздельную или состоящую из двух частей систему, в которой в качестве источника энергии используется электричество.Система содержит наружный блок, похожий на кондиционер, и комнатный кондиционер. Тепловой насос работает вместе с устройством обработки воздуха, распределяя теплый или прохладный воздух по внутренним помещениям. Помимо электрических компонентов и вентилятора, система теплового насоса включает:

Компрессор: Перемещает хладагент по системе. Некоторые тепловые насосы содержат спиральный компрессор. По сравнению с поршневыми компрессорами спиральные компрессоры тише, имеют более длительный срок службы и обеспечивают на 10–15 ° F более теплый воздух в режиме нагрева.

Плата управления: Определяет, должна ли система теплового насоса находиться в режиме охлаждения, обогрева или размораживания.

Змеевики: Конденсатор и испарительный змеевик нагревают или охлаждают воздух в зависимости от направления потока хладагента.

Хладагент: Вещество в холодильных линиях, которое циркулирует через внутренний и внешний блок.

Реверсивные клапаны: Измените поток хладагента, который определяет, охлаждается или нагревается ваше внутреннее пространство.

Термостатические расширительные клапаны: Регулируют поток хладагента так же, как кран крана регулирует поток воды.

Аккумулятор: Резервуар, который регулирует заправку хладагента в зависимости от сезонных потребностей.

Холодильные линии и трубы: Соединение внутреннего и внешнего оборудования.

Нагревательные полосы: Электрический нагревательный элемент используется для дополнительного нагрева. Этот добавленный компонент используется для добавления дополнительного тепла в холодные дни или для быстрого восстановления после низких температур.

Воздуховоды: Служат воздушными туннелями в различные помещения внутри вашего дома.

Термостат или система управления: Устанавливает желаемую температуру

Внешние системы отопления

Токамак ИТЭР будет опираться на три источника внешнего нагрева для доведения плазмы до температуры, необходимой для термоядерного синтеза: инжекция нейтрального пучка (справа) и два источника высокочастотных электромагнитных волн — ионный и электронный циклотронный нагрев (слева, синий и зеленый. пусковые установки).

Температура внутри токамака ИТЭР должна достигать 150 миллионов градусов Цельсия — или в десять раз превышать температуру в ядре Солнца — для того, чтобы газ в вакуумной камере достиг состояния плазмы и чтобы произошла реакция термоядерного синтеза. Затем горячая плазма должна поддерживаться при этих экстремальных температурах контролируемым образом для извлечения энергии.

Токамак ИТЭР будет опираться на три источника внешнего нагрева , которые работают совместно, чтобы обеспечить входную мощность нагрева 50 МВт, необходимую для доведения плазмы до температуры, необходимой для термоядерного синтеза.Это инжекция нейтрального пучка и два источника высокочастотных электромагнитных волн.

В конечном итоге исследователи надеются создать «горящую плазму» — такую, в которой энергии ядер гелия, образующихся в результате реакции синтеза, достаточно для поддержания температуры плазмы. После этого внешний обогрев можно сильно уменьшить или полностью отключить. Горящая плазма, в которой по крайней мере 50 процентов энергии, необходимой для запуска реакции термоядерного синтеза, генерируется внутри, является важным шагом на пути к достижению цели производства энергии термоядерного синтеза.

Одна из мощных систем нейтрального пучка, нагревающая плазму (плазменная камера ИТЭР слева).

Использование впрыска для нагрева топлива в токамаке ИТЭР очень похоже на использование пара в бытовой машине для приготовления капучино для нагрева молока. Инжекторы нейтрального пучка используются для выстрела незаряженных частиц высокой энергии в плазму, где они путем столкновения передают свою энергию частицам плазмы.

Перед впрыском атомы дейтерия должны быть ускорены за пределами токамака до кинетической энергии в 1 мегаэлектронвольт (МэВ).Только атомы с положительным или отрицательным зарядом могут быть ускорены электрическим полем; для этого необходимо удалить электроны из нейтральных атомов, чтобы создать положительно заряженный ион. Затем процесс должен быть обращен перед инжекцией в термоядерную плазму; в противном случае электрически заряженный ион отклонялся бы магнитным полем плазменной клетки. В системах инжекции нейтрального пучка ионы проходят через ячейку, содержащую газ, где они восстанавливают потерянный электрон и могут быть введены в плазму в виде быстрых нейтралов.

В ИТЭР есть место для трех инжекторов нейтрального пучка (два будут установлены первыми, с местом для третьего, если этого требует эксплуатационная программа). Справа меньший отсек получит диагностический нейтральный луч.

Большой объем плазмы в ИТЭР предъявит новые требования к этому проверенному методу инжекции: частицы должны будут двигаться в три-четыре раза быстрее, чем в предыдущих системах, чтобы проникнуть в плазму достаточно глубоко, и при этих более высоких скоростях положительно -заряженные ионы трудно нейтрализовать.В ИТЭР впервые был выбран источник отрицательно заряженных ионов, чтобы обойти эту проблему. Хотя отрицательные ионы будет легче нейтрализовать, их будет сложнее создать и обработать, чем положительные. Дополнительный электрон, который дает иону его отрицательный заряд, связан только слабо и, следовательно, легко теряется.

Два инжектора нейтрального пучка, каждый из которых доставляет пучок дейтерия мощностью 16,5 МВт с энергией частиц 1 МэВ, в настоящее время предусмотрены для ИТЭР.Третий нейтральный луч будет использоваться в диагностических целях.

В настоящее время на испытательном стенде нейтрального пучка в Падуе, Италия, выполняется программа испытаний для исследования сложных физических и технологических проблем до установки оборудования нейтрального пучка в ИТЭР. Подробнее об установке для испытания нейтральным лучом здесь.

Две 45-тонные ионно-циклотронные резонансные нагревательные антенны будут передавать тепловую мощность по 10 МВт каждая в установку ИТЭР.

В методах ионного и электронного циклотронного нагрева используются радиоволны на разных частотах, чтобы подавать дополнительное тепло в плазму, почти так же, как микроволновая печь передает тепло еде через микроволны.При ионном циклотронном резонансном нагреве (ICRH) энергия передается ионам в плазме высокоинтенсивным пучком электромагнитного излучения с частотой от 40 до 55 МГц.

Генератор, линии передачи и антенна необходимы для ионного циклотронного нагрева. Генератор производит мощные радиоволны, которые переносятся по линии передачи к антенне, расположенной в вакуумном сосуде, посылая волны в плазму.

Следует ли оставлять ноутбук постоянно подключенным к розетке?

В тот или иной момент все пользователи ноутбуков задаются одним и тем же вопросом: плохо ли оставлять ноутбук постоянно подключенным к розетке?

Оказывается, ответ не совсем однозначный.Итак, давайте посмотрим.

Знай свой аккумулятор для ноутбука

В ноутбуках используются два основных типа аккумуляторов: литий-ионные и литий-полимерные.Хотя это разные технологии, они в целом работают одинаково, генерируя энергию за счет движения электронов.

Этот постоянный поток также необходим для поддержания здоровья батареи.

Для обоих типов аккумуляторов верны следующие утверждения (по крайней мере, для современных ноутбуков):

  • Аккумулятор нельзя перезарядить. Нет опасности перезарядить аккумулятор, если вы оставляете его все время подключенным к розетке. Как только он достигнет 100 процентов, он прекратит зарядку и не начнется снова, пока напряжение не упадет ниже определенного уровня.
  • Полная разрядка аккумулятора приведет к его повреждению. Если аккумулятор полностью разрядится в течение длительного времени, он может перейти в состояние глубокой разрядки. Это может быть фатальным — вы никогда не сможете зарядить его снова.(Вы можете попробовать эти методы, чтобы быстро запустить разряженную батарею ноутбука.)

Итак, исходя из этого, можем ли мы сделать вывод, что вы должны постоянно оставлять свой ноутбук подключенным к сети? Не совсем.

Вещи, повреждающие литиевые батареи

Правда о литиевых батареях в том, что они нестабильны по своей природе.Они начинают терять мощность с момента производства, и есть множество факторов, ускоряющих их упадок. Они включают:

  • Циклы заряда / разряда. Каждую батарею можно заряжать и разряжать ограниченное количество раз.
  • Уровень напряжения. Чем выше уровень заряда (измеряется в вольтах на элемент), тем короче срок службы батареи.
  • Высокая температура, более 30 градусов Цельсия. Это может нанести непоправимый ущерб.

Последние два — это те, которые нас больше всего беспокоят.Всестороннее исследование Battery University показывает, как уровень напряжения и высокие температуры сокращают срок службы изолированной батареи и даже больше, когда они сочетаются.

Уровень заряда или напряжения

Литий-ионные аккумуляторы заряжаются до 4.20 вольт на ячейку, что составляет 100 процентов ее емкости. На этом уровне срок службы батареи составляет 300-500 циклов разряда.

Каждые 0.Снижение заряда на 10 В / элемент удваивает количество циклов разряда, пока не будет достигнут оптимальный уровень: 3,90 В / элемент с 2400-4000 циклами разряда.

К сожалению, на этом уровне аккумулятор заряжен всего на 60 процентов.Время работы составит чуть больше половины полностью заряженного аккумулятора.

Тепло

А еще жара.Высокие температуры, обычно превышающие 30 градусов Цельсия, сокращают срок службы батареи независимо от каких-либо других факторов. Просто оставить ноутбук в машине летним днем ​​- плохая идея.

Когда вы комбинируете стресс от высокой температуры со стрессом от высокого напряжения, последствия становятся еще хуже.

Исследование Battery University показывает, что емкость батареи, хранящейся с 40-процентным зарядом при 40 градусах, через год упадет до 85 процентов.

При зарядке на 100 процентов емкость падает до 65 процентов при тех же условиях.Для полностью заряженной батареи при 60 градусах емкость упадет до 60 процентов всего за три месяца .

Доказательства кажутся очевидными.Постоянно заряженный на 100 процентов аккумулятор постепенно сокращает срок его службы. Если держать его на 100% и подвергать воздействию высоких температур, это сократит его гораздо быстрее.

И помните, что эти высокие температуры не только для окружающей среды.Ресурсоемкие задачи, такие как игры или редактирование видео, значительно увеличивают уровень нагрева, а использование ноутбука на подушке или в плохо спроектированном корпусе также будет удерживать это тепло.

Ради вашей батареи всегда полезно починить перегревающийся ноутбук.

Следует ли вынимать аккумулятор?

Если жара представляет собой такую ​​опасность, возникает другой вопрос.Стоит ли вообще вынимать аккумулятор при использовании ноутбука от сети переменного тока?

Очевидно, это невозможно на растущем количестве ноутбуков с герметичными батареями.

Там, где они являются заменяемыми, ответ, кажется, варьируется от одного производителя к другому.Acer, например, говорит, что вам не нужно извлекать аккумулятор при питании от сети переменного тока, но следует удалить его, если вы не собираетесь использовать его в течение нескольких дней. Когда Apple производила ноутбуки со съемными батареями, она советовала никогда их не выносить.

Все сводится к настройке управления питанием ноутбука.Некоторые могут снизить мощность при отсутствии батареи, как и некоторые, когда уровень заряда батареи низкий. Это может оставить вас с некачественной производительностью.

Если вы все же решили извлечь аккумулятор, убедитесь, что вы правильно его храните.Обычно это означает, что он заряжен от 40 до 80 процентов и хранится при комнатной температуре.

Стоит ли держать ноутбук в сети?

Если оставить ноутбук подключенным к розетке, аккумулятор испортится? Да.Но то же самое происходит и с ежедневной зарядкой.

Любопытно, что отрасль в целом, похоже, не пришла к единому ответу на вопрос о том, использовать ли ваш ноутбук от сети переменного тока или от батареи.

Мы видели, что Acer рекомендует извлекать аккумулятор, когда вы его не используете.Asus говорит, что вам следует разряжать батарею как минимум до 50 процентов каждые две недели. Но Dell утверждает, что нет проблем, если ноутбук всегда будет подключен к сети.

Рекомендации Apple больше нет на ее веб-сайте, но вы все еще можете прочитать ее в Интернете.Компания рекомендует не оставлять ноутбук постоянно включенным в розетку. Вместо этого он предлагает:

«Идеальным пользователем будет пассажир, который использует свой ноутбук в поезде, а затем подключает его в офисе для зарядки.Благодаря этому сократится заряд батареи … »

Если оставить ноутбук подключенным к сети, это не приведет к кратковременному повреждению, но если вы когда-либо будете использовать его только от сети переменного тока, вы почти наверняка обнаружите, что через год емкость аккумулятора значительно уменьшится.Точно так же, если вы когда-либо используете его только от батареи, вы быстрее пройдете циклы разряда батареи.

Итак, лучшее решение — это что-то вроде компромисса между ними: несколько дней использовать его от аккумулятора, а в другие — держать подключенным.И что бы вы ни делали, убедитесь, что он не слишком горячий.

Хотите еще несколько советов по продлению срока службы аккумулятора вашего ноутбука? Ознакомьтесь с этими инструментами для анализа состояния батареи вашего ноутбука.

Spotify покупает платформу для публикации подкастов Megaphone

Об авторе

Энди Беттс
(Опубликовано 223 статей)

Энди — бывший печатный журналист и редактор журнала, который пишет о технологиях уже 15 лет.За это время он внес вклад в бесчисленное количество публикаций и написал работы по копирайтингу для крупных технологических компаний. Он также предоставил экспертные комментарии для средств массовой информации и организовал панели на отраслевых мероприятиях.

Ещё от Andy Betts

Подпишитесь на нашу рассылку новостей

Подпишитесь на нашу рассылку, чтобы получать технические советы, обзоры, бесплатные электронные книги и эксклюзивные предложения!

Еще один шаг…!

Подтвердите свой адрес электронной почты в только что отправленном вам электронном письме.

ЕДИНИЦА 9. Текст: «Энергия».

I. Найдите слова в словаре. Запишите их и узнайте.

тепло, звук, лучистая энергия, ядерная энергия, в силу, равняться, увеличивать, уменьшать, поступательное, вращательное, вращать, Рентгеновские лучи, упругие, давление, среда, расщеплять, ядерное деление, синтез, продольный, поперечный, длина волны

II.Прочитай текст. При необходимости воспользуйтесь словарем.

Текст: «Энергия».

Энергию можно определить как способность выполнять работу. Физики подразделяют энергию на несколько типов: кинетическая, потенциальная, тепловая, звуковая, лучистая (например, световая), а также электрическая, химическая и ядерная энергия.

Кинетическая энергия передается движущемуся объекту за счет его движения. Он равен работе, проделанной для ускорения объекта до определенной скорости; он также равен работе, проделанной для остановки движущегося объекта.Две основные формы кинетической энергии известны как поступательная и вращательная. Первым обладает объект, перемещающийся из одного положения в другое. Второй — это вращающиеся объекты, которые вращаются вокруг оси и поэтому периодически возвращаются в одно и то же положение.

Объект обладает потенциальной энергией в силу своего положения. Два общих типа — это гравитационная и упругая потенциальная энергия.

Объект обладает теплотой, или тепловой энергией, благодаря своей температуре.Фактически, это просто форма кинетической энергии, потому что температура вещества зависит от движения составляющих его атомов или молекул; чем выше его температура, тем быстрее движутся молекулы.

Энергия излучения состоит из электромагнитного излучения и включает радиоволны, видимый свет, ультрафиолетовое и инфракрасное излучение и рентгеновские лучи. Единственная форма энергии, которая может существовать в отсутствие материи, состоит из волнового движения в электрическом и магнитном полях. Лучистая энергия излучается, когда электроны внутри атомов падают с более высокого уровня на более низкий и высвобождают «избыточную» энергию в виде излучения.

Звуковая энергия состоит из движущихся волн давления в такой среде, как воздух, вода или металл. Они состоят из колебаний молекул среды.

Материя, которая приобрела или потеряла электрический заряд, имеет электрическую энергию. Движение зарядов представляет собой электрический ток, который течет между двумя объектами с разными потенциалами, когда они соединяются проводником.

Химической энергией обладают вещества, которые подвергаются химической реакции, например горению.Он хранится в химических связях между атомами, составляющими молекулы вещества.

Ядерная энергия образуется, когда ядра атомов изменяются в результате расщепления или соединения вместе. Процесс расщепления известен как ядерное деление, а соединение — как ядерный синтез. Такие изменения могут сопровождаться высвобождением огромного количества энергии в виде тепла, света и радиоактивности (испускание атомных частиц или гамма-излучения, или и то, и другое).

Когда объект теряет или приобретает один тип энергии, другой вид соответственно приобретается или теряется.Общее количество энергии, которым обладает объект, остается неизменным. Это явление является принципом сохранения энергии, который гласит, что энергия не может быть ни создана, ни уничтожена, а только преобразована в другие формы.

Если рассматривать массу и энергию вместе, общее количество массы и энергии остается неизменным. Следовательно, принцип сохранения массы был преобразован в так называемый принцип сохранения массы-энергии. Теория относительности показывает, что масса и энергия могут считаться полностью взаимопревращаемыми, а количество энергии, производимой при разрушении материи, дается хорошо известным уравнением E = mc 2 ( E есть высвобожденной энергии, м — разрушенная масса, а c — скорость света).

Передача энергии. Энергия часто передается волновыми движениями, и по этой причине изучение волн имеет решающее значение в физике — от волновой механики атома до исследования гравитационных волн, создаваемых черными дырами. В общем, бегущая волна — это движение возмущения от источника, и энергия переносится, когда возмущение движется наружу.

Если создаваемое возмущение параллельно направлению движения энергии, волна называется продольной; звуковые волны относятся к этому типу.Если возмущение перпендикулярно направлению движения энергии — как в случае электромагнитного излучения и волн на поверхности воды — тогда волна поперечная.

Четыре свойства волны можно выделить и математически описать: длину волны, частоту, скорость и амплитуду.

III. Найдите существительное в каждой строке и переведите его. Переведите также подчеркнутые слова.

а) Электрические, тепловые, состоят, претерпевают, поперечные;

б) Частота нормальная, следовательно, включить, изменить;

c) конвертируемый, обладающий, термический, длина волны, определяющий;

г) Продольное, математически, наружу, умножение, уравнение;

д) Помехи, ненормальные, просто испускающие, огромные;

е) Ускорение, в частности, вращательное, ось, невидимая;

г) Перевод, вращение, периодически, нечасто, дирижер.

IV. Практикуйте следующие модели речи.

Паттерн 1. Энергия определяется как способность выполнять работу.

1. электрон — точечное электрическое изменение

2. плазма — четвертое состояние вещества

3. сила — агент, способный изменять состояние покоя или движения объекта

4. масса — сопротивление объекта любому изменению его состояния под действием силы.

5. гравитация — сила взаимного притяжения между объектами, имеющими массу

.

Образец 2. Физики классифицируют энергию на несколько типов: кинетическая, потенциальная, тепловая, звуковая, лучистая, электрическая, химическая и ядерная.

1. Физические науки в нескольких областях: механика, звук, тепло, электричество и т. Д.

2. частицы на несколько типов: электроны, протоны, нейтроны и т. Д.

3. состояния вещества на несколько типов: твердое, жидкое, газовое, плазменное

4.твердые тела на два типа: «истинные» и аморфные

5. вещества в растворах двух типов: кристаллоиды и коллоиды

6. различные типы движения: линейное, круговое и простое гармоническое движение

Паттерн 3. Две основные формы кинетической энергии известны как поступательная и вращательная.

1. Два раздела физики — экспериментальная и теоретическая физика

2. четыре состояния вещества — твердое, газообразное, жидкое и плазменное

3.три основных типа сил — силы гравитации, трения и вязкости

4. два основных типа веществ в растворах — коллоиды и кристаллоиды

5. два типа твердых тел — «истинные» и аморфные

Паттерн 4. Кинетическая энергия объекта достигается благодаря его движению.

1. поступательная энергия — ее движение из одного положения в другое

2. энергия вращения — его вращение вокруг оси

3.потенциальная энергия — ее позиция

4. тепловая энергия — ее температура

5. электрическая энергия — получение или потеря электрического заряда

6. химическая энергия — химическая реакция

Шаблон 5. Изучение волн имеет решающее значение в физике.

1. гравитация

2. частицы

3. энергия

4. состояния вещества

5.необычные состояния вещества

6. 7. твердые

8. жидкости

9. газы

V. Найдите предложения, которых нет в тексте.

VI. Найдите в тексте английские эквиваленты.

VII. Найдите в тексте русские эквиваленты следующих выражений.

VIII.Заполнить недостающие слова.

IX. При необходимости введите предлоги.

X. Определите, истинны ли предложения или нет.

XI. Ответь на вопрос.

XII. Задайте вопрос к следующим предложениям.

Want to say something? Post a comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *