Расчет вытяжной вентиляции онлайн калькулятор: Расчет вентиляции – Онлайн-калькулятор

Содержание

как рассчитать вентиляционную мощность вручную и на калькуляторе

Задача организованного воздухообмена комнат жилого дома либо квартиры – вывести лишнюю влагу и отработанные газы, заместив свежим воздухом. Соответственно, для устройства вытяжки и притока нужно определить количество удаляемых воздушных масс – произвести расчет вентиляции отдельно по каждому помещению. Методики вычислений и нормы расхода воздуха принимаются исключительно по СНиП.

Санитарные требования нормативных документов

Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:

  1. «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
  2. «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».

В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. На этих данных и должен базироваться расчет вентиляции. Применяется 2 типа размерности – расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.

Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.

Проветривание — примитивный способ обновления кислорода в жилище

В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):

  • гостиная, детская, спальня – 1 раз в час;
  • кухня с электрической плитой – 60 м³/ч;
  • санузел, ванная, туалет – 25 м³/ч;
  • для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
  • котельная с теплогенератором, сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
  • кладовка, гардеробная и прочие подсобные помещения – кратность 0.2;
  • сушильная либо постирочная – 90 м³/ч;
  • библиотека, рабочий кабинет – 0.5 раз в течение часа.

Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических – до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.

Выброс вредных газов за счет природной тяги — самый дешевый и простой способ обновлять воздух

В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:

  1. Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
  2. Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
  3. Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.

Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».

Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.

Определение расхода воздуха по кратности

Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:

Расшифровка обозначений:

  • L – искомый объем приточного и вытяжного воздуха, м³/ч;
  • S – квадратура помещения, где рассчитывается вентиляция, м²;
  • h – высота потолков, м;
  • n – число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).

Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75 х 3 х 1 = 47.25 м³/ч.

Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.

Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.

Онлайн-калькулятор в помощь

Программа считает требуемое количество воздуха по кратности, регламентируемой СНиП. Просто выберите разновидность помещения и введите его габариты.

Примечание. Для котельных с газовым теплогенератором калькулятор учитывает только трехкратный обмен. Количество приточного воздуха, идущего на сжигание топлива, нужно прибавлять к результату дополнительно.

Выясняем воздухообмен по числу жильцов

Приложение «К» СП 60.13330.2012 предписывает производить расчёт вентиляции помещения по простейшей формуле:

Расшифруем обозначения представленной формулы:

  • L – искомая величина притока (вытяжки), м³/ч;
  • m – объем воздушной чистой смеси в расчете на 1 чел., указанный в таблице Приложения «К», м³/ч;
  • N – количество людей, постоянно находящихся в рассматриваемой комнате 2 часа в день и более.

Очередной пример. Резонно предположить, что в той же гостиной одноэтажного дома два члена семьи пребывают длительное время. Учитывая, что проветривание организовано и на каждого жильца приходится свыше 20 квадратов площади, параметр m принимается равным 30 м³/ч. Считаем количество притока: L = 30 х 2 = 60 м³/ч.

Важно. Заметьте, полученный результат больше значения, определенного по кратности (47.25 м³/ч). В дальнейшие расчеты следует включить цифру 60 м³/ч.

Результаты подсчетов лучше сразу нанести на планировку этажа здания

Если количество проживающих в квартире настолько велико, что каждому человеку отведено меньше 20 м² (в среднем), то представленную выше формулу использовать нельзя. Правила указывают: в данном случае площадь гостиной и других комнат следует умножить на 3 м³/ч. Поскольку общая квадратура жилища равна 91.5 м², расчетный объем вентиляционного воздуха составит 91.5 х 3 = 274.5 м³/ч.

В просторных залах с высокими потолками (от 3 м) обновление атмосферы считается двумя способами:

  1. Если в помещении часто пребывает большое число людей, вычисляйте кубатуру подаваемого воздуха по удельному показателю 30 м³/ч на 1 чел.
  2. Когда количество посетителей постоянно меняется, вводится понятие обслуживаемой зоны высотой 2 метра от пола. Определяете объем этого пространства (умножьте площадь на 2) и обеспечиваете требуемую нормами кратность, как описано в предыдущем разделе.

Пример расчета и обустройства вентиляции

За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:

  1. Объем удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75 х 3 х 1 = 47.25 м³/ч.
  2. В детской комнате: 21 х 3 х 1 = 63 м³/ч.
  3. Кухня: 21 х 3 х 1 + 100 = 163 м³/ч.
  4. Санузел – 25 м³/ч.
  5. Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.

Примечание. Воздушный обмен в прихожей и коридоре не нормируется.

Наружная схема подачи воздуха и выброса вредных газов из комнат загородного дома

Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2 х 30 = 60 м³/ч (в каждом помещении).

Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.

Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции – это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов – кухонную вытяжку.

Пример организация воздухообмена в одноэтажном дачном доме

Как правильно организовать естественное движение потоков:

  1. Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
  2. В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
  3. Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
  4. Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки – удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
  5. Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
  6. За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.

Обратите внимание: свежие потоки, изображенные на планировке, направляются из комнат с чистой воздушной средой в более загрязненные зоны, затем выбрасываются наружу через шахты.

Подробнее об организации природной вентиляции смотрите на видео:

Вычисляем диаметры вентканалов

Дальнейшие расчеты несколько сложнее, поэтому каждый этап мы сопроводим примерами вычислений. Результатом станет диаметр и высота вентиляционных шахт нашего одноэтажного здания.

Весь объем вытяжного воздуха мы распределили на 3 канала: 100 м. куб. принудительно удаляет вытяжка на кухне в период включения плиты, оставшийся 271 кубометр уходит по двум одинаковым шахтам естественным образом. Расход через 1 воздуховод получится 271 / 2 = 135.5 м³/ч. Площадь сечения трубы определяется по формуле:

  • F – площадь поперечного сечения вентканала, м²;
  • L – расход вытяжки через шахту, м³/ч;
  • ʋ — скорость движения потока, м/с.

Справка. Скорость воздуха в каналах естественной вентиляции лежит в пределах 0.5—1.5 м/с. В качестве расчетного значения принимаем средний показатель – 1 м/с.

Как рассчитать сечение и диаметр одной трубы в примере:

  1. Находим размер поперечника в квадратных метрах F = 135.5 / 3600 х 1 = 0.0378 м².
  2. Из школьной формулы площади круга определяем диаметр канала D = 0.22 м. Выбираем ближайший больший воздуховод из стандартного ряда – Ø225 мм.
  3. Если речь идет о заложенной внутрь стены кирпичной шахте, то под найденное сечение подойдет размер вентканала 140 х 270 мм (удачное совпадение, F = 0.0378 м. кв.).

Кирпичные шахты имеют строго фиксированные размеры — 14 х 14 и 27 х 14 см

Диаметр отводящей трубы под бытовую вытяжку считается аналогичным образом, только скорость потока, нагнетаемого вентилятором, принимается больше – 3 м/с. F = 100 / 3600 х 3 = 0.009 м² или Ø110 мм.

Подбираем высоту труб

Следующий шаг – определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

  • p – гравитационное давление в канале, Па;
  • Н – перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд – плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81 х 4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап – аэродинамический расчет отводных каналов. Задача – выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

  • Δp – общие потери давления в шахте;
  • R – удельное сопротивление трению проходящего потока, Па/м;
  • Н – высота канала, м;
  • ∑ξ – сумма коэффициентов местных сопротивлений;
  • Pv – давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим значение динамического давления по формуле Pv = 1.2 х 1² / 2 = 0.6 Па.
  2.  Сопротивление от трения R находим по таблице, ориентируясь на показатели динамического напора 0.6 Па, скорости потока 1 м/с и диаметра воздухопровода 225 мм. R = 0.078 Па/м (обозначено зеленым кружочком).
  3. Местные сопротивления вытяжной шахты – это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей – величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
  4. Окончательное вычисление: Δp = 0.078 Па/м х 4 м + 1.6 х 0.6 Па = 1.27 Па.

Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Сила тяги p = 2.75 Па значительно больше, чем потери давления (сопротивление) Δp = 1.27 Па, шахта высотой 4 метра слишком высока, строить такую бессмысленно.

Поскольку цифры отличаются вдвое (грубо), укоротим вентканал до 2 м, снова произведем перерасчет:

  1. Располагаемое давление p = 9.81 х 2 (1.27 — 1.2) = 1.37 Па.
  2. Удельное сопротивление R и местные коэффициенты ξ остаются прежними.
  3. Δp = 0.078 Па/м х 2 м + 1.6 х 0.6 Па = 1.15 Па.

Напор природной тяги 1.37 Па превышает сопротивление системы Δp = 1.15 Па, значит, шахта двухметровой высоты станет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Замечание. Укорачивать воздуховод до 1 м не стоит, соотношение изменится в другую сторону: p = 0.69 Па, Δp = 1.04 Па, силы тяги не хватит.

Канал вентиляции Ø225 мм можно разделить на 2 меньших трубы, но не по диаметру, а по сечению. Получаем 2 круглых вентканала 150—160 мм, как сделано на фото. Высота обеих шахт остается неизменной — 2 м.

Как упростить задачу — советы

Вы могли убедиться, что расчеты и организация воздухообмена в здании – вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:

  1. Первые 3 этапа придется пройти в любом случае – выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
  2. Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — правильно рассчитайте диаметры и просто выведите воздухопроводы на высоту не менее 2 метров над заборными решетками.
  3. Внутри здания старайтесь использовать пластиковые трубы – благодаря гладким стенкам они практически не сопротивляются движению газов.
  4. Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
  5. Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.

Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.

И не ошибиться в расчетах при приобретении оборудования? Тогда статья «Как посчитать объем воздуха в помещении?» как раз для Вас!

Для начала, давайте с Вами рассмотрим несколько интересных фактов: мы ежедневно вдыхаем и выдыхаем 20 000 л. воздуха. Все, чем мы дышим остается у нас в организме и возникает вопрос, а насколько пригоден вдыхаемый нами воздух?

Существует ряд основных показателей, определяющих качество окружающей нас воздушной среды, вот некоторые из них:

· Неприятные запахи ― создают ощущение дискомфорта и раздражают нервную систему, что негативно отражается на здоровье и работоспособности.

· Влажность воздуха. Пониженная влажность может вызывать неприятные ощущения. Пагубно она влияет и на людей с заболеваниями дыхательных путей, также может вызывать обострение болезней. Также из-за пониженной влажности двери, оконные рамы и мебель могут рассыхаться, а в помещениях с повышенной влажностью (бассейны, ванные комнаты), набухать.

· Температура воздуха, которая считается комфортной составляет 21-23°С в помещении. Отклонение от нормы влияет на физическую и умственную активность, а также на состояние здоровья.

· Подвижность воздуха. Повышенная скорость воздуха в помещении приводит к ощущению сквозняка, а пониженная ― к застою воздуха.

Теперь давайте рассмотрим с Вами, как высчитать и определить необходимые параметры вентиляции в Вашем помещении.

Итак, количество вентиляционного воздуха определяется для каждого помещения отдельно, учитывается содержание в воздухе вредных веществ и примесей. Если характер и количество вредных веществ невозможно подсчитать, то воздухообмен определяют по кратности (формуле):

Как узнать объем помещения?

Для начала необходимо вычислить общий объем помещения в метрах кубических. Используем формулу:

Длина х ширина х высота = объем помещения м3 A x B x H = V (м3)

К примеру: помещение длиной 8 м, шириной 5 м и высотой 2,8 м. Для определения объема воздуха, необходимого для вентиляции этого помещения, рассчитываем объем комнаты: 8 х 5 х 2,8 = 112 м3. Затем, используя приведенные ниже таблицы рекомендуемой кратности воздухообмена, определяем требуемую производительность вентилятора.

Определение воздухообмена в соответствии с количеством людей в помещении:

Где L1 – норма воздуха на одного человека, м3/ч*чел;

NL – количество людей в помещении.

Определение воздухообмена при выделении влаги можно расчитать по формуле:

Определение воздухообмена для удаления излишков тепла:

Таблица кратностей воздухообмена:

Определение воздухообмена в зависимости от предельно допустимой концентрации веществ:

Если у Вас возникнут вопросы, Вы можете «Климат-Маркет Украина» , которые квалифицированно и качественно проведут все необходимые расчеты и помогут Вам создать и установить систему вентиляции, не только соответствующую всем нормам и стандартам, но и Вашим эксклюзивным требованиям!!!

Если Вас заинтересовала данная статья, не забудьте также посмотреть и , которые предлагает в продаже «Климат-Маркет Украина» . По вопросам приобретения и установки оборудования, обращайтесь по !

Звоните и заказывайте!

Если расчет естественной вентиляции выполнен правильно, вы получите хорошо проветриваемое комфортное помещение. А для проектирования качественной и надежной системы, очень важно все грамотно учесть. В зависимости от того, как проведен расчет вентиляции, а также от соблюдения всех норм, можно обеспечить помещение необходимым объемом воздуха. А это создаст максимальный комфорт проживания в доме, даже если устроена неважно.

Что такое расчет вентиляции?

Каждому дому нужна качественная вентиляция. Расчет ее — это определение рабочих параметров всех системных элементов. Правильность проведения таких работ повлияет на эффективность функционирования всей системы. Процесс расчета имеет свои трудности, и сейчас мы рассмотрим, что он из себя представляет.

С чего начать?

Расчет вентиляции всегда нужно начинать с обозначения нужных параметров. Это назначение помещения, количество людей, находящихся в нем, количество приборов, которые выделяют тепло. Если мы сложим все эти значения, то получим производительность помещения по воздуху. Показатель этот поможет определить кратность воздухообъема — количество раз, когда полностью заменяется воздух в помещении за один час. Для жилых помещений нужная кратность воздухообмена — единица, а вот рабочим помещениям потребуется 2-3. Для всех помещений по все значения составляют производительность по воздуху, обычные значения которой составляют:

Офисы — 1000-10000 м 3 /ч;

Квартиры — 1000-2000 м 3 /ч;

Коттеджи — 100-800 м 3 /ч.

Проводим нужные измерения

Вам также придется рассчитать мощность калорифера. Учитывается при этом желаемая температура воздуха в помещении, а также нижняя величина температуры воздуха снаружи. Кроме того, выбирая оборудование, учтите рабочее давление, которое создает вентилятор, и необходимую скорость потока воздуха.

Проектируем воздухораспределительную сеть

Теперь можно переходить ко второму этапу — проектирование воздухораспределительной сети. В нее входят воздуховоды, переходники, распределители воздуха и др. Огромное значение при этом будут иметь диаметры воздуховодов и число переходов между разными диаметрами. Чем эти показатели больше, тем больше будет рабочее давление. Для тех, кто в данной терминологии, а также в особенностях сооружения систем вентиляции разбирается не очень хорошо, приводим формулу. Она поможет провести расчет вентиляции: мощность вентилятора в квартире должна быть равной объему комнаты, умноженному на два. Имейте в виду, что в случае с офисным помещением, одному человеку должно выделяться в один час 60 метров кубических свежего воздуха.

Находим оптимальные решения

Диаметр воздуховодов определяет среднюю скорость потока воздуха. Она, как правило, должна составлять 12-16 мм/с. При проектировании важно находить оптимальные соотношения между мощностью вентилятора и диаметрами воздуховодов. Рассчитывая мощность калорифера, учитывайте нужную температуру в помещении, нижний уровень температуры воздуха снаружи. Для квартир мощности калорифера находится в пределах от 1 до 5 кВт, а для офисов пределы — от 5 до 50 кВт.

Как видите, расчет вентиляции — сложный процесс, и если вы не уверены, что справитесь со всеми его тонкостями, лучше обратитесь к специалистам.

Основное требование к вентиляционной системе — обеспечить необходимый уровень обмена воздуха в помещении при соблюдении определенных климатических параметров внутри помещения. Именно от объема обработанного вентиляционной системой воздуха зависит и ее стоимость и последующие эксплуатационные расходы. Для ответа на сей непраздный вопрос мы определимся, что будем пока рассматривать требования к жилым и административным помещениям, а вот многовариантные требования к промышленным помещениям оставим и рассмотрим отдельно.

Итак, во-первых, всем понятно, зачем вообще необходим свежий воздух внутри помещения — конечно, для дыхания. И вот, руководствуясь именно этой основной задачей, и можно определить необходимый объем приточного воздуха в помещении. Очевидно, что он будет зависеть от количества людей в помещении. Итак, принято считать, что на одного взрослого человека необходимо 30 м 3 /час, на ребенка можно и 20 м 3 /ч. Эта цифра была подобрана почти опытным путем и закреплена в соответствующих документах, регламентирующих проектирование вентиляционных систем. (Представьте, что у среднего взрослого человека объем легких 4,5 литра или 0,0045 м 3 , и дышит он не чаще 1 раза в секунду, да и то неполной грудью, — это всего 16,2 м 3 . Но есть еще время, которое отработанный воздух будет находиться в помещении. Трудно же представить, что каждый следующий вдох будет свежим воздухом.)

Для жилых помещений в нашей стране определена также норма в 3 м 3 на кв.метр жилой площади, и она не лишена смысла, ибо точно определить количество людей в комнате невозможно, и эта величина отталкивается от принятых норм жилой площади на одного человека. Стоит учесть также, что вентиляция кроме подачи свежего воздуха производит удаление отработанного, который содержит в себе все вредности, выделяемые внутри помещения — от радиоактивного радона до ядовитых испарений современных моющих средств (один комет со своим замечательным хлором чего стоит!). Затронув проблему загрязнения внутреннего воздуха, мы подошли к следующему параметру вентиляционных систем — КРАТНОСТИ. Нормативные требования сводятся к 0,5-1 кратному обмену в жилых помещениях, и 3-кратному на кухнях. Но заметьте, что расчет на кратность не учитывает количество людей и интенсивность загрязнения внутреннего воздуха, расчет на количество людей не учитывает объемы помещений и также выделение вредностей в них.

Очевидно, необходим более точный расчет, который учитывает и то и другое, а стало быть, и более точное описание помещений. Однако, опыт, заключенный в регламентирующих документах ни в коем случае не стоит отвергать. Замечено, что при кратности воздухообмена в помещении менее 0,5 — человек ощущает духоту в жилом помещении, а в рабочем офисе рекомендуется кратность уже от 3 до 8. Ниже приведены рекомендованные значения рассмотренных параметров стандарту ASHRAE, DIN 1946, уважаемом во всем мире для определения объема вентиляции V.

Кратность воздухообмена. Объем V=s*Vp , где s- кратность, Vp — объем помещения.

Таблица 1.

Расчет на количество людей в помещении.

Объем вентиляции V =s s* Vi , гдеs s- количество человек, Vi — норма наружного воздуха на одного человека

Таблица 2.

Обратите внимание на значения в табл. 1 и табл. 2. Если принимать значения в табл.1 за основу, то, получается, они приводят к гораздо большему объему вентиляции, нежели тот, который бы получился при расчете от значений Vi по табл.2. Ну, например, офис — среднее рекомендованное значение воздухообмена 5,5 крат. Предположим, что в помещении площадью 100 м 2 и высоте потолков 3 м работают около 10 человек (10 м 2 на человека — достаточно плотно, при учете всей площади офиса). Тогда, отталкиваясь от расчета по табл.2, необходимый объем вентиляции 10*40 = 400 м 3 /час, а если отталкиваться от рекомендаций по табл.1, то получается 100*3*5,5 = 1750 м 3 /час — ничего себе разница! Но, что интересно, никакого парадокса здесь нет. Все дело в том, что рекомендации по табл. 1 основаны на основе усредненного учета всех параметров внутренней среды помещения, определяющих комфортные условия для находящихся там людей. Об этом мы говорили выше — температура, влажность, запахи, движение воздуха, температура ограждений (стен, потолка и т.п.).

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

Причины проблем с вентиляцией

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, плесневый грибок в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображенийРасчет и проектирование вентиляции выполняется на стадии проектирования строительства или перепланировки. Система нужна для обеспечения нормального микроклимата в помещенияхВо время проектирования и выполнения расчетов вентиляционной системы подбирается оптимальное сечение воздуховодов и мощность оборудованияВ вентиляционных системах с механическим побуждением воздуха за его движение отвечают вентиляторы. В приточных вентиляторы поставляют воздух в помещения, в вытяжных — отводят егоЕсли вентиляционная система сооружается параллельно системе кондиционирования или воздушного отопления, объем поставляемого ими воздуха должен быть учтен в расчетахКухонную вытяжку нельзя подключать к вентиляционному каналу. Это отдельные системы, каждая из которых решает собственные задачиТак как эксплуатационные условия разных по назначению помещений отличаются, то расчеты для них производятся отдельноВентиляционную систему разрабатывают не только для помещений, но и для отдельных конструкций здания. К примеру, вентиляцию подкровельного пространства устраивают для отвода конденсата из-под кровельного покрытияВ обязательном порядке вентиляционной системой оборудуют подвальные помещения и цоколь. Вентиляция продлит сроки службы заглубленных и контактирующих с грунтом конструкций, как следствие, увеличатся сроки эксплуатации постройкиВентиляция частного дома в стиле лофтВентканал в перекрытии каркасного домаКомпоненты приточной и вытяжной системыВентиляция в паре с кондиционированиемВентиляционная решетка и вывод вытяжкиВытяжной вентилятор в ванной комнатеВентиляция подкровельного пространстваПриточная труба для подвала

Немало проблем доставляет отсутствие характерных для окон и дверей тончайших зазоров, спровоцированное установкой герметичных пластиковых конструкций. В таком случае в дом поступает слишком мало свежего воздуха, нужно позаботиться о его притоке.

Засоры и разгерметизация воздуховодов могут стать причиной серьезных проблем с удалением отработанного воздуха, который насыщен неприятными запахами, а также избыточными водяными парами.

В результате в служебных помещениях могут появиться колонии грибка, что плохо отражается на здоровье людей и может спровоцировать ряд серьезных заболеваний.

Запотевшие окна, плесень и грибок в ванной комнате, духота – все это явные признаки того, что жилые помещения вентилируются неправильно

Но бывает и так, что элементы вентиляционной системы работают прекрасно, однако описанные выше проблемы остаются нерешенными. Возможно, расчеты вентиляционной системы для конкретного дома или квартиры были проведены неправильно.

Негативно может отразиться на вентилировании помещений их переделка, перепланировка, появление пристроек, установка уже упомянутых ранее пластиковых окон и т.п. При таких существенных изменениях не помещает повторно произвести расчеты и модернизировать имеющуюся вентиляционную систему в соответствии с новыми данными.

Один из простых способов обнаружить проблемы с вентилированием – проверка наличия тяги. К решетке вытяжного отверстия нужно поднести зажженную спичку или лист тонкой бумаги. Не стоит использовать для такой проверки открытый огонь, если в помещении используется газовое нагревательное оборудование.

Слишком герметичные внутренние двери могут препятствовать нормальной циркуляции воздуха по дому, рещить проблему помогут специальные решетки или отверстия

Если пламя или бумага уверенно отклоняется в сторону вытяжки, тяга имеется, если же этого не происходит или отклонение слабое, нерегулярное, проблема с отведением отработанного воздуха становится очевидной. Причиной могут быть засоры или повреждение воздуховода в результате неумелого ремонта.

Не всегда есть возможность устранить поломку, решением проблемы часто становится монтаж дополнительных средств вытяжного вентилирования. Перед их установкой также не помешает провести необходимые расчеты.

Определить наличие или отсутствие нормальной тяги в вытяжной вентиляционной системе дома можно с помощью пламени или листа тонкой бумаги

Как рассчитать воздухообмен?

Все расчеты по системам вентилирования сводятся к тому, чтобы определить объемы воздуха в помещении. В качестве такого помещения может рассматриваться как отдельная комната, так и совокупность комнат в конкретном доме или квартире.

На основании этих данных, а также сведений из нормативных документов рассчитывают основные параметры вентиляционной системы, такие как количество и сечение воздуховодов, мощность вентиляторов и т.п.

Существуют специализированные расчетные методики, позволяющие просчитать не только обновление воздушных масс в помещении, но и удаление тепловой энергии, изменение влажности, выведение загрязнений и т.п. Подобные расчеты выполняются обычно для зданий промышленного, социального или какого-либо специализированного назначения.

Если есть необходимость или желание выполнить настолько подробные расчеты, лучше всего обратиться к инженеру, изучившему подобные методики.

Для самостоятельных расчетов по жилым помещениям используют следующие варианты:

  • по кратностям;
  • по санитарно-гигиеническим нормам;
  • по площади.

Все эти методики относительно просты, уяснив их суть, даже неспециалист может просчитать основные параметры своей вентиляционной системы. Проще всего воспользоваться расчетами по площади. За основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.

Количество людей, которые постоянно проживают в доме, при этом не учитывается.

Вентиляционная система в жилых зданиях устраивается таким образом, чтобы воздух поступал через спальню и гостиную, а удалялся из кухни и санузла

Расчет по санитарно-гигиеническим нормативам тоже относительно несложен. В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов.

Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в количестве 60 кубических метров в час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 кубических метров в час.

Несколько сложнее производится расчет по кратности воздухообмена. При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них.

Кратностью воздухообмена называют коэффициент, отражающий количество полной замены отработанного воздуха в помещении в течение одного часа. Соответствующие сведения содержатся в специальной нормативной таблице (СНиП 2.08.01-89* Жилые здания, прил. 4).

С помощью этой таблицы выполняют расчет вентиляции дома по кратностям. Соответствующие коэффициенты отражают кратность воздухообмена за единицу времени в зависимости от назначения помещения

Рассчитать количество воздуха, которое должно быть обновлено в течение часа, можно по формуле:

L=N*V,

Где:

  • N – кратность воздухообмена за час, взятая из таблицы;
  • V – объём помещения, куб.м.

Объем каждого помещения вычислить очень просто, для этого нужно умножить площадь комнаты на ее высоту. Затем для каждого помещения рассчитывают объем воздухообмена в час по приведенной выше формуле.

Показатель L для каждой комнаты суммируется, итоговое значение позволяет составить представление о том, сколько именно свежего воздуха должно поступать в помещение за единицу времени.

Разумеется, через вытяжные каналы должно удаляться точно такое же количество отработанного воздуха. В одной и той же комнате не устанавливают и приточную, и вытяжную вентиляцию. Обычно приток воздуха осуществляется через “чистые” помещения: спальню, детскую, гостиную, кабинет и т.п.

Вытяжную вентиляцию в ванной комнате или санузле устанавливают в верхней части стены, встроенный вентилятор работает в автоматическом режиме

Удаляют же воздух из комнат служебного назначения: санузла, ванной, кухни и т.п. Это разумно, поскольку неприятные запахи, характерные для этих помещений, не распространяются по жилищу, а сразу же выводятся наружу, что делает проживание в доме более комфортным.

Поэтому при расчетах берут норматив только для приточной или только для вытяжной вентиляции, как это отражено в нормативной таблице.

Если воздух не нужно подавать в конкретное помещение или удалять из него, в соответствующей графе стоит прочерк. Для некоторых помещений указано минимальное значение кратности воздухообмена. Если расчетная величина оказалась ниже минимальной, следует использовать для расчетов табличную величину.

Если проблемы с вентиляцией обнаружились уже после того, как ремонт в доме был проведен, можно установить приточные и вытяжные клапаны в стене

Разумеется, в доме могут найтись помещения, назначение которых в таблице не отображено. В таких случаях используют нормативы, принятые для жилых помещений, т.е. 3 куб.м на каждый квадратный метр комнаты. Нужно просто умножить площадь комнаты на 3, полученное значение принять за нормативную кратность воздухообмена.

Все значения кратности воздухообмена L следует округлить в сторону увеличения, чтобы они были кратными пяти. Теперь нужно посчитать сумму кратности воздухообмена L для помещений, через которые осуществляется приток воздуха. Отдельно суммируют кратность воздухообмена L тех комнат, из которых производится отведение отработанного воздуха.

Если результат вычислений не отвечает санитарным требованиям, производится установка приточного клапана,бризера или вытяжки через стену, модернизируется существующая система или выполняется ее чистка.

Холодный наружный воздух может отрицательно сказаться на качестве отопления в доме, для таких ситуаций используют вентиляционные устройства с рекуператором

Затем следует сравнить эти два показателя. Если L по притоку оказался выше, чем L по вытяжке, то нужно увеличить показатели для тех комнат, по которым при расчетах использовались минимальные значения.

Примеры расчетов объема воздухообмена

Чтобы провести расчет для вентиляционной системы по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.

Например, в гипотетическом доме имеются следующие помещения:

  • Спальня – 27 кв.м.;
  • Гостиная – 38 кв.м.;
  • Кабинет – 18 кв.м.;
  • Детская – 12 кв.м.;
  • Кухня – 20 кв.м.;
  • Санузел – 3 кв.м.;
  • Ванная – 4 кв.м.;
  • Коридор – 8 кв.м.

Учитывая, что высота потолка во всех помещениях составляет три метра, вычисляем соответствующие объемы воздуха:

  • Спальня – 81 куб.м.;
  • Гостиная – 114 куб.м.;
  • Кабинет – 54 куб.м.;
  • Детская – 36 куб.м.;
  • Кухня – 60 куб.м.;
  • Санузел – 9 куб.м.;
  • Ванная – 12 куб.м.;
  • Коридор – 24 куб.м.

Теперь, используя приведенную выше таблицу, нужно произвести расчёты вентиляции помещения с учетом кратности воздухообмена, увеличив каждый показатель до значения, кратного пяти:

  • Спальня – 81 куб.м.*1 = 85 куб.м.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м.;
  • Кабинет – 54 куб.м.*1 = 55 куб.м.;
  • Детская – 36 куб.м.*1 = 40 куб.м.;
  • Кухня – 60 куб.м. – не менее 90 куб.м.;
  • Санузел – 9 куб.м. не менее 50 куб.м;
  • Ванная – 12 куб.м. не менее 25 куб.м.

Сведения о нормативах для коридора в таблице отсутствуют, поэтому в расчете данные по этому небольшому помещению не учтены. Для гостиной выполнен расчет по площади с учетом норматива три куб. метра на каждый метр площади.

Правильно организованная система вентиляции обеспечит достаточный воздухообмен в гостиной. При проектировании обязательно следует учитывать требования и нормы СНиПов

Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.мч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — не менее 90 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 165 куб.м/ч.

Теперь следует сравнить полученные суммы. Очевидно, что необходимый приток превышает вытяжку на 130 куб.м/ч (295 куб.м/ч-165 куб.м/ч).

Чтобы устранить эту разницу, нужно увеличить объемы воздухообмена по вытяжке, например, увеличив показатели по кухне. На практике это проводится, например, заменой воздуховодов на каналы бóльшего сечения.

Правила расчета площади воздушных каналов для замены или модернизации системы вентилирования приведены здесь. Советуем ознакомиться с полезным материалом.

После правок результаты расчета будут выглядеть следующим образом:

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.мч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — 220 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 295 куб.м/ч.

Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.

Расчет вентиляционной системы для кухни также чрезвычайно важен. Особенно, если там используется газовое оборудование для приготовления пищи

Расчет воздухообмена в соответствии с санитарными нормами выполнить значительно проще. Допустим, что в доме, рассмотренном выше, постоянно проживают два человека и еще двое пребывают в помещении нерегулярно.

Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.мчел для постоянных жильцов и 20 куб.мчас для временных посетителей:

  • Спальня – 2 чел*60 = 120 куб.мчас;
  • Кабинет – 1 чел.*60 = 60 куб.мчас;
  • Гостиная 2 чел*60 + 2 чел*20 = 160 куб.мчас;
  • Детская 1 чел.*60 = 60 куб.мчас.

Всегопо притоку — 400 куб.мчас.

Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.

Достаточный объем воздуха, своевременно поступающий в ванную комнату, и также своевременная эвакуация отработанного позволяет предотвратить образование затхлого воздуха и появление плесневелых грибов

Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:

  • Кухня – 60 куб.м. — 300 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 400 куб.м/ч.

Увеличен воздухообмен для кухни и ванной комнаты. Недостаточный объем по вытяжке можно разделить между всеми помещениями, в которых установлена вытяжная вентиляция. Или увеличить этот показатель только для одного помещения, как это было сделано при расчете по кратностям.

В соответствии с санитарными нормами воздухообмен рассчитывают подобным образом. Допустим, площадь дома составляет 130 кв.м. Тогда воздухообмен по притоку должен составлять 130 кв.м*3 куб.мчас = 390 куб.мчас.

Остается распределить этот объем на помещения по вытяжке, например, таким образом:

  • Кухня – 60 куб.м. — 290 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 390 куб.м/ч.

Баланс воздухообмена — один из основных показателей при проектировании вентиляционных систем. Дальнейшие расчеты выполняются на основе этих сведений.

Как подобрать сечение воздуховода?

Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.

Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума

Стандартная скорость перемещения воздушных масс по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.

Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.мч, а сверху выбрать значение скорости — пять метров в секунду.

Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.

С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек

От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.

Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.

Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс

Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.

На нормальный воздухообмен оказывает влияние такое явление как обратная тяга, со спецификой которой и способами борьбы с ней ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.

Используемые источники:

  • https://otivent.com/raschet-ventiljacii-pomeshhenija
  • https://kvartalmuz.ru/ventilation-in-private-house/calculation-of-ventilation-by-room-volume-how-to-calculate-the-volume-of-air-in-the-room/
  • https://sovet-ingenera.com/vent/raschety/raschet-ventilyacii.html

Калькулятор расчета вентиляции для частного дома и промышленного помещения

1Калькуляторы онлайн

Для правильного выполнения расчета вентиляции в частном или общественном понимании недостаточно просто воспользоваться онлайн-калькулятором или взять данные из справочных таблиц. Необходимо понимать, как и почему принимаются нормативные показатели и как применить их к конкретным вычислениям.

Кратность воздухообмена

Этот критерий чаще всего используется для упрощенного расчета системы вентиляции. Под термином «кратность воздухообмена» (в английской терминологии air exchange rate) понимают обмен воздушных масс, выражающихся количеством за час. Причем в зависимости от способа эксплуатации помещения учитывается либо число обменов для помещения в целом, либо кратность с учетом площади (объема). Ниже приведена таблица с нормативными данными для помещений частного дома или общественного здания. При этом подразумевается, что приток воздуха идет естественным путем, а кратность считается для вытяжной вентиляции. Расчетная температура в холодный период указывается для того, чтобы при вычислениях компенсировать излишнюю сухость воздуха за счет действия отопительных приборов.

Таблица 1. Кратность воздухообмена по площади или назначению помещений.

При использовании таблицы важно обратить внимание: кратность указывается в расчете на площадь помещения, а в нашем онлайн-калькуляторе расчет ведется для объема.

При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже.

Таблица 2. Кратность воздухообмена для помещений общего или специального назначения.

Применяя показатель, соответствующий жилым комнатам или спальням, равный единице, получаем требуемую производительность вентиляционной системы (м.куб./час).

Основой расчета вентиляции онлайн является формула

L = V х Kp

здесь V — объем комнаты (произведение площади на высоту), м.куб.;

Kp — кратность воздухообмена согласно санитарно-гигиеническим нормам, 1/ч.

Для жилой комнаты с площадью 20 м.кв. и высотой 2,5 м требуемая мощность вентиляции составит

L = (20 х 2,5) х 1 =50 м.куб.

При использовании данных первой таблицы расчет ведется без учета высоты помещения, то есть

L = S х Kp

здесь S — площадь помещения, м.кв.;

Kp — кратность воздухообмена согласно нормам, 1/ч.

Для тех же размеров комнаты (20 м.кв.) необходимый объем воздуха в час

L = 20 х 3 = 60 м.куб.

Данный метод вычислений дает более высокие требования к системе вентиляции, поэтому предпочтительным считается предыдущий вариант вычислений. При указании в таблице объема воздуха на помещение именно эти цифры используют для дальнейшего подбора компонентов вентиляционной системы.

Расчет вентиляции помещения в зависимости от числа людей

Второй сравнительно простой способ вычисления производительности вентиляционной системы – по числу находящихся в помещении людей. При этом в калькулятор вентиляции достаточно внести число пользователей и указать степень их активности.

Вычисления ведутся по формуле

L = N х Lнорм

Где L — необходимая производительность вентилирующей системы, м3/ч;

N — число людей;

Lнорм — расход воздушной смеси на человека, согласно нормативам (объем).

Последний показатель принимается согласно санитарно-гигиеническим нормам:

  • спокойствие (отдых, сон) — 20 м3/ч;
  • умеренная активность — 40 м3/ч;
  • активная деятельность (физическая работа, тренировки) — 60 м3/ч.

Таким образом, для комнаты с теми же, что и в предыдущем примере расчета вентиляции, размерами (20 м.кв.) при одновременной умеренной активности 5 человек (офисная работа) потребуется мощность системы

L = 5 х 40 = 200 м.куб.

Если речь идет не о частном доме, а об общественном заведении, следует руководствоваться другими показателями.

Однако для таких помещений производительность вентиляции рассчитывается индивидуально, в ходе проектирования системы (или здания в целом), и кратность воздухообмена считается только дополнительным, проверочным показателем.

Заключение

Несмотря на то, что калькулятор расчета вентиляции, дает только приблизительные данные, он позволит примерно представлять необходимую производительность приточно-вытяжной вентиляции и проверить данные, представленные фирмой, монтирующей систему. Знание того, как рассчитать вентиляцию на бытовом уровне, поможет также при самостоятельной установке принудительно проветривающих помещение установок.

Описание. Формулы. Калькулятор.

Расчёт сечения воздуховода для механической (принудительной) вентиляции?

prjamougolnij_vozduhovodkrugliy_vozduhovod

   Расчёт сечения прямоугольного и/ли круглого воздуховода осуществляется с помощью двух известных параметров: воздухообмен по помещению и скорость потока воздуха.

   Воздухообмен по помещению может быть заменён на производительность вентилятора. Производительность приточного или вытяжного вентиляторов указывается заводом изготовителем в паспортных данных изделия. При проектировании или предпроектной разработке, воздухообмен рассчитывается исходя из кратности. Кратность (количество раз замены полного объёма воздуха в помщении за 1 час) — это коэффициент из нормативной документации.

   Скорость потока в воздуховоде необходимо измерить, если это смонтированная система. А если проект находится в стадии разработки, то скорость потока в воздуховоде  задаётся самостоятельно. Скорость потока в воздуховоде не должна превышать 10 м/с.

Ниже приведены формулы и калькулятор на их основе,  с помощью которых вы сможете рассчитать сечение прямоугольных и круглых воздуховодов.

Формула для расчёта круглого сечения (диаметра) воздуховода

Формула для расчёта прямоугольного сечения  воздуховода

Калькулятор расчёта сечений прямоугольных и круглых воздуховодов через воздухообмен и скорость потока

Введите в поля параметры воздухообмена и требуемую скорость потока в воздуховоде

Онлайн-калькулятор расчета производительности вентиляции

Расчет вентиляции, как правило, начинается с подбора оборудования, подходящего по таким параметрам, как производительность по прокачиваемому объему воздуха и измеряемому в кубометрах в час. Важным показателем в системе является кратность воздухообмена. Кратность воздухообмена показывает, сколько раз происходит полная замена воздуха в помещении в течение часа. Кратность воздухообмена определяется СНиП и зависит от:

  • назначения помещения
  • количества оборудования
  • выделяющего тепло,
  • количества людей в помещении.

В сумме все значения по кратности воздухообмена для всех помещений составляют производительность по воздуху.

Расчет производительности по кратности воздухообмена

Методика расчета вентиляции по кратности:

L = n * S * Н, где:

L — необходимая производительность м3/ч; n — кратность воздухообмена; S — площадь помещения; Н — высота помещения, м.

Расчет производительности вентиляции по количеству людей

Методика расчета производительности вентиляции по количеству людей:

L = N * Lнорм, где:

L — производительность м3/ч; N — число людей в помещении; Lн — нормативный показатель потребления воздуха на одного человека составляющий: при отдыхе — 20 м3/ч; при офисной работе — 40 м3/ч; при активной работе — 60 м3/ч.

Онлайн-калькулятор расчета системы вентиляции

Следующий этап в расчете вентиляции — проектирование воздухораспределительной сети, состоящей из следующих компонентов: воздуховоды, распределители воздуха, фасонные изделия (переходники, повороты, разветвители.)

Сначала разрабатывается схема воздуховодов вентиляции, по которой производится расчет уровня шума, напора по сети и скорости потока воздуха. Напор по сети напрямую зависит от того, какова мощность используемого вентилятора и рассчитывается с учетом диаметров воздуховодов, количества переходов с одного диаметра на другой, и количества поворотов. Напор по сети должен возрастать с увеличением длины воздуховодов и количества поворотов и переходов.

Расчет количества диффузоров

Методика расчета количества диффузоров

N = L / ( 2820 * V * d * d ), где

N — количество диффузоров, шт; L — расход воздуха, м3/час; V — скорость движения воздуха, м/сек; d — диаметр диффузора, м.

Расчет количества решеток

Методика расчета количества решеток

N = L / ( 3600 * V * S ), где

N— количество решеток; L — расход воздуха, м3/час; V — скорость движения воздуха, м/сек; S — площадь живого сечения решетки, м2.

Проектируя системы вентиляции, необходимо находить оптимальное соотношение между мощностью вентилятора, уровнем шума и диаметром воздуховодов. Расчет мощности калорифера производится с учетом необходимой температуры в помещении и нижним уровнем температуры воздуха снаружи.

Расчет мощности калорифера

Методика расчета мощности калорифера

Р = T * L * Сv / 1000, где:

Р — мощность прибора, кВт; T — разница температур на выходе и входе системы, °С; L — производительность м?/ч. Cv — объемная теплоемкость воздуха = 0,336 Вт·ч/м?/°С. Напряжение питания может быть однофазным 220 В или трехфазным 380 В. При мощности более 5 кВт желательно использование трехфазного подключения.

</tr></tbody></table>

Также при выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Вентиляция — это инженерная система, представляющая собой совокупность устройств и мероприятий, обеспечивающих комфортный воздухообмен и поддерживающих определенный температурно-влажностный режим в помещениях.

Расчет системы вентиляции онлайн калькулятором KALK.PRO позволяет узнать необходимую мощность (производительность) вентиляции по площади помещения и кратности воздухообмена. В результате, согласно нормативам, вы получите необходимую производительность вентиляции для заданных условий в м3/ч.

Вы также можете рассчитать вентиляцию по количествую людей в помещении.

Единственный вопрос, который может возникнуть, что такое кратность воздухообмена ?

Кратность воздухообмена — это санитарный показатель, который используется для упрощенного расчета системы вентиляции. Он регламентируется СНиП 2.08.01-89 «Жилые здания» и СНиП 2.09.04-87 «Административные и бытовые здания». Выберите тип помещения, который вам подходит и подставьте значение в калькулятор вентиляции.

Кратность воздухообмена для жилых и технических помещений

Помещение Кратность воздухообмена или количество удаляемого воздуха из помещения, м3

Жилая комната квартир или общежитий

3 м3/ч на 1 м2

Кухня квартиры и общежития, кубовая: с электроплитами, с газовыми плитами

не менее 60 м3/ч при 2-комфорочных плитах,

не менее 75 м3/ч при 3-комфорочных плитах,

не менее 90 м3/ч при 4-комфорочных плитах

Сушильный шкаф для одежды и обуви в квартирах

30 м3

Ванная

25

Уборная индивидуальная

25

Совмещенное помещение уборной и ванной

50

То же, с индивидуальным нагревом

50

Умывальная общая

0,5

Душевая общая

5

Уборная общая

50 м3/ч на 1 унитаз

25 м3/ч на 1 писсуар

Гардеробная комната для чистки и глажения одежды, умывальная в общежитии

1,5

Помещение для культурно-массовых мероприятий, отдыха, учебных и спортивных занятий, помещения для администрации и персонала

1

Постирочная

7

Гладильная, сушильная в общежитиях

3

Кладовые для хранения личных вещей, спортивного инвентаря, хозяйственные и бельевые в общежитии

0,5

Палата изолятора в общежитии

1

Машинное помещение лифтов

не менее 0,5

Мусоросборная камера

1

Если вентиляция в доме или квартире не справляется со своими задачами, то это чревато очень серьёзными последствиями. Да, проблемы в работе этой системы проявляются на так быстро и чувствительно, как, скажем неполадки с отоплением, и не все хозяева уделяют им адекватное внимание. Но результаты могут быть весьма печальными. Это — спертый переувлажненный воздух в помещениях, то есть идеальная среда для развития болезнетворных микроорганизмов. Это — запотевшие окна и сырые стены, на которых вскорости могут появиться очаги плесени. Наконец, это — попросту снижение комфорта из-за распространяющихся от санузла, ванной, кухни в жилую зону запахов.

Калькуляторы расчета площади сечения вытяжной отдушины вентиляции

Чтобы избежать застойных явлений, в помещениях в течение отрезка времени должен происходить обмен воздуха с определённой кратностью. Приток осуществляется через жилую зону квартиры или дома, вытяжка – через кухню, ванную, санузел. Именно для этого там и располагаются окна (отдушины) вытяжных вентиляционных каналов. Нередко хозяева жилья, затевающие ремонт, спрашивают, можно ли заделать эти отдушины или уменьшить их в размерах, чтобы, например, установить на стенах те или иные предметы мебели. Так вот — полностью перекрывать их однозначно нельзя, а перенос или изменение в размерах возможны, но не только с условием, что будет обеспечена необходимая производительность, то есть способность пропустить требуемый объем воздуха. А как это определить? Надеемся, читателю помогут предлагаемые калькуляторы расчета площади сечения вытяжной отдушины вентиляции.

Калькуляторы будут сопровождаться необходимыми пояснениями по проведению вычислений.

Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома

Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.

Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:

Тип помещенияМинимальные нормы воздухообмена (кратность в час или кубометров в час)
<font>ПРИТОК</font><font>ВЫТЯЖКА</font>
<font>Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»</font>
Жилые помещения с постоянным пребыванием людейНе менее однократного обмена объема в течение часа
Кухня60 м³/час
Ванная, туалет25 м³/час
Остальные помещенияНе менее 0,2 объема в течение часа
<font>Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»</font>
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека3 м³/час на каждый 1 м² площади помещения
<font>Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»</font>
Спальная, детская, гостинаяОднократный обмен объема в час
Кабинет, библиотека0,5 от объема в час
Бельевая, кладовка, гардеробная0,2 от объема в час
Домашний спортзал, биллиардная80 м³/час
Кухня с электрической плитой60 м³/час
Помещения с газовым оборудованиемОднократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печьюОднократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная90 м³/час
Душевая, ванная, туалет или совмещенный санузел25 м³/час
Домашняя сауна10 м³/час на каждого человека

Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).

Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.

Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.

Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции

Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.

Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.

К примеру, это может выглядеть так:

Помещение и его площадьНормы притока Нормы вытяжки 
1 способ – по объему комнаты2 способ – по количеству людей1 способ2 способ
Гостиная, 18 м²5090
Спальная, 14 м²3960
Детская, 15 м²4260
Кабинет, 10 м²1430
Кухня с газовой плитой, 9 м²6025 + 100 = 125
Санузел25
Ванная25
Гардероб-кладовая, 4 м²2
Суммарное значение240177
Принимаемое общее значение воздухообмена240

Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.

Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.

Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналов

Итак, найден объем воздуха, который должен поступить помещения квартиры в течение часа и, соответственно, выведен за это же время.

Далее, исходят их количества вытяжных каналов, имеющихся (или планируемых к организации – при проведении самостоятельного строительства) в квартире или доме. Полученный объем необходимо распределить между ними.

Для примера, вернемся к таблице выше. Через три вентиляционных канала (кухня, санузел и ванная) необходимо отвести 240 кубометров воздуха в час. При этом из кухни по расчетам должно отводиться не менее 125 м³, из ванной и туалета по нормативам – не менее, чем по 25 м³. Больше – пожалуйста.

Поэтому напрашивается такое решение: кухне «отдать» 140 м³/час, а оставшееся — разделить поровну между ванной и санузлом, то есть по 50 м³/час.

Ну а зная объем, который необходимо отвести в течение определённого времени – несложно подсчитать ту площадь вытяжного канала, которая гарантированно справится с задачей.

Правда, для расчетов требуется еще и значение скорости воздушного потока. А она тоже подчиняется определённым правилам, связанным с допустимыми уровнями шума и вибрации. Так, скорость потока воздуха на вытяжных вентиляционных решетках при естественной вентиляции должна быть в пределах диапазона 0,5÷1,0 м/с.

Приводить формулу расчета здесь не будем – сразу предложим читателю воспользоваться онлайн-калькулятором, который определит требуемую минимальную площадь сечения вытяжного канала (отдушины).

Калькулятор расчета минимальной площади сечения вентиляционной отдушины

Обладая элементарными знаниями в геометрии, полученную площадь несложно привести к размерам прямоугольника. Правда, при этом должно соблюдаться условие – соотношение длинной и короткой стороны – не более, чем 3:1.

Нередко вентиляционные решетки имеют и круглое окно. Значит, необходимо пересчитать площадь сечения в диаметр. Или же требуется сделать переход от прямоугольного сечения на круглое. В обоих случаях будет полезен третий калькулятор, предназначенный специально для такой цели.

Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольного

Полученное значение будет ориентиром при приобретении стандартных деталей с круглым сечением. Естественно, округление при этом делается в бо́льшую сторону.

Правильная организации естественной вентиляции

Объем данной статьи не позволяет рассмотреть все нюансы организации вентиляции жилого дома или квартиры. Но в этом и нет особой нужды, так как на страницах нашего портала уже имеется специальная публикация, в которой проблемы естественной вентиляции рассматриваются со всеми подробностями.

Используемые источники:

  • https://stroy-okey.ru/calculator/onlajn-kalkuljator-rascheta-ventiljacii/
  • https://torvent.ru/raschyot_ventilyacii/
  • https://sms161.ru/uslugi/ventilyaciya/raschet/
  • https://kalk.pro/ventilation/ventilation-power/
  • https://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-ploshhadi-secheniya-vytyazhnoj-otdushiny-ventilyacii.html

Калькулятор расчета норм приточной вентиляции

Значимость вентиляции многие неопытные хозяева домов или квартир недооценивают, и тем самым допускаю чрезвычайно серьезную ошибку. Недостаточность или неправильная организация воздухообмена – это застойные явления с резким ухудшением микроклимата в помещениях, повышенная влажность, развитие патогенной микрофлоры, что в конечном итоге приводит, в лучшем случае, к быстрой порче отделки и находящегося в квартире имущества, а в дальнейшем – и к стойким расстройствам здоровья, нередко преходящим в опасные формы.

Калькулятор расчета норм приточной вентиляции

Каким бы образом ни организовывалась вентиляция дома или квартиры, она должна подчиняться определенным нормативам. И одним из ключевых показателей является объем свежего воздуха, поступающего в помещения в течение часа. Все остальные расчеты естественной, приточной, вытяжной или комбинированной вентиляции тем или иным образом будут базироваться именно на нормах поступления воздуха в жилые помещения.  В интернете несложно отыскать соответствующие таблицы с нормативами, но еще проще – применить специальный калькулятор расчета норм приточной вентиляции.

Некоторые пояснения по проведению расчетов читатель найдет ниже.

Калькулятор расчета норм приточной вентиляции

Перейти к расчётам

Пояснения по проведению вычислений

Правильно организованная вентиляция предполагает поступление свежего воздуха в жилые комнаты и выход отработанного через вентиляционные каналы, установленные на кухнях, в ванных, душевых, санузлах, кладовых и иных подсобных и специальных помещениях. Есть, безусловно, некоторые нюансы, зависящие от специфики дома, но они в большей мере касаются именно организации вытяжки, а приток воздуха подчиняется все же единым правилам.

Эти параметры регламентируются рядом законодательных документов –  ГОСТ, СНиП и СанПиН.  Причем, можно заметить несколько различающийся подход – в одних источниках расчет ведется по кратности воздухообмена в час, в зависимости от типа и объёма помещения, в других исходят от санитарных норм поступления свежего воздуха на каждого человека, постоянно находящегося в комнате (постоянным считается пребывание более двух часов).

Цены на приточную вентиляцию

приточная вентиляция

Чтобы не впасть в противоречие действующим правилам, обычно поступают так – проводят расчет по обоим критериям оценки, и в качестве итогового принимают большее значение.

В программу расчета предлагаемого вниманию калькулятора заложены требования Сводов правил СП 55.13330.2011 (СНиП 31-02-2001 «Одноквартирные жилые дома»), СП 54.13330.2011 (СНиП 31-01-2003 «Здания жилые многоквартирные») и СП 60.13330.2012 (СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»). С этим приложением несложно быстро просчитать все варианты, а затем принять максимальный из полученных результатов, на который и ориентироваться при дальнейшем планировании системы вентиляции.

Необходимость эффективной вентиляции и основные правила ее устройства

Если у читателя осталось недопонимание важности системы вентиляции в своем жилище, ему для начала следует внимательно изучить публикацию нашего портала «Естественная вентиляция в частном доме».

Расчет вентиляции помещения и площади сечения труб естественной вытяжки

Задача организованного воздухообмена комнат жилого дома либо квартиры — вывести лишнюю влагу и отработанные газы, заместив свежим воздухом. Соответственно, для устройства вытяжки и притока нужно определить количество удаляемых воздушных масс — произвести расчет вентиляции отдельно по каждому помещению. Методики вычислений и нормы расхода воздуха принимаются исключительно по СНиП.

Содержание:

Санитарные требования нормативных документов

Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:

  1. «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
  2. «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».

В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. Применяется 2 типа размерности — расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.

Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.

В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):

  • гостиная, детская, спальня — 1 раз в час;
  • кухня с электрической плитой — 60 м³/ч;
  • санузел, ванная, туалет — 25 м³/ч;
  • для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
  • котельная с теплогенератором, сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
  • кладовка, гардеробная и прочие подсобные помещения — кратность 0.2;
  • сушильная либо постирочная — 90 м³/ч;
  • библиотека, рабочий кабинет — 0.5 раз в течение часа.

Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических — до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.

В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:

  1. Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
  2. Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
  3. Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.

Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».

Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.

Определение расхода воздуха по кратности

Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:

Расшифровка обозначений:

  • L — искомый объем приточного и вытяжного воздуха, м³/ч;
  • S — квадратура помещения, где рассчитывается вентиляция, м²;
  • h — высота потолков, м;
  • n — число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).

Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75×3 х 1 = 47.25 м³/ч.

Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.

Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.

Онлайн-калькулятор в помощь

Программа считает требуемое количество воздуха по кратности, регламентируемой СНиП. Просто выберите разновидность помещения и введите его габариты.

Примечание. Для котельных с газовым теплогенератором калькулятор учитывает только трехкратный обмен. Количество приточного воздуха, идущего на сжигание топлива, нужно прибавлять к результату дополнительно.

Выясняем воздухообмен по числу жильцов

Приложение «К» СП 60.13330.2012 предписывает производить расчёт вентиляции помещения по простейшей формуле:

Расшифруем обозначения представленной формулы:

  • L — искомая величина притока (вытяжки), м³/ч;
  • m — объем воздушной чистой смеси в расчете на 1 чел., указанный в таблице Приложения «К», м³/ч;
  • N — количество людей, постоянно находящихся в рассматриваемой комнате 2 часа в день и более.

Очередной пример. Резонно предположить, что в той же гостиной одноэтажного дома два члена семьи пребывают длительное время. Учитывая, что проветривание организовано и на каждого жильца приходится свыше 20 квадратов площади, параметр m принимается равным 30 м³/ч. Считаем количество притока: L = 30×2 = 60 м³/ч.

Важно. Заметьте, полученный результат больше значения, определенного по кратности (47.25 м³/ч). В дальнейшие расчеты следует включить цифру 60 м³/ч.

Если количество проживающих в квартире настолько велико, что каждому человеку отведено меньше 20 м² (в среднем), то представленную выше формулу использовать нельзя. Правила указывают: в данном случае площадь гостиной и других комнат следует умножить на 3 м³/ч. Поскольку общая квадратура жилища равна 91.5 м², расчетный объем вентиляционного воздуха составит 91.5×3 = 274.5 м³/ч.

В просторных залах с высокими потолками (от 3 м) обновление атмосферы считается двумя способами:

  1. Если в помещении часто пребывает большое число людей, вычисляйте кубатуру подаваемого воздуха по удельному показателю 30 м³/ч на 1 чел.
  2. Когда количество посетителей постоянно меняется, вводится понятие обслуживаемой зоны высотой 2 метра от пола. Определяете объем этого пространства (умножьте площадь на 2) и обеспечиваете требуемую нормами кратность, как описано в предыдущем разделе.

Пример расчета и обустройства вентиляции

За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:

  1. Количество удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75×3 х 1 = 47.25 м³/ч.
  2. В детской комнате: 21×3 х 1 = 63 м³/ч.
  3. Кухня: 21×3 х 1 + 100 = 163 м³/ч.
  4. Санузел — 25 м³/ч.
  5. Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.

Примечание. Воздушный обмен в прихожей и коридоре не нормируется.

Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2×30 = 60 м³/ч (в каждом помещении).

Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.

Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции — это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов — кухонную вытяжку.

Как правильно организовать естественное движение потоков:

  1. Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
  2. В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
  3. Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
  4. Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки — удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
  5. Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
  6. За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.

Обратите внимание: свежие потоки, изображенные на планировке, направляются из комнат с чистой воздушной средой в более загрязненные зоны, затем выбрасываются наружу через шахты.

Подробнее об организации природной вентиляции смотрите на видео:

Вычисляем диаметры вентканалов

Дальнейшие расчеты несколько сложнее, поэтому каждый этап мы сопроводим примерами вычислений. Результатом станет диаметр и высота вентиляционных шахт нашего одноэтажного здания.

Весь объем вытяжного воздуха мы распределили на 3 канала: 100 м. куб. принудительно удаляет вытяжка на кухне в период включения плиты, оставшийся 271 кубометр уходит по двум одинаковым шахтам естественным образом. Расход через 1 воздуховод получится 271 / 2 = 135.5 м³/ч. Площадь сечения трубы определяется по формуле:

  • F — площадь поперечного сечения вентканала, м²;
  • L — расход вытяжки через шахту, м³/ч;
  • ʋ — скорость движения потока, м/с.

Справка. Скорость воздуха в каналах естественной вентиляции лежит в пределах 0.5–1.5 м/с. В качестве расчетного значения принимаем средний показатель — 1 м/с.

Как рассчитать сечение и диаметр одной трубы в примере:

  1. Находим размер поперечника в квадратных метрах F = 135.5 / 3600×1 = 0.0378 м².
  2. Из школьной формулы площади круга определяем диаметр канала D = 0.22 м. Выбираем ближайший больший воздуховод из стандартного ряда — Ø225 мм.
  3. Если речь идет о заложенной внутрь стены кирпичной шахте, то под найденное сечение подойдет размер вентканала 140×270 мм (удачное совпадение, F = 0.378 м. кв.).

Диаметр отводящей трубы под бытовую вытяжку считается аналогичным образом, только скорость потока, нагнетаемого вентилятором, принимается больше — 3 м/с. F = 100 / 3600×3 = 0.009 м² или Ø110 мм.

Подбираем высоту труб

Следующий шаг — определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

  • p — гравитационное давление в канале, Па;
  • Н — перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд — плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81×4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап — аэродинамический расчет отводных каналов. Задача — выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

  • Δp — общие потери давления в шахте;
  • R — удельное сопротивление трению проходящего потока, Па/м;
  • Н — высота канала, м;
  • ∑ξ — сумма коэффициентов местных сопротивлений;
  • Pv — давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим величину динамического давления по формуле Pv = 1.2×1² / 2 = 0.6 Па.
  2. Вычисляем сопротивление от трения R = 0.1 / 0.225×6 = 0.27 Па/м.
  3. Местные сопротивления вытяжной шахты — это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей — величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
  4. Окончательное вычисление: Δp = 0.27 Па/м х 4 м + 1.6×0.6 Па = 2.04 Па.

Примечание. Указанные в расчете значения коэффициентов и скорости воздуха 1 м/с можно применять независимо от диаметра шахт, который вы определили ранее.

Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Поскольку p = 2.75 Па больше потерь давления Δp = 2.04 Па, шахта высотой 4 метра будет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Как упростить задачу — советы

Вы могли убедиться, что расчеты и организация воздухообмена в здании — вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:

  1. Первые 3 этапа придется пройти в любом случае — выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
  2. Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — просто выведите воздухопроводы на высоту не менее 4 метров над заборными решетками.
  3. Внутри здания старайтесь использовать пластиковые трубы — благодаря гладким стенкам они практически не сопротивляются движению газов.
  4. Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
  5. Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.

Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.

Источник

Расчет площади воздуховодов — онлайн калькулятор


Автор Евгений Апрелев На чтение 3 мин. Просмотров 9.6k.

Вентиляция играет важнейшую роль в создании оптимального микроклимата в жилище. Правильно сконструированная вентиляционная система обеспечивает вывод за пределы помещения загрязненного воздуха, вредных газов, паров и пыли, которые влияют на здоровье людей, находящихся в жилом помещении. При проектировании вентиляционных систем производится огромное количество расчетов, в которых учитывается множество факторов и переменных.

В производительности вентиляционной системы не последнюю роль играю воздуховоды, а именно их длина, сечение и форма. Крайне важно чтобы расчет сечения воздуховодов был произведен правильно, так как именно от этого будет зависеть, сможет ли система воздуховодов пропускать достаточное количество воздуха, скорость воздушного потока и бесперебойная работа вентиляционной системы в целом. Благодаря грамотному расчету площади воздушных каналов, вибрация и аэродинамические шумы, производимые воздушными потоками, будут находиться в пределах допустимой нормы.

Рассчитать площадь воздуховодов для естественной вентиляционной системы можно тремя способами:

  • Обратиться к профессионалам. Расчет будет произведен качественно, но дорого.
  • Сделать самостоятельный расчет, используя формулы расчета удельных потерь воздуха, гравитационного подпора, поперечного сечения воздуховодов, формулу скорости движения воздушных масс в газоходах, определение потерь на трение и сопротивление.
  • Воспользоваться онлайн-калькулятором.

Расчет сечения воздуховода

Для того чтобы воспользоваться онлайн-калькулятором, не нужно иметь инженерного образования или платить денег, просто введите в каждое поле калькулятора необходимые данные и получите правильный результат.

Методика самостоятельного расчета сечения воздуховодов

  1. Определение аэродинамических характеристик воздушного канала с естественным движением воздуха.

Rуд = Pгр/ ∑L

где

Pгр – гравитационное давление в каналах вытяжной вентиляции, Па;

L – расчетная длина участка, м.

При естественном побуждении необходимо увязать показатели гравитационных давлений в проходных каналах помещений с показателями трения и местными сопротивлениями, которые возникают по пути движения воздуха от вытяжки до устья вытяжной шахты, а именно по равенству 1, где ∑(Rln+Z) – расчетное снижение давления на местные сопротивления и трение на отрезках воздуховодов в расчетном направлении движения воздушных масс.

  1. Определение значения гравитационного подпора

Pгр= h(pnpb)9.81

где

h – высота столба воздуха, м;

pn – плотность воздушных масс снаружи помещения, кг/м3,

pb – плотность воздушных масс в помещении.

  1. Площадь сечения воздуховода определяется по формуле

S = L * 2.778/V

где

S – расчетная площадь сечения воздуховода см2

L – расход воздуха через воздуховод, м3/час

V – скорость движения воздуха в воздуховоде, м/с,

2,788 – коэффициент для согласования размерностей.

  1. Фактическая площадь сечения воздуховодов определяется по формулам:

S = π * D / 400 – для круглых воздуховодов

S = A * B / 100 – для прямоугольных воздуховодов

где

S – фактическая площадь сечения, см2

D – диаметр круглого воздуховода, мм

A и B – ширина и высота прямоугольного воздуховода, мм.

  1. Для расчета сопротивления сети воздуховодов используется формула:

P = R * L + Ei * V2 * Y/2 где:

R – удельные потери на трение на конкретном участке вентиляционной сети

L – длина участка воздуховода.

Ei – сумма коэффициентов местных потерь на участке воздуховода

V2 – скорость движения воздуха на участке воздуховода

Y – плотность воздуха.

Программы

«Choose&Go»

Исходные данные:
— расход воздуха
— расчетные температуры
— тип монтажа
— тип исполнения
— тип нагревателя/охладителя

Расчетная программа «Choose&Go» позволяет быстро и легко выбрать приточную или приточно-вытяжную установку из ассортимента установок 2VV. Также, на заданные параметры:

— рассчитать  эффективность работы рекуператора
— получить график аэродинамических характеристик
— расчёт шумовых характеристик на расстояние 1м и 3м
— рассчитать температуры на входе и выходе из установки
— рассчитать потребляемую мощность установки
— возможность экспорта чертежа установки в 2D CAD
— сохранить файлы со схемой размеров установки и всеми техническими параметрами в формате PDF.

Скачать: 2VV «Choose&Go»

____________________________________________________________________________________________

«Онлайн-калькулятор водяных теплообменников»

Исходные данные:
— расход воздуха
— расчетные температуры или мощности

Программа позволяет быстро и легко рассчитать все параметры водяного теплообменника в любом типе оборудования 2VV:

— выбрать тип расчёта, в зависимости от данных, которые вы имеете
— рacхoд тeплoнocитeля
— пoтepи дaвлeния тeплoнocителя
— мощность нагрева
— температуры воды и воздуха на входе и выходе
— сохранить файлы с полным расчётом водяного теплообменника в формате PDF.

Перейти: Онлайн-калькулятор 2VV

____________________________________________________________________________________________

«Онлайн программа подбора вентиляторов»

Исходные данные:
— необходимые расход воздуха и давление
— тип вентилятора

Программа позволяет в онлайн-режиме рассчитать все параметры выбранного вами вентилятора RUCK:

— диаграммы работы вентилятора
— все технические характеристики
— чертежи
— схемы подключения
— документацию на выбранную модель
— сохранить файлы с полным расчётом вентилятора в формате PDF.

Перейти: Онлайн программа подбора вентиляторов

____________________________________________________________________________________________

«Онлайн программа подбора установок»

Исходные данные:
— расход воздуха
— расчетные температуры
— тип монтажа
— тип исполнения
— тип нагревателя/охладителя

Программа позволяет в онлайн режиме рассчитать все параметры выбранной приточной или приточно-вытяжной установки RUCK:

— диаграммы работы установки
— все технические характеристики
— чертежи
— схемы подключения
— документацию на выбранную модель
— рекомендацию по возможным аксессуарам
— сохранить файлы с полным расчётом в формате PDF.

Перейти: Онлайн программа подбора установок

____________________________________________________________________________________________

«Программа подбора тепловентиляторов Helios»

Исходные данные:

— размеры помещения
— степень изоляции здания
— температура воздуха/воды
— регион

Программа подбора тепловентиляторов Helios позволяет быстро и легко подобрать тип и количество агрегатов.

Для этого достаточно заполнить поля:

  • высота помещения;
  • ширина помещения;
  • длина помещения;
  • степень изоляции здания;
  • температура воздуха на входе/выходе;
  • температура воды на входе/выходе;
  • регион применения.

Перейти: Онлайн-калькулятор HL1; HL2

____________________________________________________________________________________________

Расчет вентиляции помещений: принципы и примеры расчёта

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

Содержание статьи:

Причины проблем с вентиляцией

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображений

Фото из

Вентиляция частного дома в стиле лофт

Вентканал в перекрытии каркасного дома

Компоненты приточной и вытяжной системы

Вентиляция в паре с кондиционированием

Вентиляционная решетка и вывод вытяжки

Вытяжной вентилятор в ванной комнате

Вентиляция подкровельного пространства

Приточная труба для подвала

Немало проблем доставляет отсутствие характерных для окон и дверей тончайших зазоров, спровоцированное установкой герметичных пластиковых конструкций. В таком случае в дом поступает слишком мало свежего воздуха, нужно позаботиться о его притоке.

Засоры и разгерметизация воздуховодов могут стать причиной серьезных проблем с удалением отработанного воздуха, который насыщен неприятными запахами, а также избыточными водяными парами.

В результате в служебных помещениях могут появиться колонии грибка, что плохо отражается на здоровье людей и может спровоцировать ряд серьезных заболеваний.

Запотевшие окна, плесень и грибок в ванной комнате, духота – все это явные признаки того, что жилые помещения вентилируются неправильно

Но бывает и так, что элементы работают прекрасно, однако описанные выше проблемы остаются нерешенными. Возможно, расчеты вентиляционной системы для конкретного дома или квартиры были проведены неправильно.

Негативно может отразиться на вентилировании помещений их переделка, перепланировка, появление пристроек, установка уже упомянутых ранее пластиковых окон и т.п. При таких существенных изменениях не помещает повторно произвести расчеты и модернизировать имеющуюся вентиляционную систему в соответствии с новыми данными.

Один из простых способов обнаружить проблемы с вентилированием – . К решетке вытяжного отверстия нужно поднести зажженную спичку или лист тонкой бумаги. Не стоит использовать для такой проверки открытый огонь, если в помещении используется газовое нагревательное оборудование.

Слишком герметичные внутренние двери могут препятствовать нормальной циркуляции воздуха по дому, рещить проблему помогут специальные решетки или отверстия

Если пламя или бумага уверенно отклоняется в сторону вытяжки, тяга имеется, если же этого не происходит или отклонение слабое, нерегулярное, проблема с отведением отработанного воздуха становится очевидной. Причиной могут быть засоры или повреждение воздуховода в результате неумелого ремонта.

Не всегда есть возможность устранить поломку, решением проблемы часто становится монтаж дополнительных средств вытяжного вентилирования. Перед их установкой также не помешает провести необходимые расчеты.

Определить наличие или отсутствие нормальной тяги в вытяжной вентиляционной системе дома можно с помощью пламени или листа тонкой бумаги

Как рассчитать воздухообмен?

Все расчеты по системам вентилирования сводятся к тому, чтобы определить объемы воздуха в помещении. В качестве такого помещения может рассматриваться как отдельная комната, так и совокупность комнат в конкретном доме или квартире.

На основании этих данных, а также сведений из нормативных документов рассчитывают основные параметры вентиляционной системы, такие как количество и сечение воздуховодов, мощность вентиляторов и т.п.

Существуют специализированные расчетные методики, позволяющие просчитать не только обновление воздушных масс в помещении, но и удаление тепловой энергии, изменение влажности, выведение загрязнений и т.п. Подобные расчеты выполняются обычно для зданий промышленного, социального или какого-либо специализированного назначения.

Если есть необходимость или желание выполнить настолько подробные расчеты, лучше всего обратиться к инженеру, изучившему подобные методики.

Для самостоятельных расчетов по жилым помещениям используют следующие варианты:

  • по кратностям;
  • по санитарно-гигиеническим нормам;
  • по площади.

Все эти методики относительно просты, уяснив их суть, даже неспециалист может просчитать основные параметры своей вентиляционной системы. Проще всего воспользоваться расчетами по площади. За основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.

Количество людей, которые постоянно проживают в доме, при этом не учитывается.

Вентиляционная система в жилых зданиях устраивается таким образом, чтобы воздух поступал через спальню и гостиную, а удалялся из кухни и санузла

Расчет по санитарно-гигиеническим нормативам тоже относительно несложен. В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов.

Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в количестве 60 кубических метров в час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 кубических метров в час.

Несколько сложнее производится расчет по кратности воздухообмена. При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них.

Кратностью воздухообмена называют коэффициент, отражающий количество полной замены отработанного воздуха в помещении в течение одного часа. Соответствующие сведения содержатся в специальной нормативной таблице (СНиП 2.08.01-89* Жилые здания, прил. 4).

С помощью этой таблицы выполняют расчет вентиляции дома по кратностям. Соответствующие коэффициенты отражают кратность воздухообмена за единицу времени в зависимости от назначения помещения

Рассчитать количество воздуха, которое должно быть обновлено в течение часа, можно по формуле:

L=N*V,

Где:

  • N – кратность воздухообмена за час, взятая из таблицы;
  • V – объём помещения, куб.м.

Объем каждого помещения вычислить очень просто, для этого нужно умножить площадь комнаты на ее высоту. Затем для каждого помещения рассчитывают объем воздухообмена в час по приведенной выше формуле.

Показатель L для каждой комнаты суммируется, итоговое значение позволяет составить представление о том, сколько именно свежего воздуха должно поступать в помещение за единицу времени.

Разумеется, через должно удаляться точно такое же количество отработанного воздуха. В одной и той же комнате не устанавливают и приточную, и вытяжную вентиляцию. Обычно приток воздуха осуществляется через “чистые” помещения: спальню, детскую, гостиную, кабинет и т.п.

Вытяжную вентиляцию в ванной комнате или санузле устанавливают в верхней части стены, встроенный вентилятор работает в автоматическом режиме

Удаляют же воздух из комнат служебного назначения: санузла, ванной, кухни и т.п. Это разумно, поскольку неприятные запахи, характерные для этих помещений, не распространяются по жилищу, а сразу же выводятся наружу, что делает проживание в доме более комфортным.

Поэтому при расчетах берут норматив только для приточной или только для вытяжной вентиляции, как это отражено в нормативной таблице.

Если воздух не нужно подавать в конкретное помещение или удалять из него, в соответствующей графе стоит прочерк. Для некоторых помещений указано минимальное значение кратности воздухообмена. Если расчетная величина оказалась ниже минимальной, следует использовать для расчетов табличную величину.

Если проблемы с вентиляцией обнаружились уже после того, как ремонт в доме был проведен, можно установить приточные и вытяжные клапаны в стене

Разумеется, в доме могут найтись помещения, назначение которых в таблице не отображено. В таких случаях используют нормативы, принятые для жилых помещений, т.е. 3 куб.м на каждый квадратный метр комнаты. Нужно просто умножить площадь комнаты на 3, полученное значение принять за нормативную кратность воздухообмена.

Все значения кратности воздухообмена L следует округлить в сторону увеличения, чтобы они были кратными пяти. Теперь нужно посчитать сумму кратности воздухообмена L для помещений, через которые осуществляется приток воздуха. Отдельно суммируют кратность воздухообмена L тех комнат, из которых производится отведение отработанного воздуха.

Если результат вычислений не отвечает санитарным требованиям, производится установка ,бризера или , модернизируется существующая система или выполняется ее чистка.

Холодный наружный воздух может отрицательно сказаться на качестве отопления в доме, для таких ситуаций используют вентиляционные устройства с рекуператором

Затем следует сравнить эти два показателя. Если L по притоку оказался выше, чем L по вытяжке, то нужно увеличить показатели для тех комнат, по которым при расчетах использовались минимальные значения.

Примеры расчетов объема воздухообмена

Чтобы провести расчет для по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.

Например, в гипотетическом доме имеются следующие помещения:

  • Спальня – 27 кв.м.;
  • Гостиная – 38 кв.м.;
  • Кабинет – 18 кв.м.;
  • Детская – 12 кв.м.;
  • Кухня – 20 кв.м.;
  • Санузел – 3 кв.м.;
  • Ванная – 4 кв.м.;
  • Коридор – 8 кв.м.

Учитывая, что высота потолка во всех помещениях составляет три метра, вычисляем соответствующие объемы воздуха:

  • Спальня – 81 куб.м.;
  • Гостиная – 114 куб.м.;
  • Кабинет – 54 куб.м.;
  • Детская – 36 куб.м.;
  • Кухня – 60 куб.м.;
  • Санузел – 9 куб.м.;
  • Ванная – 12 куб.м.;
  • Коридор – 24 куб.м.

Теперь, используя приведенную выше таблицу, нужно произвести расчёты вентиляции помещения с учетом кратности воздухообмена, увеличив каждый показатель до значения, кратного пяти:

  • Спальня – 81 куб.м.*1 = 85 куб.м.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м.;
  • Кабинет – 54 куб.м.*1 = 55 куб.м.;
  • Детская – 36 куб.м.*1 = 40 куб.м.;
  • Кухня – 60 куб.м. – не менее 90 куб.м.;
  • Санузел – 9 куб.м. не менее 50 куб.м;
  • Ванная – 12 куб.м. не менее 25 куб.м.

Сведения о нормативах для коридора в таблице отсутствуют, поэтому в расчете данные по этому небольшому помещению не учтены. Для гостиной выполнен расчет по площади с учетом норматива три куб. метра на каждый метр площади.

Правильно организованная система вентиляции обеспечит достаточный воздухообмен в гостиной. При проектировании обязательно следует учитывать требования и нормы СНиПов

Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.м\ч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — не менее 90 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 165 куб.м/ч.

Теперь следует сравнить полученные суммы. Очевидно, что необходимый приток превышает вытяжку на 130 куб.м/ч (295 куб.м/ч-165 куб.м/ч).

Чтобы устранить эту разницу, нужно увеличить объемы воздухообмена по вытяжке, например, увеличив показатели по кухне. На практике это проводится, например, заменой воздуховодов на каналы бóльшего сечения.

Правила расчета площади воздушных каналов для замены или модернизации системы вентилирования . Советуем ознакомиться с полезным материалом.

После правок результаты расчета будут выглядеть следующим образом:

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.м\ч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — 220 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 295 куб.м/ч.

Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.

Расчет вентиляционной системы для кухни также чрезвычайно важен. Особенно, если там используется газовое оборудование для приготовления пищи

Расчет воздухообмена в соответствии с санитарными нормами выполнить значительно проще. Допустим, что в доме, рассмотренном выше, постоянно проживают два человека и еще двое пребывают в помещении нерегулярно.

Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.м\чел для постоянных жильцов и 20 куб.м\час для временных посетителей:

  • Спальня – 2 чел*60 = 120 куб.м\час;
  • Кабинет – 1 чел.*60 = 60 куб.м\час;
  • Гостиная 2 чел*60 + 2 чел*20 = 160 куб.м\час;
  • Детская 1 чел.*60 = 60 куб.м\час.

Всего по притоку — 400 куб.м\час.

Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.

Достаточный объем воздуха, своевременно поступающий в ванную комнату, и также своевременная эвакуация отработанного позволяет предотвратить образование затхлого воздуха и появление плесневелых грибов

Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:

  • Кухня – 60 куб.м. — 300 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 400 куб.м/ч.

Увеличен воздухообмен для кухни и ванной комнаты. Недостаточный объем по вытяжке можно разделить между всеми помещениями, в которых установлена . Или увеличить этот показатель только для одного помещения, как это было сделано при расчете по кратностям.

В соответствии с санитарными нормами воздухообмен рассчитывают подобным образом. Допустим, площадь дома составляет 130 кв.м. Тогда воздухообмен по притоку должен составлять 130 кв.м*3 куб.м\час = 390 куб.м\час.

Остается распределить этот объем на помещения по вытяжке, например, таким образом:

  • Кухня – 60 куб.м. — 290 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 390 куб.м/ч.

Баланс воздухообмена — один из основных показателей при проектировании вентиляционных систем. Дальнейшие расчеты выполняются на основе этих сведений.

Как подобрать сечение воздуховода?

Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.

Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума

Стандартная по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.

Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.м\ч, а сверху выбрать значение скорости — пять метров в секунду.

Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.

С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек

От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.

Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.

Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс

Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.

На нормальный воздухообмен оказывает влияние такое явление как обратная тяга, со спецификой которой и способами борьбы с ней ознакомит .

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.

Калькулятор

куб.футов в минуту для промышленных вентиляторов

CFM = Объем помещения / Минуты на воздухообмен | Объем помещения = Д x Ш x В (размеры помещения)

Таблица минутного воздухообмена для коммерческого и промышленного применения

Типичный

Диапазон

Сборка

6

2-10

Аудитории

6

1-20

Пекарни

2

1-3

Банки

6

3-10

Бары

4

2-5

Сараи

15

10-20

Котельные

2

1-3

Боулинг

3

1-5

Кафетерий

4

3-5

Церкви

6

2-10

Аудитории

6

4-8

Компрессорное отделение

2

1-3

Танцевальные залы

6

2-10

Молочные предприятия

4

2-5

Общежития

6

4-8

Химчистка

3

1-5

Типичный

Диапазон

Машинное отделение

3

1-5

Заводы

7

4-10

Литейные цеха

5

2-8

Гаражи

7

4-10

Генерирующие установки

4

2-5

Стекольные заводы

2

1-3

Гимназии

6

2-10

Коридоры

8

4-12

Кухни (Comm.)

3

1-5

Лаборатории

3

1-5

Библиотеки

4

2-5

Прачечные

2

1-3

Раздевалки

6

2-10

Машинные цеха

4

2-5

Рынки

6

2-10

Мельницы

4

2-5

Типичный

Диапазон

Упаковочные коробки

4

3-5

Растения

7

4-10

Гальванические заводы

4

2-5

Типографии

7

4-10

Рестораны

6

2-10

Туалеты

7

4-10

Школы

7

4-10

Покрасочная камера

1

1-2

Магазины

7

4-10

Театры

6

4-8

Трансформаторные помещения

3

1-5

Машинный зал

4

2-5

Залы ожидания

12

10-15

Склады

7

4-10

Сварочные помещения

3

1-4

Калькулятор

воздухообменов в час (формула на основе кубических футов в минуту)

ACH или A ir C зависает P er H наш — это показатель, который показывает нам, сколько раз устройство HVAC может заполнить воздухом весь объем помещения.Это особенно полезно при сравнении различных очистителей воздуха или кондиционеров.

Пример: Рассмотрим очиститель воздуха с расходом воздуха 250 куб. Футов в минуту. Мы поместили его в комнату площадью 200 кв. Футов с потолком стандартной высоты (8 футов). Сколько воздухообменов в час производит установка?

Расчет: 250 кубических футов в минуту — 250 кубических футов в минуту. За один час (60 минут) мы получаем 60 * 250 = 15 000 кубических футов в час. Общий объем комнаты составляет 200 квадратных футов * 8 футов = 1600 кубических футов.Такой очиститель воздуха способен изменить весь объемный воздух в помещении в 15,000 / 1,600 = 9,375 раз.

Ответ: ACH = 9,375

Вот удобный калькулятор воздухообмена в час, которым вы можете свободно пользоваться. Просто укажите площадь, высоту потолка и CFM рассматриваемого устройства HVAC, и вы сможете рассчитать ACH:

.

Калькулятор ACH

Формула (рассчитайте ACH самостоятельно)

Формула расчета воздухообмена в час на основе CFM достаточно проста.Практически каждый может рассчитать это с помощью цифрового калькулятора. Все, что вам нужно знать, это площадь помещения, высота и CFM.

Это формула для ACH (воздухообмена в час):

ACH = CFM x 60 / (Площадь x Высота)

, где «Площадь» — это площадь помещения, где вы собираетесь установить устройство HVAC, а «Высота» — это высота потолка.

Формула: «сколько кубических футов воздуха может обеспечить блок HVAC каждый час», деленное на объем помещения.

Мы всегда получаем CFM, но это объем воздуха в минуту . Чтобы рассчитать воздухообмен в час , мы должны перевести это в часы. Следовательно, умножение на 60 в приведенном выше уравнении.

Объем помещения рассчитывается по формуле длина * ширина * высота . Умножив длину комнаты на ее ширину, мы получим площадь поверхности («Площадь»). Чтобы получить объем, нам нужно умножить площадь на высоту.

Сколько производителей очистителей воздуха ACH используют?

Расчет рекомендуемой зоны охвата в технических характеристиках очистителя воздуха основан на рейтинге CADR, максимальном расходе воздуха и ACH.

По сути, для расчета рекомендуемой зоны охвата разные компании по очистке воздуха используют 1-5 воздухообменов в час. Те, которые используют 5 ACH, очень тщательно удаляют загрязнители воздуха, превышающие рекомендуемый размер комнаты, используя на 2 ACH меньше.

Вот список того, сколько ACH различных производителей воздухоочистителей обычно используют для расчета рекомендуемой зоны охвата:

  • Alen BreatheSmart использует 2 ACH. Пример: Alen BreatheSmart 75i — очиститель воздуха №1 — имеет рекомендуемую зону охвата 1300 кв. Футов.Его максимальный воздушный поток составляет 350 кубических футов в минуту. При 5 ACH рекомендуемая зона покрытия составляет 520 кв. Футов
  • Очистители воздуха Coway рассчитаны на 2 или 5 кондиционеров воздуха. Пример: Big Airmega 400 имеет зону покрытия 1560 кв. Футов с рейтингом 350 CADR (2 ACH). Высокопроизводительный Coway AP-1512HH имеет зону покрытия 361 кв. Футов с рейтингом 246 CADR (5 ACH).
  • Molekule имеет рекомендованную зону покрытия, но не предоставляет данных по ACH, CADR или максимальному расходу воздуха. Например, Molekule Air имеет зону покрытия 600 кв. Футов, но невозможно подсчитать, сколько воздухообменов он производит в час.
  • Honeywell использует 5 ACH. Пример: Honeywell HPA300 имеет зону покрытия 465 кв. Футов с рейтингом 300 CADR (5 ACH).
  • Воздухоочистители Levoit интересны; они используют 3.33 ACH со своей лучшей моделью. Пример: Levoit LV-h235 имеет зону покрытия 463 кв.м и рейтинг CADR 360. Воздух меняют каждые 18 минут; Таким образом, установка Levoit производит 3,33 воздухообмена в час.
  • Okaysou использует 3 воздухообмена в час. Пример: их самый популярный очиститель воздуха Okaysou AirMax8L имеет площадь покрытия 500 кв. Футов с рейтингом 210 CADR (3 ACH).
  • Дайсон очень стесняется раскрывать размеры комнаты. Вот почему невозможно рассчитать ACH для любого очистителя воздуха Dyson.

Из всех устройств HVAC очистители воздуха уникальны в том, что касается ACH, потому что их работа наиболее точно соответствует спецификации ACH. По сути, ACH — второй по величине определяющий фактор, который указывает, насколько хорошо очистители воздуха очищают воздух.

Важно понимать, что расчет ACH составляет , торжественно основанный на расходе воздуха .Это не показатель того, насколько хорошо работает система фильтрации очистителя воздуха; он не измеряет эффективность фильтров HEPA, фильтров с активированным углем или даже фильтров генератора озона. Например, высокий ACH не снижает напрямую вероятность роста плесени (осмотр и тестирование плесени могут подтвердить это).

Существует еще одна более точная спецификация, действующая для очистителей воздуха, которая измеряет эффективность системы фильтрации; рейтинг CADR. Рейтинг CADR пропорционален как ACH, так и различным фильтрам, которые может использовать очиститель воздуха.По этой причине расчет ACH и последующий расчет CADR наиболее подходят для очистителей воздуха.

Чтобы рассчитать размер комнаты на основе расхода воздуха (в кубических футах в минуту), вы должны использовать здесь калькулятор кубометров в минуту.

Если у вас есть какие-либо вопросы относительно расчета воздухообмена в час, вы можете задать их нам в комментариях ниже.

Инструмент калькулятора

воздухообменов в час (ACH и ACPH)

Используйте этот инструмент калькулятора ACH, чтобы найти общее количество воздухообменов в час или в минуту, исходя из размеров вашей комнаты и CFM (кубических футов в минуту) вашего фильтрующего устройства.(ACH также называется временем оборота.)

Нужен стоматологический калькулятор для определения времени урегулирования? Ознакомьтесь с нашим инструментом расчета расчетного времени стоматологического кабинета здесь: Калькулятор расчетного времени стоматологического кабинета

Что такое ACH или ACPH ?

ACH или ACPH означает «воздухообмен в час» и обычно обозначается как «скорость воздухообмена» или «скорость воздухообмена». Это измерение того, сколько раз объем воздуха в помещении будет добавлен, удален или заменен фильтрованным чистым воздухом.

Как вы рассчитываете ACH или воздухообмен в час?

Чтобы рассчитать изменение воздуха в час (ACH), найдите CFM вашего устройства и умножьте его на 60, а затем разделите полученное количество на общий объем помещения в кубических футах, чтобы получить общий ACH.

Q = CFM фильтрующего устройства
Vol = Объем помещения

По какой формуле рассчитывается ACH?

Формула для расчета ACH: 60, умноженное на куб. Фут / мин вашего воздухообменного устройства, разделенное на объем воздуха в комнате.
Формула ACH как выражение: ACH = 60Q / Vol
ACH = количество воздухообменов в час
Q = объемный расход воздуха в кубических футах в минуту (cfm)
Vol = объем помещения L x W x H, в кубических футах

Как рассчитать объем воздуха в комнате?

Чтобы вычислить объем воздуха в комнате, умноженный на длину, ширину и высоту, чтобы получить общий кубический объем воздуха.
Формула для объема воздуха в виде выражения: Объем = Д x Ш x В
L = Длина
W = Ширина
H = Высота

Что такое CADR?

CADR означает скорость подачи чистого воздуха. это измерение используется, чтобы показать, сколько конкретных частиц необходимо удалить из воздуха. Другими словами, рейтинг CADR показывает, насколько быстро очиститель воздуха может очистить воздух в помещении определенного размера.

CADR используется для бытовой техники, а рейтинговая система проверена и сертифицирована Ассоциацией производителей бытовой техники.


Ниже вы найдете дополнительные требования ACH для определенных типов медицинских помещений.

Кол-во смен воздуха в стоматологической комнате в час

10

Площадь Минимальный общий воздухообмен в час
Закрытая стоматологическая клиника 12
Открытая стоматологическая клиника 6
Очистка / стерилизация Лаборатория 6
Темная комната 10
Стоматологические центры общего профиля 8-12
Кабинет стоматологической хирургии 15

Воздухообмен в час (ACH) и время, необходимое для эффективного удаления переносимых по воздуху загрязняющих веществ

ACH Время (мин.) требуется для удаления КПД 99% Время (мин.), Необходимое для удаления
КПД 99,9%
2 138 207
4 69 104
6 + 46 69
8 35 год 52
10 + 28 год 41 год
12 + 23 35 год
15 + 18 28 год
20 14 21 год
50 6 8

Список литературы

  1. https: // www.ihs.gov/sites/oehe/themes/responsive2017/display_objects/documents/handbook/02104a9.pdf
  2. https://www.cdc.gov/infectioncontrol/guidelines/environmental/background/air.html
  3. https: // www.cfm.va.gov/til/dGuide/dgDental.pdf

Определение размера вытяжного вентилятора Upblast для вентиляции коммерческой кухни

Вы задаетесь вопросом, какой размер вытяжной вентилятор

подобрать для вашей коммерческой кухни?

В какой-то момент почти все владельцы коммерческих кухонь и ресторанов должны будут заменить вытяжной вентилятор на своей кухне.Расчет необходимого вам CFM — это самая важная часть выбора размера вытяжного вентилятора для вашей коммерческой кухонной системы вентиляции.

Если вы еще не знаете, какой CFM необходим для вашего вентилятора, или изменилось оборудование для приготовления пищи или коммерческая вытяжная вытяжка, которую вы используете, эта статья поможет вам определить, какого размера вентилятор Upblast требуется для вашей системы.

Сначала мы рассмотрим несколько основных моментов важности CFM, а затем рассмотрим, какую информацию необходимо предоставить нам, чтобы мы могли выполнить расчет CFM для коммерческой кухонной вытяжки.

Почему CFM так важно?

Как вы, вероятно, уже знаете, мощность воздушного потока нагнетательного вентилятора измеряется в кубических футах в минуту. Если у вас недостаточно движения воздуха для эффективной работы, ваша кухня может стать очень задымленной и горячей, а вытяжка, воздуховоды и кухонные поверхности могут быть сильно загружены слоем неизрасходованного жира и масляных стоков. Это дополнительное накопление затрудняет очистку вашей вентиляционной системы и повышает вероятность возгорания вытяжки или воздуховода.

Как мне рассчитать правильный CFM и размер

для моего вытяжного вентилятора?


Чтобы правильно рассчитать размер и кубический фут в минуту для центробежного вытяжного вентилятора, необходимо знать несколько важных сведений.


1. Какого размера вытяжной колпак, к которому будет крепиться вытяжной вентилятор?

Чем больше площадь вытяжки, тем тяжелее должен работать вытяжной вентилятор для удаления дыма, жира и тепла из вашей кухни.Дизайн и место установки вытяжки также могут иметь значение, поскольку они могут повлиять на характеристики вытяжки.

2. Какое кухонное оборудование будет работать под этой вытяжкой?

Знание того, какое кухонное оборудование будет использоваться под вытяжкой, важно по нескольким причинам, но в основном из-за необходимости отводить дым и жир, а также отходы твердого топлива, которые могут вызвать опасное скопление креозота в вытяжных шкафах и воздуховодах.

Американское общество инженеров по отоплению, холодильной технике и кондиционированию воздуха (ASHRAE) опубликовало рекомендации по минимальному расходу выхлопных газов (куб. Фут / мин на погонный фут вытяжки) для вытяжных колпаков, внесенных в список UL, на основе классификационных характеристик устройств в стандарте ASHRAE 154. Национальная ассоциация противопожарной защиты (NFPA) также устанавливает стандарты для объема удаления воздуха, и большинство муниципальных нормативных актов будут соответствовать или превосходить любое из этих правил.

  • Легкие устройства включают газовые и электрические печи, а также конвекционные печи и пароварки.Например, минимальный CFM ASHRAE для легких устройств находится в диапазоне от 150 до 300 CFM.
  • Среднетоннажные устройства включают электрические и газовые варочные поверхности, сковороды, фритюрницы, конвейерные печи и грили, а также электрические и газовые макароны. Например, минимальный CFM ASHRAE для устройств средней мощности колеблется от 150 до 400 CFM.
  • Сверхмощные приборы включают электрические и газовые бройлеры, вок и газовые плиты с открытой горелкой, а также саламандры.Например, минимальный CFM ASHRAE для тяжелой техники колеблется от 200 до 400 CFM.
  • Сверхмощные приборы включают те, которые используют твердое топливо, такое как древесина, древесный уголь, брикеты и мескит, для обеспечения всего или части источника тепла для приготовления пищи. Например, минимальный CFM ASHRAE для сверхтяжелых устройств колеблется от 350 CFM до 550 CFM или более.

Помимо знания типа готовки, важно также знать, как оборудование находится или будет располагаться под вытяжкой.Оборудование, которое правильно размещено под вашим капотом, может привести к экономии до 60% CFM, что, в свою очередь, может сэкономить ваши деньги. Например, сверхмощный прибор, помещенный на конце вытяжки, будет более подвержен утечке, чем если бы он был помещен под середину того же колпака.

Расположение и стиль самой вытяжки также могут иметь большое значение. Если вам нужна помощь в определении правильного расположения кухонных приборов или вытяжек, просто сообщите нам об этом.Мы более чем рады помочь вам.

3. Какова протяженность воздуховода между вытяжным вентилятором и вытяжкой на кухне?

Знание того, сколько воздуховодов проходит между вашим вентилятором и вытяжкой, является очень важной частью расчета правильного CFM для вашего вытяжного вентилятора. Чем дольше воздух должен перемещаться, тем больше возможностей для замедления воздушного потока. Причина, по которой скорость воздушного потока обычно падает на пути от вытяжки к вентилятору, заключается в потерях на трение и турбулентность.Другие соображения по конструкции воздуховода, которые могут повлиять на ваш CFM, включают форму вашего воздуховода (квадратная или круглая) и количество поворотов и поворотов, которые необходимо сделать.

4. Каков размер основания вашего существующего вентилятора или размер вашего бордюра на крыше?

Этот последний фрагмент информации, вероятно, проще всего предоставить. Чтобы определить размер вашего центробежного вытяжного вентилятора, нам необходимо знать размер основания существующего вентилятора. Если вентилятора нет, нам нужно знать размер бордюра крыши, на котором он будет установлен.Если вы начинаете с нуля, устанавливаете вентилятор боком или просто не располагаете этой информацией, не о чем беспокоиться! Позвоните нам, и мы вместе с вами обсудим различные варианты размеров основания вытяжного вентилятора.

Итак, какой вытяжной вентилятор CFM подходит вам?

Подходящий CFM для вашего проветривателя для взрывозащитной кровли будет зависеть от ваших ответов на четыре вопроса выше. Если вы предоставите эту информацию эксперту по продукции HoodFilters.com, мы сможем напрямую сотрудничать с производителем, чтобы определить точные характеристики вентилятора, который станет идеальным дополнением к вашей системе вентиляции.

Есть несколько разных способов предоставить нам информацию. Вы можете позвонить нам по телефону 877-394-9731, написать нам по электронной почте или использовать наш новый онлайн-инструмент «Конструктор вытяжек и вентиляторов», который поможет вам в расчетах CFM вытяжного шкафа для чего угодно — от одного нагнетательного вентилятора до полной вытяжной системы и вентиляционной системы. Как всегда, дайте нам знать, если у вас возникнут какие-либо вопросы или вам понадобится помощь в выборе продуктов.

Из этого короткого видео вы узнаете, как быстро определить вертикальный вытяжной вентилятор нужного размера при покупке нового вытяжного вентилятора или замене существующего на вашей коммерческой кухне или в ресторане.

Процедура, уравнения и калькулятор требований к вентиляторам и вентиляции | Инженеры Edge

Связанные ресурсы: калькуляторы

Процедура, уравнения и калькулятор требований к вентиляторам и вентиляции

Проектирование и проектирование теплопередачи
Промышленные электродвигатели

Процедура, уравнения и калькулятор требований к вентиляторам и вентиляции.

На этой веб-странице описаны основные методы выбора типичных вентиляционных и охлаждающих устройств в зависимости от их использования, а также приведены примеры расчетов и калькулятора.

Шаг 1. Определите требуемую внутреннюю температуру системы или устройств. Технические характеристики и состояние.

Шаг 2: Определите количество тепловой энергии, генерируемой устройством внутри. Тепловая энергия, генерируемая в системе или устройстве.

Шаг 3: После того, как вы определили количество выделяемого тепла, количество градусов, на которое должна быть понижена температура, и какая должна быть температура окружающей среды, рассчитайте необходимый воздушный поток

Шаг 4: Выберите вентилятор с требуемым расходом воздуха.Расход воздуха установленного вентилятора можно определить по характеристикам расхода воздуха вентилятора в зависимости от статического давления и потере давления охлаждаемого объекта. Рассчитать потерю давления в устройстве сложно, поэтому можно использовать оценку максимального расхода воздуха, в 1,3–2 раза превышающего требуемый расход воздуха.

Характеристика статического давления воздуха

Пример расчета

Технические характеристики шкафа

Описание

Письмо

Технические характеристики
Условия установки

Этаж склада

Шкаф
Приложение

Размер

Вт
H
D

Ширина 0.48 м (19 дюймов)
Высота 1,44 м (57 дюймов)
Глубина 0,36 м (14 дюймов)
Площадь

S *

2,42 м 2 (3758 дюймов 2 )
Материал

Сталь
Всего
Тепло
Трансфер
Коэффициент

U

5 Вт / (м 2 / К)
Цель
Температура
Подъем

ΔT

50 ° F (10 ° C)
Температура окружающей среды T 1 25 ° C (77F °)
Максимум.температура внутри шкафа
Т 2 35 ° C (95F °)
Общая выработка тепла

квартал

1200 Вт

Фактор безопасности

Sf

2
Источник питания

60 Гц 115 В переменного тока

Поверхность шкафа = Боковая область x Верхняя область
Поверхность шкафа = 1.8 x В x (Ш + Г) + 1,4 x Ш x Г
Площадь корпуса = 2,42 м 2 (3758 дюймов 2 )

Расход воздуха в соответствии с техническими условиями

K Коэффициент преобразования = 0,05

V = K x (Q / (ΔT) — U x S) x Sf
V = 0,05 х (1200 / (10-5) х 2,42) х 2
V = 10,8 [м 3 / мин] (381 [куб. Фут / мин])

Предварительный просмотр

: Калькулятор требований к вентиляторам и вентиляции (требуется членство: Premium).

Определите требуемый расход воздуха с помощью графика

1.Найдите точку пересечения A между тепловой мощностью Q (1200 Вт) и заданным повышением температуры ΔT [50 ° F (10 ° C)].
2. Проведите линию, параллельную оси x, из точки A.
3. Найдите точку пересечения B между параллельной линией и линией площади S [2,42 м 2 (3758 дюймов 2 )].
4. Проведите линию к оси x от точки B, требуемый расход воздуха составляет прибл. 190 куб. Фут / мин [5,4 (м 3 / мин)].
5. Используйте коэффициент безопасности Sf = 2, требуемый воздушный поток будет около 380 кубических футов в минуту [10.8 (м 3 / мин)].
6. Выберите вентилятор, который соответствует расчетным требованиям.

© Copyright 2000-2021, Engineers Edge, LLC www.engineersedge.com
Все права защищены
Заявление об ограничении ответственности

| Обратная связь | Реклама
| Контакты

Дата / Время:

Используйте расчет изменений воздуха в помещении для определения CFM

Инженерный воздушный поток в помещении может представлять реальную проблему при балансировке системы отопления, вентиляции и кондиционирования воздуха.В большинстве расчетов для определения необходимого расхода воздуха используются только теплопотери или приток тепла в помещении, и часто не принимаются во внимание потребности в вентиляции помещения. Давайте посмотрим, как расчет воздухообмена может упростить этот этап балансировки воздуха.

Что такое воздухообмен?

Воздухообмен — это количество раз, когда воздух входит и выходит из комнаты из системы HVAC за один час. Или сколько раз комната заполнялась воздухом из регистров приточного воздуха за шестьдесят минут.

Затем вы можете сравнить количество изменений воздуха в помещении с приведенной ниже таблицей требуемых изменений воздуха. Если он находится в допустимом диапазоне, вы можете приступить к проектированию или уравновешиванию воздушного потока и получить дополнительную уверенность в том, что вы все делаете правильно. Если это выходит за пределы досягаемости, вам лучше еще раз взглянуть.

Формула изменения воздуха

Чтобы рассчитать воздухообмен в помещении, измерьте поток приточного воздуха в комнату, умножьте CFM на 60 минут в час. Затем разделите на объем комнаты в кубических футах:

Говоря простым языком, мы заменяем CFM на кубические футы в час (CFH).Затем мы вычисляем объем комнаты, умножая высоту комнаты на ширину и длину. Затем просто делим CFH на объем помещения.

Вот пример того, как работает полная формула:

Теперь сравните 7,5 воздухообмена в час с требуемым воздухообменом для этого типа помещения в таблице воздухообмен в час ниже . Если это комната для обеда или отдыха, где требуется 7-8 воздухообменов в час, вы точно попали в цель. Если это бар, который требует 15-20 воздухообменов в час, пора подумать.

Комнатная CFM Formula

Давайте посмотрим на эту инженерную формулу по-другому. Например, что, если воздушный поток неизвестен, и вам нужно рассчитать необходимый CFM для комнаты? Вот четырехэтапный процесс расчета CFM помещения:

Шаг первый — Используйте приведенную выше таблицу воздухообмена в час для определения требуемых воздухообменов, необходимых для использования помещения. Допустим, это конференц-зал, требующий 10 воздухообменов в час.

Шаг второй — Рассчитайте объем комнаты (ДхШхВ).

Шаг третий — Умножьте объем помещения на требуемый объем воздухообмена.

Шаг четвертый. Разделите ответ на 60 минут в час, чтобы найти нужную комнату. CFM:

Вот пример того, как работать по формуле:

При проектировании или балансировке системы, требующей дополнительного воздушного потока для вентиляции, помните, что в этой комнате обычно требуется постоянная работа вентилятора, когда она занята.Это может представлять проблему для других комнат в той же зоне, поэтому примите это во внимание.

Для многих из этих помещений может потребоваться значительное количество наружного воздуха. Содержание БТЕ в этом воздухе должно быть включено в приток тепла или теплопотери здания при определении размера оборудования для обогрева и охлаждения.

Попрактикуйтесь в этих расчетах несколько раз в магазине или офисе. Затем выполните расчеты в полевых условиях несколько раз в течение следующей недели, чтобы проверить воздушный поток в помещениях с необычными требованиями к вентиляции. Изучите Таблицу изменений воздуха в час , чтобы ознакомиться с помещениями, в которых требуется больше вентиляции, чем требуется для обогрева или охлаждения.

R ob «Doc» Falke служит в отрасли в качестве президента National Comfort Institute, обучающей компании и членской организации на базе HVAC. Если вы являетесь подрядчиком или техническим специалистом в области систем отопления, вентиляции и кондиционирования воздуха, заинтересованным в бесплатной процедуре расчета замены воздуха, свяжитесь с Доком по телефону robf @ ncihvac.com или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, статей и загрузок.

Размеры, расчет и проектирование воздуховодов для обеспечения эффективности

Как спроектировать систему воздуховодов ws

Как спроектировать систему воздуховодов. В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также использование моделирования CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы просмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!

🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale — это революционная облачная платформа CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и электронику .

Методы проектирования воздуховодов

Существует множество различных методов, используемых для проектирования систем вентиляции, наиболее распространенными из которых являются:

  • Метод снижения скорости: (жилые или небольшие коммерческие установки)
  • Метод равного трения: (от среднего до большого размера коммерческие установки)
  • Восстановление статического электричества: очень большие установки (концертные залы, аэропорты и промышленные объекты)

Мы собираемся сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC и его достаточно просто следовать.

Пример проектирования

План здания

Итак, сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут располагаться вентилятор, фильтры и воздухонагреватель или охладитель.

Нагрузка на отопление и охлаждение здания

Первое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.Я не буду рассказывать, как это сделать, в этой статье, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.

Когда они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.

Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:

mdot = Q / (cp x Δt)

Рассчитать массовый расход воздуха скорость от охлаждающей нагрузки

Где mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что в качестве стандарта мы будем использовать cp 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.

Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все значения массового расхода.

Расчет массового расхода воздуха для каждой комнаты

Теперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но я предпочитаю использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Мы просто добавляем эти числа и получаем плотность воздуха 1,2 кг / м3.

Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть, что мы можем рассчитать объемный расход по формуле:

vdot = mdot, умноженное на v.

Рассчитайте объемный расход воздуха на основе массового расхода

, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Итак, если мы опустим эти значения для помещения 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату, чтобы удовлетворить охлаждающую нагрузку.Так что просто повторите этот расчет для всех комнат.

Объемный расход воздуха в здании — размер воздуховода

Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.

Схема воздуховодов

Прежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.

Соображения по конструкции

Первый вопрос — форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглый воздуховод, безусловно, является наиболее энергоэффективным типом, и это то, что мы будем использовать в нашем рабочем примере позже. Если мы сравним круглый воздуховод с прямоугольным, мы увидим, что:

Сравнение круглого воздуховода и прямоугольного воздуховода

Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Следовательно, прямоугольный воздуховод требует больше металла для своей конструкции, что увеличивает вес и стоимость конструкции.Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать интенсивнее, а это приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, поскольку пространство ограничено.

Падение давления в воздуховодах

Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой — из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.

Энергоэффективная арматура для воздуховодов

Третье, что мы должны учитывать, — это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую арматуру для повышения энергоэффективности. Например, используйте изгибы с большим радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.

Моделирование воздуховодов CFD

Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить бесплатный доступ к этому программному обеспечению, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.

SimScale не ограничивается проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также теплового и структурного анализа.

Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.

Они также предлагают бесплатные вебинары, курсы и учебные пособия, которые помогут вам настроить и запустить собственное моделирование. Если, как и я, у вас есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.

Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, всю работу выполняют их серверы, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно облегчает нашу жизнь как инженеров.

Итак, если вы инженер, дизайнер, архитектор или просто кто-то, кто заинтересован в испытании технологии моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.

CFD конструкция воздуховодов стандартная и оптимизированная

Теперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартную конструкцию слева и более эффективную конструкцию справа, оптимизированную с помощью simscale.В обеих конструкциях используется скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.

Стандартная конструкция воздуховодов

Из цветовой шкалы скорости и линий тока видно, что в схеме слева входящий воздух напрямую ударяет в резкие повороты, присутствующие в системе, что вызывает увеличение статического давления. Резкие повороты вызывают появление большого количества областей рециркуляции внутри воздуховодов, что препятствует плавному движению воздуха.

Тройник на дальнем конце главного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и уменьшает количество подаваемого воздуха.

Высокая скорость в основном воздуховоде, вызванная резкими поворотами и резкими изгибами, снижает поток в 3 ответвления на оставили.

Оптимизированная конструкция воздуховодов с энергоэффективностью

Если теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе.В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.

Три ответвления в главном воздуховоде теперь получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отделяться от основного потока и поступать в эти меньшие ветви.

С учетом этих соображений мы можем вернуться к конструкции воздуховода.

Этикетки для воздуховодов и фитингов

Теперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, впускные отверстия, гибкие соединения, противопожарные клапаны и т. Д.

Теперь мы хотим сделать стол с строки, помеченные как в примере. Каждому воздуховоду и штуцеру нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно добавить линию для каждого направления, мы увидим это позже в статье.

Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.

Диаграмма расхода воздуха в воздуховодах

Мы можем начать вводить некоторые данные, сначала мы можем включить объемный расход для каждого из ответвлений, это просто, поскольку это просто объемный расход для помещения, которое оно обслуживает. Вы можете видеть на диаграмме, которую я заполнил.

Схема воздуховодов Расходы в основных воздуховодах

Затем мы можем приступить к определению размеров главных воздуховодов. Для этого убедитесь, что вы начинаете с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений после этого. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A — это сумма L, I, F и C. Просто введите их в таблицу.

По черновому чертежу мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.

Размер воздуховода — Как выбрать размер воздуховода

Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2

Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Схема диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Нисходящие диагональные линии соответствуют скорости, восходящие диагональные линии — диаметру воздуховода.

Мы начинаем определение размеров с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что максимальная скорость его может составлять не более 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.

Пример размера воздуховода

Возьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем точку, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем наше пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.

Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных воздуховодов.

Для остальных воздуховодов мы используем тот же метод.

Подбор размеров воздуховода, метод равного давления

На диаграмме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.

Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.

Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Сделайте то же самое для всех воздуховодов и ответвлений на столе.

Подбор размеров фитингов для воздуховодов

Первый фитинг, который мы рассмотрим, это изгиб 90 * между воздуховодами J и L

Для этого мы ищем наш коэффициент потерь для изгиба от производителя или промышленного органа, вы можете найти нажав на эту ссылку.

Коэффициент потерь давления в фитинге колена воздуховода

В этом примере мы видим, что коэффициент равен 0,11

Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, деленную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.

Формула потери давления на изгибе воздуховода

Мы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 паскаля. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).

Потери давления на тройнике в воздуховоде

Следующий фитинг, который мы рассмотрим, это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учесть, что воздух движется в двух направлениях, прямо насквозь, а также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.

Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем соотношение скоростей, используя формулу скорости на выходе, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий воздух — 4 м / с, что дает us 0,83

Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0.53

Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.

Размер тройника для воздуховода

В руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому определяем ее местоположение и затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам необходимо выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).

Мы заполняем наши значения и находим ответ 0,143

Расчет потерь давления в тройнике

Теперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ в 0,934 паскаля, так что добавьте это в таблицу.

Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается путем вычисления нашего отношения скоростей.Затем мы находим соотношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.

Изгиб фитинга тройника с потерями

Затем мы используем таблицу изгиба для тройника, опять же между значениями, указанными в таблице, поэтому нам нужно найти числа, используя билинейную интерполяцию. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.

Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.

Нахождение индексного участка — размер воздуховода

Затем нам нужно найти индексный участок, который является участком с наибольшим падением давления. Обычно это самый длинный пробег, но он также может быть пробегом с наибольшим количеством приспособлений.

Это легко найти, сложив все потери давления от начала до выхода каждой ветви.

Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)

От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)

От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)

От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)

Следовательно, вентилятор, который мы используем, должен преодолевать пробег с наибольшими потерями, то есть A — L с 12.5pa, это индексный прогон.

Заслонки воздуховода — балансировка системы

Чтобы сбалансировать систему, нам нужно добавить заслонки к каждому из ответвлений, чтобы обеспечить равный перепад давления во всем, чтобы достичь проектных расходов в каждой комнате.

Want to say something? Post a comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *