Подключение люминесцентных ламп: Установка люминесцентного светильника

Содержание

Установка люминесцентного светильника

Вскрыв коробку со светильником, мы сразу видим его монтажную панель (основание), установленную в корпусе. Ее необходимо отсоединить, для этого достаточно просто сжать удерживающие ее фиксаторы, как показано на изображении ниже. В люминесцентных светильниках других производителей фиксатор может быть иной, например, поворотный.
 

Сразу же бросаются в глаза поворотные разъемы – гнезда, для цоколя люминесцентных ламп T8 (G13) с подходящими к ним проводами, просто лежащие вдоль внутренней поверхности основания.

Устанавливаем их в специально предназначенные для этого прорези — пазы в монтажной панели. При этом перепутать что-то у вас вряд ли получится, различная длина проводов не позволит вставить разъемы неправильно.

 

Если у вас остаются какие-то сомнения в правильности монтажа гнезд для ламп, всегда можно посмотреть на корпусе балласта схему подключения и перепроверить.

В конечном итоге, разъемы для люминесцентных ламп T8 с цоколем G13, должны быть установлены в монтажной панели так, как показано на изображении ниже и обращены друг к другу.

Далее убираем основание на время в сторону и переходим к креплению корпуса на стену. Вообще, универсальная конструкция крепежных элементов люминесцентного светильника, позволяет с легкостью устанавливать его как на горизонтальных поверхностях (на стенах), так и вертикальных (потолок и пол). Мы будем выполнять установку светильников для люминесцентных ламп на стенах гаража. 

Измеряем расстояние между центрами площадок на тыльной стороне корпуса светильника, за которые затем цепляются крепления и удерживают светильник на стене/потолке. У нашего люминесцентного светильника Айсберг, расстояние между центрами крепежа 915мм (91,5 см).

Выбираем центр установки светильника на стене и откладываем от него половину этой величины (457,5мм) влево и вправо.  Для большей точности, при разметке лучше всего пользоваться уровнем, очень удобно использовать лазерный нивелир.

С помощью дюбеля (пробки) и самореза с прессшайбой, фиксируем крепления люминесцентного светильника на стене, в отмеченных нами местах, как показано на изображении ниже.

 

В зависимости от типа основания, куда производится монтаж, выбирайте соответствующие варианты крепежа. В нашем случае осветительный прибор устанавливается на кафельную плитку, соответственно предварительно в ней были сделаны отверстия специализированным сверлом. Таким образом устанавливаем оба крепления, строго на одной горизонтальной оси.

Берем корпус светильника и вырезаем в нем отверстие для вводного кабеля, в предназначенном производителем месте. Вообще таких мест несколько в том числе в торце светильника и на задней стенке. В зависимости от того, как проложен питающий кабель, выбирается место его ввода в светильник.

Для надежной герметизации, все открытые отверстия закрываются специальными мембранами, которые идут в комплекте. Под вводной кабель эта мембрана подрезается. После чего корпус светильника монтируется на стену, для его необходимо «прищелкнуть» к уже установленным креплениям. Обязательно убедитесь в отсутствии напряжения на проводе, перед началом монтажа отключите автоматические выключатели в распределительном щите.

Теперь подготавливаем питающий кабель, снимая с него изоляцию и зачищая жилы проводов на 5-7мм. Схему подключения люминесцентного светильника мы уже описывали в статье «Схема подключения люминесцентного светильника», в которой так же показано как выполнить электропроводку для него, соединить провода в распределительной коробке и внутри светильника.

Подключаем питающий провод в вводные клеммы, расположенные на монтажной панели.

В клемму с маркировкой L – подключается фазный провод — Белый
В клемму с маркировкой N – подключается провод рабочего нуля – Голубой.

Как определить какой из проводов фаза, ноль, а какой заземление самостоятельно, вам поможет наша подробная инструкция — ЗДЕСЬ.

Если корпус светильника выполнен из токопроводящего материала, необходимо будет подключить и защитный ноль – заземление, обычно это желто-зеленый провод. В нашем случае, светильник Айсберг выполнен полностью из диэлектрического пластика, подключение заземления не требуется.

 

После того как все провода подключены к светильнику, устанавливаем монтажную панель в корпус. Для этого просто необходимо совместить отверстия на монтажной панели – основании, с крепежными клипсами корпуса.

Далее устанавливаем люминесцентные лампы. Лампы необходимо покупать отдельно, в комплекте со светильником они не поставляются!

Для того, чтобы люминесцентную лампу T8 с цоколем G13 установить в светильник, необходимо поместить ее в гнезда, таким образом, чтобы каждая из пар штырьков цоколя, попала в паз гнезда (как показано на изображении ниже), после чего необходимо провернуть лампу на 45 градусов в любую сторону и она зафиксируется.

 

После установки люминесцентных ламп в светильник, уже можно проверить его работоспособность, включив подачу электричества. Если все было сделано верно, лампы должны зажечься.

Теперь осталось установить светопрозрачный рассеиватель. Как правило, рассеиватель крепится к корпусу люминесцентного светильника с помощью фиксаторов, которые надежно прижимают компоненты между собой и при необходимости позволяют с легкостью снять рассеиватель, без использования какого-либо инструмента.

Конструкция светильников «Айсберг» разработана таким образом, что фиксаторы изначально крепятся на рассеивателе, у других производителей нередко они могут быть установлены на корпусе.

После того, как все фиксаторы установлены на своих местах, прикладываем рассеиватель к светильнику и защелкиваем их.

На этом установка люминесцентного светильника на стену завершена.

 

Теперь, нажав клавишу выключателя, можно проверить его работу, светильник должен загореться с еле заметной задержкой.

Как вы видите, монтаж светильников для люминесцентных ламп, вполне по силам каждому. В любом случае, вы всегда можете обратиться к профессионалам электрикам или монтажникам, которые выполнят эту работу быстрее, но знание технологии установки вам пригодиться для контроля качества выполненных работ и оценки их стоимости.

Кстати, лампы дневного света довольно просто можно заменить на светодиодные, схему такого усовершенствования вы найдёте в нашей статье — ЗДЕСЬ.

Если же у вас остались какие-то вопросы по монтажу люминесцентных светильников, оставляйте их в комментариях к статье, постараемся вам помочь.

Как зажечь лампу дневного света без дросселя: практические нюансы

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принцип действия лампы дневного света

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Газ.
  9. Нити накала лампы.
  10. Ультрафиолетовое излучение.
  11. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.

Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.

Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:
1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

что это такое, схема подключения к светильникам и лампам, фото, видео


Автор Aluarius На чтение 8 мин. Просмотров 4.7k. Опубликовано

Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.

Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Схема устройства

Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

Но тут необходимо выполнить два основных условия:

  1. Разогреть две нитки накала.
  2. Создать большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

Теперь сама схема ЭПРА.

Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

Как работает

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Электронный пускорегулирующий аппарат

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
  • Две – управляющие. В каждой по четыре витка.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

Тестирование

Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

  • При 220 вольт она составила 38 кГц.
  • При 100 вольтах 56 кГц.

Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

Причины неисправностей

Итак, по каким причинам люминесцентная лампа может не гореть?

  • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
  • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
  • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
  • Неправильно проведена схема подключения аппарата к лампам.

Это интересно

В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

Как подключить люминесцентную лампу? — новости Бурятии и Улан-Удэ

В современной истории борьбы за экономное расходование энергоресурсов люминесцентные линейные лампы были первой ласточкой. Они и сейчас не уступают по своей популярности энергосберегающим и светодиодным новинкам. Появились модели с люминофорами нового поколения — компактные, яркие, с привлекательным дизайном. Но люминесцентные лампы следует подключать к сети по более сложной схеме в сравнении с обычными лампами накаливания. Чтобы разобраться в этих особенностях, приступим к изучению устройства и механизма действия этих приборов.

У этих ламп есть особенности

Особенности таковы, что для зажигания ламп люминесцентного типа в цепи должны быть пусковые устройства, от качественного срабатывания которых напрямую зависит срок службы этих светильников.

Для нормального свечения люминесцентной лампы в ней постоянно должен поддерживаться тлеющий электрический разряд. В современных лампах на внутренние электроды вначале подается высоковольтный импульс, а затем рабочее напряжение, поддерживающее постоянный разряд в колбе. В этом электромагнитном поле газ начинает излучать невидимый нам ультрафиолетовый свет, который и заставляет светиться люминофор на внутренних стенках лампы. Меняя состав этого люминофора, мы меняем и гамму цветовых температур, что обеспечивает широту ассортимента люминесцентных ламп.

Импульсное напряжение для прогрева электродов на лампы люминесцентного типа подают специальные балласты электромагнитного и электронного типа.

Подключаем через электромагнитный балласт

В этой схеме в цепь включается дроссель и стартер, который представляет собой маломощный неоновый источник света. Он оснащен биметаллическими контактами и питается от переменной электросети. В такой схеме дроссель, стартерные контакты и электродные нити подключаются последовательно. Роль стартера может исполнить даже обыкновенная кнопка от электрозвонка, и тогда напряжение будет подаваться удерживанием кнопки звонка в нажатом положении. Светильник зажегся — кнопку можно отпустить.

В классической схеме порядок действия схемы с балластом электромагнитного типа начинается после включения в сеть и накоплением дросселем электромагнитной энергии. Поступление электричества обеспечивается через стартерные контакты, и ток устремляется по вольфрамовым нитям нагрева электродов. После нагрева электродов и стартера происходит размыкание контактов, и аккумулированная дросселем энергия высвобождается. Импульсное изменение величины напряжения на электродах заставляет люминесцентную лампу светиться.

Чтобы повысить КПД лампы и снизить помехи, схема обычно комплектуется двумя конденсаторами. Меньший из них, размещенный внутри стартера, заметно улучшает качество неонового импульса.

За и против электромагнитного балласта

Такая схема считается довольно простой и надежной при вполне доступной стоимости. Но среди недостатков можно сразу назвать громоздкость прибора и продолжительное (до 3 секунд) время его включения. В холодное время года эффективность такой системы освещения заметно снижается, а энергопотребление уже не кажется экономным. Такие светильники, установленные в читальных залах или в школьных классах, вообще мешают сосредоточиться из-за шумной работы дросселя, а мерцание светового потока довольно быстро вызывает утомление. Устанавливать светильники такого типа в жилых помещениях едва ли будет разумным шагом.

Делаем подключение с электронным балластом

Вот это уже современный вариант подключения. Электронный балласт (ЭПРА) в схеме — это устройство по-настоящему экономное и способное обеспечить гораздо более длительный срок службы люминесцентных ламп по сравнению с электромагнитным вариантом. Приятно, что лампы с таким балластом работают на повышенной (до 133 кГц) частоте и дают свет ровный, без утомительного мерцания.

Современные микросхемы дают возможность собирать пусковые устройства с настолько компактными размерами, что балласт помещается прямо в цоколь осветительного прибора. Это делает возможным производство малогабаритных ламп, вкручивающихся в привычный нам стандартный патрон для ламп накаливания. Стартовые микросхемы при этом не только обеспечивают светильники рабочим питанием, но и подогрев электродов производят плавно, что повышает их эффективность и увеличивает срок службы. Такие люминесцентные лампы вы можете подключать в комплексе с диммерами, предназначенными для плавного регулирования яркости света лампочек. А вот к люминесцентным лампам с электромагнитными балластами никакой диммер подключить не получится.

Советы эксперта

Схемы подключения ламп при использовании электронных балластов составлены таким образом, что в устройстве появляется возможность подстраиваться под характеристики лампочки. Известно, что через некоторый период использования люминесцентные лампы обычно требуют более высокого напряжения для начального разряда, и электронный балласт эту потребность учитывает, подстраиваясь под такие изменения и продолжая обеспечивать нужное нам качество освещения. Схема обеспечивает и защиту от скачков напряжения питающего источника.

Схема для линейных ламп

Пускорегулирующий аппарат мы подключаем с одной стороны к источнику питания, а с другой — к линейной лампе. Предварительно нужно предусмотреть способ крепления блока ЭПРА к осветительной конструкции. Подключение производим с учетом полярности проводов. Если необходимо установить две лампы через пускорегулирующий аппарат, то используется вариант параллельного соединения.

Стартовое зажигание и поддержание свечения лампы также осуществляется через прогрев электродов, излучение появляется в результате высоковольтного импульса и дальнейшего поддержания свечения экономичным напряжением.

Советы эксперта

Если после подключения появилось мерцание или вовсе отсутствие свечения газоразрядных ламп, нужно сначала понять, в балласте или осветительном элементе заключается проблема. Работоспособность ЭПРА проверяется заменой в светильнике линейной лампы на обычную лампу накаливания. Если она нормально загорелась, неисправность не в пускорегулирующем аппарате.

Подбираем правильные выключатели

В обычных бюджетных выключателях контакты могут залипать под воздействием высоких стартовых токов. Поэтому в монтаже с люминесцентными лампами рекомендуется использовать высококачественные выключатели. Установка выключателей с неоновой подсветкой тоже может привести к недоразумениям: в выключенном состоянии цокольные лампы могут ночью мигать. Избавиться от этого явления можно, если в люстру добавить обычную лампу накаливания, либо параллельно с лампой включить резистор сопротивлением в 1 МОм и мощностью 0,5 Вт. Совсем простой способ заключается в удалении неоновой подсветки выключателя. Впрочем, есть и другие способы избавления от некомфортного мигания. С навыками самостоятельного подключения люминесцентных ламп вы вполне можете решить эти задачи.

Источник: https://remont.castorama.ru/articles/kak-pravilno-podkljuchit-ljuminestsentnye-lampy

Автор: Реклама INFPOL. RU

Как подсоединить лампу дневного света с тремя проводами?

Вы здесь Главная » Освещение » Лампы » Как подключить лампу дневного света — схемы подключения

При выборе современного способа освещения помещения, необходимо знать, как подключить лампу дневного света самостоятельно.

Большая площадь поверхности свечения способствует получению ровного и рассеянного освещения.

Поэтому именно такой вариант стал в последние годы очень популярным и востребованным.

Принцип работы

Лампы люминесцентные относятся к газоразрядным источникам освещения, характеризующимся образованием ультрафиолетового излучения под воздействием электрического разряда в ртутных парах с последующим преобразованием в высокую видимую светоотдачу.

Появление света обусловлено наличием на внутренней поверхности лампы особого вещества под названием люминофор, поглощающего УФ-излучение. Изменение состава люминофора позволяет менять оттеночную гамму свечения. Люминофор может быть представлен галофосфатами кальция и ортофосфатами кальция-цинка.

Принцип работы люминесцентной лампочки

Поддержка дугового разряда происходит посредством термоэлектронной эмиссии электронов на поверхности катодов, которые разогреваются при пропускании тока, ограничивающегося балластом.

Недостаток ламп дневного света представлен отсутствием возможности выполнить прямое подключение к электрической сети, что обусловлено физической природой лампового свечения.

Значительная часть светильников, предназначенных для установки ламп дневного света, имеет встроенные механизмы свечения или дроссели.

Подключение лампы дневного света

Чтобы грамотно осуществить самостоятельное подключение, необходимо правильно выбрать лампу дневного света.

Такая продукция маркируется трёх-цифровым кодом, содержащим всю информацию о качестве света или индекса цветопередачи и температуры цвета.

Первой цифрой маркировки обозначается уровень цветовой передачи, и чем выше являются эти показатели, тем более достоверную цветопередачу удаётся получить в процессе освещения.

Обозначение температуры свечения лампы представлено цифровыми показатели второго и третьего порядка.

Наибольшее распространение получило экономичное и высокоэффективное подключение на основе электромагнитного балласта, дополненного неоновым стартером, а также схемой со стандартным балластом электронного типа.

Блок 1

Схемы подключения лампы дневного света со стартером

Самостоятельно подключить лампу накаливания достаточно просто, что обусловлено наличием в комплекте всех необходимых элементов и схемы стандартной сборки.

Две трубки и два дросселя

Технология и особенности самостоятельного последовательного подключения таким способом следующие:

  • подача фазного провода на балластный вход;
  • подключение дроссельного выхода на первую контактную группу лампы;
  • подсоединение второй контактной группы на первый стартер;
  • подключение с первого стартера на вторую ламповую контактную группу;
  • соединение свободного контакта с проводом на ноль.

Аналогичным способом производится подключение второй трубки. С балласта идёт подключение на первый ламповый контакт, после чего второй контакт с этой группы переходит на второй стартер. Затем осуществляется соединение стартерного выхода со второй ламповой парой контактов и соединение свободной контактной группы с нулевым вводным проводом.

Такой способ подключения, по мнению специалистов, является оптимальным при наличии пары источников освещения и пары соединительных комплектов.

Схема подключения двух ламп от одного дросселя

Самостоятельное подключение от одного дросселя – менее распространённый, но совершенно несложный вариант. Такое двухламповое последовательное подключение отличается экономичностью и требует приобретения индукционного дросселя, а также пары стартеров:

  • к лампам посредством параллельного подсоединения присоединяется стартер на штыревой выход с торцов;
  • последовательное присоединение свободных контактов к электрической сети при помощи дросселя;
  • присоединение конденсаторов параллельно к контактной группе осветительного устройства.

Две лампы и один дроссель

Стандартные выключатели, относящиеся к категории бюджетных моделей, часто характеризуются залипанием контактов в результате повышения стартовых токов, поэтому целесообразно применять специальные высококачественные варианты контактных коммутационных аппаратов.

Как подключить лампу дневного света без дросселя?

Рассмотрим, как происходит подключение люминесцентных ламп дневного света. Простейшая схема бездроссельного подключения применяется даже на сгоревших трубках ламп дневного света и отличается отсутствием использования нити накаливания.

В этом случае питание трубки осветительного прибора обусловлено наличием повышенного постоянного напряжения посредством диодного моста.

Схема включения лампы без дросселя

Такая схема характеризуется присутствием токопроводящего провода или широкой полоски фольгированной бумаги, одной стороной присоединенной к выводу электродов лампы. Для фиксации на концах колбы применяются металлические хомутики, аналогичного с лампой диаметра.

Электронный балласт

Принцип функционирования осветительного прибора с электронным балластом заключается в прохождении электрического тока через выпрямитель, с последующим поступлением в буферную зону конденсатора.

В электронном балласте, наряду с классическими пусковыми регулирующими устройствами, осуществление старта и стабилизации происходит посредством дросселя. Питание зависит от высокочастотного тока.

Электронный балласт

Естественное усложнение схемы сопровождается целым рядом преимуществ по сравнению с низкочастотным вариантом:

  • повышение показателей эффективности;
  • устранение эффекта мерцания;
  • снижение веса и габаритов;
  • отсутствие шумности в процессе работы;
  • повышение надежности;
  • продолжительный эксплуатационный срок.

В любом случае следует учитывать тот факт, что электронные балласты относятся к категории импульсных устройств, поэтому их включение без достаточной нагрузки является основной причиной выхода из строя.

Проверка работоспособности энергосберегающей лампы

Несложное тестирование позволяет своевременно выявить поломку и правильно определить основную причину неисправности, а иногда и выполнить самостоятельно наиболее простые ремонтные работы:

  • Демонтаж рассеивателя и внимательный осмотр люминесцентной трубки с целью обнаружения участков выраженного почернения. Очень быстрое почернение концов колбы свидетельствует о перегорании спирали.
  • Проверка нитей накала на предмет отсутствия разрывов при помощи стандартного мультиметра. При отсутствии повреждений нитей — показатели сопротивления могут варьироваться в пределах 9,5-9,2Om.

Если проверка лампы не показала сбоев в работе, то отсутствие функционирование может быть обусловлено поломкой дополнительных элементов, включая электронный балласт и контактную группу, которая достаточно часто подвергается окислению и нуждается в зачистке.

Проверка работоспособности дросселя осуществляется отключением стартера и замыканием на патрон. После этого нужно накоротко замкнуть патроны лампы и замерить дроссельное сопротивление. Если заменой стартера не удаётся получить желаемый результат, то основная неисправность, как правило, кроется в конденсаторе.

Блок 2

Что вызывает опасность в энергосберегающей лампе?

Ставшие относительно недавно очень популярными и модными различные энергосберегающие осветительные приборы, по мнению некоторых ученых, способны нанести достаточно серьезный вред не только окружающей среде, но и здоровью человека:

  • отравление ртутьсодержащими парами;
  • поражения кожных покровов с образованием выраженной аллергической реакции;
  • повышение риска развития злокачественных опухолей.

Мерцающие лампы часто становятся причиной бессонницы, хронической усталости, снижения иммунитета и развития невротических состояний.

Важно знать, что из разбитой колбы люминесцентной лампы высвобождается ртуть, поэтому эксплуатация и дальнейшая утилизация должны осуществляться с соблюдением всех правил и мер предосторожности.

Значительное сокращение срока службы лампы люминесцентной, как правило, бывает спровоцировано нестабильностью напряжения или неисправностями балластного сопротивления, поэтому при недостаточно качественной работе электросети предполагается использование обычных ламп накаливания.

Видео на тему

Дневное освещение сегодня встречается в каждом доме. Подобный источник света очень экономичен, особенно в условиях нынешнего возрастания цен на электричество в стране. Обыкновенные лампы накаливания стали дорогостоящим удовольствием также они недолговечные. Выбрав альтернативное освещение, владельцы задумываются, как подключить лампу дневного света в домашних условиях без помощи специалистов. Перед тем, как приступить к настройке люминесцентного светильника, важно понять, как действует прибор и отметить несколько особенных черт.

Принцип работы дневной лампы

Важно! При подключении люминесцентной лампочки, нагрузка на проводку не должна превышать предельно допустимое значение.

Первым делом рассмотрим устройство и его составляющие. Верхняя часть прибора сделана в виде цилиндрической колбы. Люминесцентная лампа изготавливается в любых формах и в частности подходит к определенным светильникам.

Стандартная лампа дневного света

Самые известные это:

  • колечные;
  • прямые;
  • компактные.

Каждая из них имеет свои преимущества и функции. Разумеется, отличить подобные приспособления, можно лишь по внешности, а внутренняя часть каждой лампы содержит электроды, инертный газ и ртутное покрытие. Электрод—это небольшого размера спираль, которая при нагреве зажигает инертный газ. За счет чего происходит свечение покрытия цилиндра. Обычные люминесцентные лампы имеют короткие электроды, и за счет их размера они не могут приспособиться к стандартному напряжению электрических домашних сетей. С целью нормализовать данное условие придется приобрести специальные приборы—дроссели.

Для безопасности работы лампы дневного света используют еще и стартер, он стабилизирует накал электродов, после розжига газообразного вещества в колбе лампочек.

Подключение лампы дневного света

Схема подключения лампы дневного света довольно проста в понимании, но иногда ее приходится выстраивать для отдельной индивидуальной электрической сети, по которой включить люминесцентный источник будет просто. Перейдем к порядку действий, которые обеспечат правильную работу экономной лампочки.

Схема подключения одной и двух ламп дневного света

Важно! Подключение люминесцентной лампы, может проводится одним из нескольких методов, в зависимости от конструкции прибора.

  • Первое, что нужно произвести, это как обычно обезопасить себя от поражения электрическим током, а значит, обесточить всю цепь.
  • Приступаем к техническим пунктам алгоритма, выбираем фазу и ее соединяем с контактом лампы.
  • Берем нулевой провод и соединяем его с дросселем.
  • От дросселя подводим проводник ко второму контакту дневной лампы и замыкаем их между собой.

Важно! Подача электричества к лампе будет достаточной по мощности, если лампа первое время будет моргать.

Чтобы лампа работала стабильно, без миганий, достаточно установки стартера, другими словами электрического балласта, работа которого специализируется на сбалансировании напряжения, подаваемого к лампе.

Проверка работоспособности энергосберегающей лампы

По истечение определенного временного промежутка лампа дневного света выходит из строя не всегда по объяснимым причинам. Случается, что прекращается ее работоспособность благодаря различным факторам. Вот что может повлиять на нарушение рабочего механизма:

  • перенапряжение;
  • подача сверхтоков;
  • выход из строя дросселя или стартера;
  • игнорирование схемой подключения дневной лампы.

Дисфункция работы люминесцентной лампы происходит за счет нарушения целостности электродов по выше указанным причинам. Известно, что эти элементы представляют собой вольфрамовую нить, покрытую металлическим опылением. За счет неблагоприятного воздействия, это покрытие начинает осыпаться и постепенно выгорать.

Иногда напряжение проходит только по некоторой части электродов, это приводит к потемнению на концах прибора. Для точной проверки лучше всего использовать мультиметр. Установите его в режим измерения проводников прибора, проверяйте сопротивление обеих сторон. Если хоть один контакт покажет ноль, следовательно, лампа не дееспособна.

Люминесцентная лампа в разобранном виде

Внимание! Несоблюдение схемы включения лампы дневного света в электрическую сеть, может повлечь за собой существенные изъяны, вплоть до выхода прибора из строя.

Что вызывает опасность в энергосберегающей лампе?

Многие люди задаются этим вопросом, и ввиду собственной безопасности продолжают игнорировать данные источники освещения, даже пренебрегая тем качеством, которое обеспечивает экономию электроэнергии.

Известно, что внутренний механизм лампы содержит долю ртути, и при нарушении целостности колбы, может произойти отравление парами химического вещества. В связи с этим, люди стараются не приобретать люминесцентные источники света. Однако, существует ряд правил безопасности при работе с этим прибором, о которых мы говорили в предыдущих статьях.

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.

Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.

Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)

Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.




Принцип работы:  при подключении электропитания в стартере появляется разряд и

замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.

Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.

В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.

Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.

Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Start it Up — Как работают люминесцентные лампы

В классической конструкции люминесцентных ламп, которая по большей части пришла на второй план, для зажигания лампы использовался специальный механизм включения стартера. Вы можете увидеть, как эта система работает, на схеме ниже.

При первом включении лампы путь наименьшего сопротивления проходит через байпасную цепь и через выключатель стартера . В этой цепи ток проходит через электроды на обоих концах трубки.Эти электроды представляют собой простые нитей накала , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити. Это отрывает электроны от поверхности металла, отправляя их в газовую трубку, ионизируя газ.

В то же время электрический ток вызывает интересную последовательность событий в выключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или другой газ.Колба имеет два электрода, расположенных рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по сути, поток заряженных частиц) перескакивает между этими электродами, чтобы установить соединение. Эта дуга зажигает лампочку так же, как большая дуга зажигает люминесцентную лампу.

Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от зажженной лампы изгибает биметаллическую полосу, так что она контактирует с другим электродом.Поскольку два электрода соприкасаются друг с другом, току больше не нужно прыгать как дуга. Следовательно, через газ не протекают заряженные частицы, и свет гаснет. Без тепла от света биметаллическая полоса остывает, отклоняясь от другого электрода. Это размыкает цепь.

К тому времени, как это произойдет, нити уже ионизировали газ в люминесцентной лампе, создав электропроводящую среду.Для возникновения электрической дуги трубке просто нужен скачок напряжения на электродах. Этот толчок обеспечивается балластом лампы, специальным трансформатором, включенным в цепь.

Когда ток течет через байпасную цепь, он создает магнитное поле в части балласта. Это магнитное поле поддерживается текущим током. При размыкании переключателя стартера ток кратковременно отключается от балласта. Магнитное поле схлопывается, что вызывает внезапный скачок тока — балласт высвобождает накопленную энергию.

Этот выброс тока помогает создать начальное напряжение, необходимое для образования электрической дуги в газе. Вместо того, чтобы проходить через байпасную цепь и перепрыгивать через зазор в выключателе стартера, электрический ток течет через трубку. Свободные электроны сталкиваются с атомами, выбивая другие электроны, что создает ионы. В результате получается плазма , газ, состоящий в основном из ионов и свободных электронов, которые все свободно движутся.Это создает путь для электрического тока.

Удар летящих электронов сохраняет две нити теплыми, поэтому они продолжают испускать новые электроны в плазму. Пока есть переменный ток и нити не изношены, ток будет продолжать течь через трубку.

Проблема с такой лампой в том, что она загорается через несколько секунд. В наши дни большинство люминесцентных ламп рассчитаны на то, чтобы загораться почти мгновенно. В следующем разделе мы увидим, как работают эти современные конструкции.

Диммирование флуоресцентных ламп Как работают люминесцентные светильники

Регулировка яркости флуоресцентных ламп Как работают люминесцентные светильники

Люминесцентная лампа работает так же, как неоновая лампа. На каждом конце есть электроды, которые нагреваются, чтобы уменьшить величину ударного тока, необходимого для возбуждения газа в трубке. После возбуждения трубки электроды продолжают оставаться нагретыми из-за передачи тока, но напряжение, необходимое для поддержания возбуждения газа, значительно падает по сравнению с напряжением удара.

Внутренняя часть лампы покрыта смесью люминофора, которая загорается при контакте УФ-излучения со стеклом. Поскольку свет не является прямым результатом свечения нити накала, люминесцентные лампы по своей природе более эффективны, чем лампы накаливания.

Магнитные и электронные балласты используются с люминесцентными лампами. Электронные балласты предпочтительнее, поскольку они легче по весу, излучают меньше тепла и используют высокочастотные формы волны напряжения для устранения видимого мерцания лампы.Электронные балласты обычно работают в диапазоне 32 кГц, например, а не в диапазоне 120 Гц, используемом в магнетиках. Известно, что это иногда вызывает другие проблемы, такие как увеличение гармоник в линии и помехи для инфракрасных устройств управления, но плюсы перевешивают минусы.

Компактные флуоресцентные лампы

Компактные люминесцентные лампы относятся к люминесцентной лампе, размер которой уменьшен путем сворачивания или складывания, чтобы создать эффект длинной трубки в небольшом пространстве.

Есть два типа компактных люминесцентных ламп:

Интегрированный

Балласт встроен в цоколь лампы.Такие типы могут использоваться как прямая замена стандартных ламп Эдисона с винтом или байонетом. Однако диммирование оставляет желать лучшего. Даже версии встроенного CFL с регулируемой яркостью не обеспечивают плавного затемнения в широком диапазоне.

Неинтегрированный

Неинтегрированные компактные люминесцентные лампы

имеют отдельный балласт, аналогичный стандартной люминесцентной лампе.

Диммируемые балласты доступны для неинтегрированных компактных люминесцентных ламп и обеспечивают приемлемые характеристики затемнения.

Компактные флуоресцентные лампы необходимо полностью прожечь в течение 100 часов перед затемнением (см. Дополнительную информацию ниже). Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.

Как затемняют люминесцентные светильники

При затемнении флуоресцентных ламп важно понимать, что невозможно создать плавный переход между выключенным режимом и уровнем. Поскольку свет генерируется разрядом через газ, подобно дуговой лампе или неоновой трубке, всегда будет «скачок» уровня света при первом ударе трубки.Яркость, до которой «подскакивает» уровень, определяется балластом — см. Раздел ниже о регулируемых процентах. Всегда помните, что при уменьшении яркости люминесцентных ламп характеристики не будут такими же, как у традиционных ламп накаливания с регулируемой яркостью.

Люминесцентные светильники затемняются с помощью специального регулируемого балласта. Это связано с тем, что стандартные балласты обычно не способны поддерживать тепло электрода в степени, необходимой для надлежащего возбуждения газа при изменении входного напряжения. Хотя магнитные балласты с регулируемой яркостью существуют, почти все балласты с регулируемой яркостью в наши дни являются электронными.

Электронные балласты изменяют частоту, с которой они работают с лампами, без изменения напряжения на электродах, и поэтому могут получить гораздо более широкий диапазон регулирования яркости. В то время как магнитные поля действительно позволяли снизить мощность лампы до 20-40%, электронные балласты на некоторых моделях могут уменьшаться до 1%.

О различных балластах с регулируемой яркостью

Балласты обычно называют количеством проводов, которые их питают. На рынке США доступны три различных типа балласта (110 В, 60 Гц).Балласты бывают 2-проводные, 3-проводные и 4-проводные модели. Двухпроводные балласты крайне редки в Европе (более низкая частота означает, что они не работают правильно), поэтому практически все диммируемые флуоресцентные лампы являются трех- или четырехпроводными.

2-проводной

Это очень распространенные балласты, которые проще всего установить. Для них требуется приглушенный горячий и нейтральный (подразумевается заземление), и они доступны в моделях с 5% -ным затемнением от таких компаний, как Lutronand Advance (Philips). Они устанавливаются и управляются на одном диммере так же, как и источник лампы накаливания, за исключением того, что установлен нижний порог.Эта настройка предотвращает работу ламп ниже рекомендованного напряжения, предотвращая преждевременный выход из строя как ламп, так и балластов.

2-проводные пускорегулирующие аппараты выпускаются как с прямой, так и с обратной фазой. Чтобы уменьшить яркость балласта с обратной фазой, вам необходимо использовать модуль диммера с обратной фазой, такой как диммер ETC ELV10 в совместимой диммерной стойке.

3-проводной

Эти балласты также распространены и обычно довольно недорогие. Тем не менее, они используют два регулятора яркости для управления и питания, поскольку им требуются приглушенный горячий, переключаемый горячий и нейтраль (понимается заземление).Advance и Lutron производят их в моделях 1%, 5% и 10%. Используется порог, подобный 2-проводным моделям, и в момент, когда один диммер переходит в полную мощность (не тусклый), а другой начинает плавное уменьшение до полного. Модуль диммера является особенным, поскольку по коду у него должен быть только один выключатель для обоих выходов.

4-проводный

В 4-проводном балласте

используются горячий (не тусклый) и нейтральный (понимается заземление) плюс два низковольтных провода для управления 0-10 В постоянного тока (аналоговый) или протоколы управления DSI или DALI (цифровые).Доступны модели с контролем 5% и 10%. Опять же, порог используется для установки минимальной мощности и управляющего напряжения. Используйте стандартные модули диммера в сочетании с платой управления 0–10 В постоянного тока, такой как плата FLO, при диммировании Unison. Обратите внимание, что ток поступает от балласта и опускается на плату FLO, поэтому стандартный ЦАП может не работать. Подробнее об этом позже.

О различных процентах диммирования

Всегда есть много вопросов, связанных с процентами диммирования, которые производители публикуют для балластов.Проценты основаны на светоотдаче, измеренном с помощью люксметра. Человеческий глаз воспринимает увеличение света не линейно, а как функцию, близкую к квадратическому закону, однако в люксметрах действительно используется линейная шкала. Поэтому, глядя на минимальный уровень яркости люминесцентного светильника, глаз будет видеть больше света, чем заявленный процент. Вот таблица, которая поможет вам лучше сравнить рекламируемый или измеренный свет с воспринимаемым светом.

Тип балласта (то, что продают производители) Измеряемый свет (то, что видит метр) Воспринимаемый свет (то, что вы видите)
1% 1% 10%
5% 5% 22.4%
10% 10% 32%
20% 20% 46%

Балласт 5% является наиболее распространенным из всех типов балласта. Покупатели систем часто не понимают, почему их люминесцентные лампы не тускнеют до 5%. Пожалуйста, помогите им понять, почему 5% означает световой поток, а не воспринимаемый свет или контрольный уровень.

Важные советы по установке

  • Хорошая идея — «приправить» лампы на 100 часов перед тем, как приглушить. Хотя это больше не требуется производителями ламп или балластов, оно имеет тенденцию к повышению производительности. Рекомендуется приобрести и установить в кладовке несколько запасных светильников, чтобы обеспечить зону выгорания лампы. Единственным исключением из вышеперечисленного являются компактные люминесцентные лампы, которые необходимо обязательно прогреть в течение 100 часов, прежде чем затемнить. Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.
  • Убедитесь, что приспособления правильно заземлены. Лампа должна находиться в непосредственной близости от металлической заземляющей пластины, чтобы уменьшить мерцание и увеличить срок службы лампы. Расстояние должно быть 0,5 дюйма в пределах +/- 0,25 дюйма.
  • Не используйте разные типы балластов или ламп в одной цепи. Вопреки распространенному мнению, балласты могут взаимодействовать друг с другом по одной цепи. То же самое и с лампами, поскольку они горят по-разному и никогда не должны смешиваться в одном светильнике.
  • Используйте следующую таблицу, чтобы определить правильный модуль диммера ETC для ваших балластов:
2-проводный (прямая фаза) 2-проводный (обратная фаза) 3-проводный 4-х проводный
120 В переменного тока (США) D15 / D20 ELV10 D15F / D20F D15 / D20
230VAC (CE, Европа) ED15 / Матрица iSCR Матрица iSine ED15AFRF / Матричный флуоресцентный ED15 / ER15
277VAC (США) AD20 AD20F AD20

ETC в прошлом производила несколько модулей прямой фазы, которые лучше справлялись с низкими нагрузками, известные как L10 (110 В) и AL5 (277 В).В серии L использовались технологии MOSFET и IGBT для более точного регулирования маломощных нагрузок. Из-за улучшений управления затемнением в корпусе Unison DRd и модулях управления Sensor CEM + / CEM3 эти модули были сняты с производства и больше не нужны.

Как настроить систему ETC Legacy Unison для затемнения люминесцентных ламп

При настройке модуля затемнения на процессоре Unison убедитесь, что вы выбрали правильный тип модуля и соответствующий тип нагрузки. Когда вы выбираете люминесцентные лампы, вас спросят, какой процент балласта вы используете.Кривая и порог будут установлены автоматически. Рекомендуется установить уровень в процентах немного выше требуемого значения, установленного производителем балласта, это позволит избежать мерцания в будущем.

Как настроить систему датчика ETC для затемнения люминесцентных ламп

Датчик

немного отличается тем, как его следует настроить для правильного затемнения флуоресцентных ламп. Сначала вы должны установить кривую, которую хотите использовать. Большинство людей выбирают линейный, но есть и модифицированный линейный, у которого более мягкий нижний конец кривой.После этого установите порог примерно на 60% и измерьте выходное среднеквадратичное напряжение для диммера при его минимальном значении. Требуется, чтобы напряжение в 0,47 раза превышало входное линейное напряжение. Если 60% неверно, выберите другой порог, который ближе к желаемому выходу, и проверьте его с помощью измерителя. С этим типом настройки (допустим, 60% порог) ваш фейдер будет иметь большую область перемещения (от 0 до 59%), где ничего не произойдет.

Другая информация

В устаревших системах Unison вы можете установить для зоны минимальный уровень 60, максимальный или полный и установить флажок «Использовать ноль как выключенный».«Это даст фейдеру настенной станции полный контроль над балластом во всем диапазоне фейдера и при этом отключится в нижней части хода фейдера. Это очень хорошее решение.

При запуске балластов с консоли управления DMX найдите время, чтобы запрограммировать профиль, имитирующий программирование Unison, или запишите все ваши реплики с затронутыми каналами в диапазоне от 59 до полного. Таким образом, синхронизированное затухание по-прежнему будет работать со всеми флуоресцентными и нефлуоресцентными каналами параллельно.

Устранение неисправностей при затемненных флуоресцентных лампах

1. Лампы разного уровня на разных балластах

  • Смесь ламп разных типов и возрастов.

2. Лампочки с зачерненными торцами

  • Лампы не прогревали полностью в течение 100 часов.
  • Лампы работали долгое время на очень низких уровнях.
  • Лампы отработали ниже рекомендованного уровня.

3. Лампы мигают или мигают только на низком уровне

  • Лампы не прогревали полностью в течение 100 часов.
  • Балласт загоняется слишком низко.Проверьте настройку нижнего среднеквадратичного напряжения.

4. Лампы мигают или мигают на всех уровнях

  • 3-проводной балласт затемнен, и переключенные провода поменялись местами.
  • Лампы не были полностью выдержаны в течение 100 часов.
  • Лампы и балласты не согласованы.
5.Лампы включаются на полную мощность на нижнем уровне управления и не гаснут.
  • У 4-проводного балласта отсутствует или неправильная проводка для управления.

6. Лампы не тускнеют до минимального уровня

  • Лампы не прогревали полностью в течение 100 часов.
  • Светильники неправильно заземлены.
  • Старые лампы.

Какие балласты нельзя использовать с оборудованием ETC

Убедитесь, что вы используете правильный модуль (ELV10) при диммировании управляющих балластов с обратной фазой. Все остальные диммерные модули Sensor и Unison обеспечивают управление прямой фазой. Использование балластов, не предназначенных для этих систем, вызовет множество проблем и приведет к неправильному затемнению. Самый распространенный производитель этих балластов — ESI. Lightolier производит блок преобразователя в одно- и двухканальной моделях для адаптации управляющего сигнала прямой фазы к управлению обратной фазой, но стоимость весьма значительна.Большинство выпускаемых сегодня балластов с регулируемой яркостью являются электронными, и с ними легко работать. Однако, по мере того, как люди модернизируют старые объекты, также используются регулируемые магнитные балласты. Большинство магнетиков можно приглушить, но, как всегда, если есть сомнения, сначала проверьте их. (С вопросами обращайтесь к разработчикам приложений) Магнитные балласты должны иметь термическую защиту для предотвращения перегрева несинусоидальных сигналов.

Существует множество стандартов наименования люминесцентных ламп; вот краткое изложение

Диаметр

Число с префиксом T указывает диаметр трубы.

Т-номер

Диаметр

Т12

1,5 дюйма

T8

1,0 дюйма

T5

0.5 дюймов

Длина и мощность

Длина и мощность трубки взаимозависимы.

Мощность

Длина

40 Вт

48 дюймов (1220 мм)

30 Вт

36 дюймов (910 мм)

20 Вт

24 дюйма (610 мм)

13 Вт

21 дюйм (530 мм)

15 Вт

18 дюймов (460 мм)

14 Вт

15 дюймов (380 мм)

8 Вт

12 дюймов (300 мм)

6 Вт

8 дюймов (230 мм)

4 Вт

6 дюймов (150 мм)

10 проблем, которые следует учитывать при флуоресцентном освещении

Флуоресцентное освещение по-прежнему является недорогим вариантом для модернизации старых светильников T12, но у люминесцентного освещения есть свои недостатки.Вот 10 проблем, с которыми люди сталкиваются при использовании флуоресцентного освещения:

1. Частое переключение вызывает ранние отказы

Если лампа установлена ​​там, где она часто включается и выключается, она быстро стареет.

В экстремальных условиях срок ее службы может быть намного меньше, чем у дешевой лампы накаливания.

Каждый пусковой цикл слегка разрушает эмитирующую электроны поверхность катодов; когда весь эмиссионный материал исчезнет, ​​лампа не сможет запуститься с имеющимся балластным напряжением.

В светильниках, предназначенных для мигания огней (например, для рекламы), будет использоваться балласт, который поддерживает температуру катода, когда дуга выключена, что продлевает срок службы лампы.

Дополнительная энергия, используемая для запуска люминесцентной лампы, эквивалентна нескольким секундам нормальной работы; энергоэффективнее выключать лампы, если они не нужны в течение нескольких минут.

2.Люминесцентные лампы содержат ртуть

Если люминесцентная лампа разбита, очень небольшое количество ртути может загрязнить окружающую среду. Около 99% ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых близок.

Битое стекло обычно считается большей опасностью, чем небольшое количество пролитой ртути. EPA рекомендует проветривать место разрыва люминесцентной лампы и использовать влажные бумажные полотенца, чтобы помочь собрать битое стекло и мелкие частицы.

Стекло и использованные полотенца следует утилизировать в запечатанном пластиковом пакете. Пылесосы могут привести к попаданию частиц в воздух, поэтому их не следует использовать.

3. Люминесцентные лампы излучают ультрафиолетовый свет

Ультрафиолетовое излучение Флуоресцентные лампы излучают небольшое количество ультрафиолетового (УФ) света. Исследование, проведенное в 1993 году в США, показало, что ультрафиолетовое облучение от сидения под флуоресцентными лампами в течение восьми часов эквивалентно только одной минуте пребывания на солнце.

Очень чувствительные люди могут испытывать различные проблемы со здоровьем, связанные с светочувствительностью, которые усугубляются искусственным освещением.

Ультрафиолетовый свет может повлиять на чувствительные картины, особенно акварели и многие текстильные изделия. Ценные произведения искусства должны быть защищены от света дополнительными стеклянными или прозрачными акриловыми листами, помещенными между люминесцентной лампой (ами) и картиной.

4. «Гудение» от люминесцентного балласта

Магнитные пускорегулирующие устройства для одной лампы имеют низкий коэффициент мощности. Люминесцентным лампам требуется балласт для стабилизации тока через лампу и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда.

Это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется для двух или более ламп.Электромагнитные балласты при незначительной неисправности могут издавать слышимый гудение или жужжание.

Магнитные балласты обычно заполняются смолой для заливки, чтобы уменьшить излучаемый шум. Гул устранен в лампах с высокочастотным электронным балластом. Потери энергии в магнитных балластах могут быть значительными, порядка 10% входной мощности лампы.

Электронные балласты уменьшают эти потери.В небольших лампах в качестве балласта может использоваться лампа накаливания, если напряжение питания достаточно высокое, чтобы лампа могла запуститься.

5. Качество электроэнергии и радиопомехи

Индуктивные балласты включают конденсаторы коррекции коэффициента мощности. Простые электронные балласты также могут иметь низкий коэффициент мощности из-за входного каскада выпрямителя.

Люминесцентные лампы представляют собой нелинейную нагрузку и генерируют гармонические токи в электросети.Дуга внутри лампы может создавать радиочастотный шум, который может передаваться через силовую проводку. Возможно подавление радиопомех.

Хорошее подавление помех возможно, но увеличивает стоимость люминесцентных светильников.

6. Неэффективен при высоких и низких температурах

Люминесцентные лампы лучше всего работают при комнатной температуре.При гораздо более низких или более высоких температурах эффективность снижается.

При отрицательных температурах могут не запускаться стандартные лампы. Для надежной работы вне помещений в холодную погоду могут потребоваться специальные лампы.

В таких приложениях, как дорожная и железнодорожная сигнализация, люминесцентные лампы, которые не выделяют столько тепла, как лампы накаливания, могут не растапливать снег, а вокруг лампы накапливается лед, что снижает видимость.

7. Форма люминесцентной лампы Причина Проблемы при модернизации

Люминесцентные лампы

— это длинные источники с низкой яркостью по сравнению с дуговыми лампами высокого давления и лампами накаливания
. Однако малая сила света излучающей поверхности полезна, поскольку она уменьшает блики.

Конструкция светильника должна управлять светом из длинной трубки, а не из компактного шара
.Компактная люминесцентная лампа (КЛЛ) заменяет обычные лампы накаливания.

Однако некоторые КЛЛ не подходят к некоторым лампам, потому что арфа (тяжелый опорный кронштейн абажура из проволоки) имеет форму узкой шейки лампы накаливания, в то время как КЛЛ обычно имеют широкий корпус для электронного балласта рядом с цоколем лампы.

8. Большинство флуоресцентных ламп не тускнеют

Люминесцентные светильники нельзя подключать к диммерным переключателям, предназначенным для ламп накаливания
.

За это отвечают два эффекта:

1. Форма волны напряжения, излучаемого стандартным диммером с регулировкой фазы, плохо взаимодействует со многими балластами.

2. Становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности.

Для диммирования требуется совместимый диммирующий балласт.Эти системы поддерживают полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

А теперь, прежде чем ты уйдешь и напишешь мне записку о том, что я ошибаюсь, вот исключение …

Это не относится к некоторым КЛЛ, поскольку они доступны для использования с подходящими диммерами.

9.Загрязняющие вещества вызывают проблемы с утилизацией и переработкой

Утилизация люминофора и особенно токсичной ртути в трубках является экологической проблемой.

Правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов.

Для крупных коммерческих или промышленных пользователей люминесцентных ламп во многих странах доступны услуги по переработке, и это может потребоваться по закону.В некоторых регионах переработка также доступна для потребителей.

Но даже несмотря на то, что переработка доступна, она может быть дорогостоящей, что приводит к более серьезным проблемам. Если утилизировать лампы слишком дорого, людям не рекомендуется перерабатывать и утилизировать лампы способами, наносящими вред окружающей среде.

10. Свет от люминесцентной лампы ненаправленный

Свет от люминесцентных ламп является ненаправленным источником света.Когда люминесцентная лампа горит, она излучает свет по всему периметру лампы или на 360 градусов.

Это означает, что используется только около 60-70% фактического света, излучаемого люминесцентными лампами. Остальные 30-40% теряются.

Этот бесполезный свет имеет тенденцию к чрезмерному освещению определенных помещений, особенно офисов. Большинство офисов, в которые мы заходим, не подпадают под действие Закона об энергетической политике 2005 года, потому что мощность на квадратный фут слишком высока.

А как насчет светодиодных ламп T8?

В статье выше светодиод — лучшая замена для решения большинства перечисленных проблем, но они могут быть немного дорогими. Благодаря широкому охвату нашего блога мы установили особые прямые отношения с производителем светодиодов, и теперь у нас есть светодиодные лампы T8, светодиодные парковочные приспособления, светодиодные настенные светильники и светодиодные светильники.

Если вы ищете лучшую альтернативу флуоресцентному освещению, ознакомьтесь с нашим предложением по светодиодным лампам T8, просто нажмите на синее поле ниже.Спасибо, Джимми

Световод: идентификация люминесцентной лампы

Световод

Люминесцентные лампы идентифицируются стандартизированным кодом, который раскрывает ценную информацию о рабочих характеристиках и физических размерах. Коды производителей, указанные на лампах и в каталогах, могут незначительно отличаться от общих обозначений.Однако все основные производители ламп основывают свои коды на системе идентификации, описанной ниже.

Лучший способ узнать идентификацию лампы — на примере. Ниже представлен ассортимент люминесцентных ламп, по одной для каждого популярного способа запуска:

Лампы быстрого запуска (40 Вт или менее) и предварительного нагрева

Лампы быстрого пуска — самый популярный тип люминесцентных ламп, используемых в коммерческих целях, например, в офисных зданиях.

Чтобы узнать больше о том, что означает «холодный» и «теплый» с точки зрения качества цвета источников света, см. «Показатели цвета».

Обратите внимание, что некоторые лампы могут иметь обозначение F40T12 / ES, но лампа потребляет 34 вместо 40 Вт; на это указывает модификатор «ES», обозначающий «энергосбережение». ES — общее обозначение; фактические обозначения производителя могут быть «SS» для SuperSaver, «EW» для Econ-o-Watt, «WM» для Watt-Miser и другие.

После режима запуска может быть добавлено другое число для обозначения цветопередачи и цветовой температуры, если цвет лампы (CW, WW, WWX и т. Д.) Не указан.Номер часто состоит из трех цифр, первая обозначает цветопередачу (например, «7» означает «75»), а затем следующие две указывают цветовую температуру («41» означает «4100K», например).

ПРИМЕР: F30T12 / CW / RS

Факс

люминесцентный

30

номинальная номинальная мощность

Т

указывает форму; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

CW

цвет; эта лампа холодная белая лампа

RS

режим запуска; лампа является лампой быстрого запуска. Лампы предварительного нагрева не имеют суффикса «RS»

Высокопроизводительные лампы для быстрого пуска

ПРИМЕР: F48T12 / WW / HO

Факс

люминесцентный

48

номинальная длина лампы в дюймах

Т

форма; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

WW

цвет; эта лампа тёпло-белая лампа

HO

Лампа высокой мощности, работающая от тока 800 мА

Лампы для быстрого пуска с очень высокой мощностью

ПРИМЕР: F72T12 / CW / VHO

Факс

люминесцентный

48

номинальная длина лампы в дюймах

Т

форма; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

CW

цвет; эта лампа холодная белая лампа

VHO

лампа с очень высокой выходной мощностью, работающая от тока 1500 мА; вместо VHO может быть написано «1500» или «PowerGroove» (фирменные наименования)

Лампы мгновенного пуска

ПРИМЕР: F96T12 / WWX

Факс

люминесцентный

96

номинальная длина в дюймах

Т

форма; эта лампа имеет форму трубки

12

диаметр в восьмых долях дюйма; эта лампа 12/8 (1.5) диаметр в дюймах

WWX

цвет; эта лампа класса люкс теплый белый светильник

Другие люминесцентные лампы

«FC» вместо «F» означает, что фонарь круглый.

«FB» или «FU» вместо «F» означает, что лампа изогнута или имеет U-образную форму. Суффикс «U» может также использоваться для U-образных ламп, за которым следует «/» и число, указывающее расстояние между ножками лампы в дюймах.»FT» вместо «F» используется для двухтрубных ламп T5.

См. Также: Обозначения NEMA для компактных люминесцентных ламп

См. Также: Рекомендации NEMA по эксплуатации систем люминесцентного освещения

Дополнительные световоды

Light Laser LED Circuits :: Next.gr

— Стр. 3

  • Это простая схема драйвера люминесцентной лампы мощностью 4 Вт, которая может работать от источника питания 12 В.Первая часть схемы включает микросхему таймера NE555, работающую как нестабильный мультивибратор. Импульсы на выходе ИС усиливаются транзистором Q1. ….

  • На следующей схеме показана электрическая схема компактного люминесцентного электронного балласта мощностью около 14 Вт. Характеристики: аналогично схеме на 16 Вт, 14 Вт….

  • Детектор повышенного / пониженного напряжения Super CMOS ICL7665S содержит два маломощных, индивидуально программируемых детектора напряжения на одной микросхеме CMOS. Обычно для работы требуется 3А, устройство предназначено для систем с батарейным питанием и ….

  • ..

  • ..

  • ISL83202IPZ является дополнительным пакетом ISL83202. Если вам нужно увидеть описание, нажмите ISL83202. Если вам нужно техническое описание ISL83202IPZ, загрузите его ниже.От Intersil Corporation ..

  • ..

  • Создание синусоидальной волновой функции и управление ею — обычная проблема, с которой сталкиваются проектировщики схем.Цепи синусоидальной волны представляют собой серьезную проблему при проектировании, потому что они представляют собой постоянно управляемый линейный осциллятор. Схема синусоидальной волны составляет ….

  • Магнитное поле, создаваемое балластом, быстро разрушается, создавая высокое напряжение на трубке и заставляя внутренний газ проводить. Это немного похоже на надувание воздушного шара и воткание в него булавки…

  • ..

  • Цепь миганий, размер 12 В. При использовании люминесцентной лампы малогабаритные. В реальном времени работа реле выполняется, если цепь преобразуется с постоянного тока….

  • Люминесцентная лампа. Схема инвертора, в котором используется один транзистор и один трансформатор. Инверторы данного типа могут быть выполнены в различных вариантах ….

    .

  • В этой статье представлен обзор флуоресцентного диммирования и прикладная схема для недорогих ИС небольших осветительных приборов, где требуются уровни диммирования ниже 10% и требуются более комплексные функции защиты.Схема электронного балласта ….

  • Яркость люминесцентной лампы или неоновой лампы нельзя регулировать так же легко, как яркость лампы накаливания, потому что она включается только тогда, когда напряжение намного выше, чем напряжение сети, а затем остается включенным при напряжении электрической сети. В норме высокий ….

  • ..

Флуоресцентный минерал для продажи: флюоресцентный и фосфоресцентный минералы для продажи — флуоресцирует под длинноволновым и коротковолновым ультрафиолетовым светом. (LW, SW

Флуоресцентные минералы при освещении только ультрафиолетовым (УФ) светом
(невидимый для человеческого глаза) излучает видимый свет и кажется, что светится
темнота.

Ниже представлена ​​галерея флуоресцентных и фосфоресцентных
полезные ископаемые, доступные для продажи у John Betts — Fine Minerals в Нью-Йорке
Йорк Сити, штат Нью-Йорк.Флуоресцентные минералы, найденные на этой странице, включают: адамит,
Андерсонит, Арагонит, Артинит, Бенитоит, Кальцит, Корунд, Фторапатит,
Флюорит, гемиморфит, гидромагнезит, новацекит, флогопит, пауэллит,
Родонит, Санборнит, Гиллеспит, Скаполит, Шеелит, Содалит, Хакманит,
Стронцианит, магнезит, власовит, гиттинсит, агреллит, сапфир, циркон,
Витерит, Виллемит, Манганокальцит. Фосфоресцирующие минералы продолжают
светятся в темноте после того, как погаснет ультрафиолетовый свет.

Коротковолновые люминесцентные лампы относительно дороги, потому что фильтр на
Лицевая сторона лампы производится только одним поставщиком в Японии. Низкая мощность
коротковолновые УФ-лампы можно купить примерно за 40 долларов, но чтобы по-настоящему насладиться
флуоресцентные минералы, вам следует купить лучшую лампу с более яркой мощностью
(вывод) и ожидайте заплатить от 300 долларов (использованные) до 600 долларов. Ищите такие бренды, как SuperBright,
TripleBright или слишком круто.

Длинноволновые люминесцентные лампы намного дешевле и обычно
видел в торговых центрах, продающих флуоресцентные плакаты.Они дешевле
потому что фильтры не такие дорогие. Я использую недорогой фонарик типа
длинноволновая УФ-лампа под названием «Convoy S2», которую можно приобрести у дилеров
Лампы Way Too Cool примерно за 55 долларов.

Приведенные ниже изображения для предварительного просмотра флуоресцентных минералов иллюстрированы с подсветкой.
либо с коротковолновым (SW) 254 нм, либо длинноволновым (LW) ультрафиолетовым излучением 365 нм
освещение, заставляя их флуоресцировать. Чтобы увидеть фотографии этих флуоресцентных
минералы при дневном освещении и увеличенные изображения при УФ-освещении, нажмите
на превью фото.Купить флуоресцентные образцы минералов в этом
галерея, перейдите в
Форма онлайн-заказа.

Размеры: (t) = эскиз, (m) = миниатюрный, (c) = шкаф, (lc) = большой шкаф

Флуоресцентные минералы под коротковолновым УФ
ОСВЕЩЕНИЕ

Минералы, показанные ниже, флуоресцируют в коротковолновом ультрафиолете 254 нм.
освещение. Ультрафиолетовое освещение невидимо для человеческого глаза. Эти
минералы поглощают энергию невидимого ультрафиолетового излучения, затем
излучают видимый свет различных цветов.В результате эти минералы появляются
светиться в темноте. Некоторые из перечисленных ниже минералов также флуоресцируют ниже 365.
нм длинноволновое ультрафиолетовое излучение, иногда другого цвета. Изображений
под обоими источниками УФ-света отображаются, если минералы реагируют на оба
длины волн.


# 73188, Флюорит с кальцитом , Skears
Шахта, уровень Firestone, Англия (lc) $ 775


# 72986, Гранат Гроссулар сросшимися
Кальцит
, Ханьдань, Китай (в) $ 400


Коротковолновый флуоресцентный минерал # 73618, Ольмиит
над гематитом
, рудник Н’Чванинг II, Южная Африка (тип местности для
Ольмиит) (в) $ 315


Коротковолновый флуоресцентный минерал # 75233, церуссит
двойниковые кристаллы с покрытием Hydrocerussite плюс минорный кальцит
,
Шахта Цумеб, свинцовый карман, Намибия (м) $ 400


Коротковолновый флуоресцентный минерал # 73443, Азурит
двойные кристаллы с церусситом
, шахта Цумеб, пасхальный карман, Намибия
(м) $ 500


# 79299, Корунд вар.Рубин , Могокский район,
Мьянма (тонны) $ 25


№ 75118, Флюорит с кварцем , Коллекционный
Corner, West Boltsburn Level, Англия (м) $ 1075


№ 78731, Кальцит (зональные кристаллы) , г. Дальнегорск, пр.
Россия (м) $ 550


Коротковолновый флуоресцентный минерал # 78072, Флюорит
над Quartz
, Hilton Mine, Scordale, England (c) $ 450


# 75935, Галенит (двойник по закону шпинели), сфалерит,
Кальцит (сдвоенный), Халькопирит
, Дальнегорск, Россия (в) $ 175


№ 79351, Корунд вар.Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 40


# 78294, Hydrozincite , Желтая сосна,
Невада (lc) $ 95


Коротковолновый флуоресцентный минерал # 75988, Кальцит
с Доломитом
, Ловвилл, Нью-Йорк (c) $ 75


# 79332, Корунд вар. Рубин в мраморе ,
Район Могок, Мьянма (t) $ 26


№ 79352, Корунд вар.Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 85


№ 79355, Корунд вар. Рубин в мраморе ,
Люк Йен, Вьетнам (t) $ 55


Коротковолновый флуоресцентный минерал # 78541, Эльбаит
var. Рубеллит Турмалин
, Папрок, Афганистан (м) $ 450


# 79350, Корунд вар. Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 36

ФЛУОРЕСЦЕНТНЫЕ МИНЕРАЛЫ ПОД ДЛИННЫМ УФ
ОСВЕЩЕНИЕ

Минералы, показанные ниже, флуоресцируют в длинноволновом ультрафиолете 365 нм.
освещение.Ультрафиолетовое освещение невидимо для человеческого глаза. Эти
минералы поглощают энергию невидимого ультрафиолетового излучения, затем
излучают видимый свет различных цветов. В результате эти минералы появляются
светиться в темноте. Некоторые минералы ниже также флуоресцируют ниже 254
нм коротковолновое ультрафиолетовое излучение, иногда другого цвета. Изображений
под обоими источниками УФ-света отображаются, если минералы реагируют на оба
длины волн.


№ 75118, Флюорит с кварцем , Коллекционный
Corner, West Boltsburn Level, Англия (м) $ 1075


# 79334, Корунд вар.Рубин , Лонгидо,
Танзания (тонны) $ 22


# 78294, Hydrozincite , Желтая сосна,
Невада (lc) $ 95


длинноволновый флуоресцентный минерал # 75727, церуссит
и Quartz на Galena
, Wheatley Mine, Пенсильвания (lc) $ 1500


№ 79373, Корунд вар. Рубин , Танзания
(t) $ 15


# 79361, Корунд вар.Рубин в мраморе ,
Джегдалек, Афганистан (т) $ 42


# 72986, Гранат Гроссулар сросшимися
Кальцит
, Ханьдань, Китай (в) $ 400


# 73188, Флюорит с кальцитом , Skears
Шахта, уровень Firestone, Англия (lc) $ 775


№ 79355, Корунд вар. Рубин в мраморе ,
Люк Йен, Вьетнам (t) $ 55


Длинноволновый флуоресцентный минерал # 77471, Кварц
псевдоморфозы по вульфениту с ванадинитом и вульфенитом
, Finch
Шахта, к северу от Хайдена, Аризона (c) $ 250


№ 78731, Кальцит (зональные кристаллы) , г. Дальнегорск, пр.
Россия (м) $ 550


длинноволновый флуоресцентный минерал # 72702, кальцит
с включениями гетита и пирита
, Каменный карьер Кентукки, Флемингсбург,
Кентукки (c) $ 75


# 79317, Корунд вар.Рубин , Танзания
(t) $ 28


# 79306, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 25


№ 78991, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 30


длинноволновый флуоресцентный минерал # 78072, флюорит
над Quartz
, Hilton Mine, Scordale, England (c) $ 450


№ 79187, Корунд вар.Рубин , Могокский район,
Мьянма (тонны) $ 28


# 79304, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 22


# 79084, Корунд вар. Рубин , Россыпь Джоса
депозиты, Нигерия (тонны) $ 24


№ 79363, Корунд вар. Рубин , Россыпь Джоса
депозиты, Нигерия (тонны) $ 20


# 79018, Корунд вар.Рубин , Танзания
(t) $ 30


Длинноволновый флуоресцентный минерал # 78541, Эльбаит
var. Рубеллит Турмалин
, Папрок, Афганистан (м) $ 450


# 75935, Галенит (двойник по закону шпинели), сфалерит,
Кальцит (сдвоенный), Халькопирит
, Дальнегорск, Россия (в) $ 175


# 79326, Корунд вар. Руби , Мозамбик
(t) $ 12


№ 79321, Корунд вар.Руби , Мозамбик
(t) $ 15


# 78990, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 32


# 79067, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 22


# 78972, Spinel , Махендж, Танзания
(t) $ 36


# 79019, Корунд вар. Рубин , Танзания
(t) $ 20


№ 79351, Корунд вар.Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 40


# 79303, Корунд вар. Рубин в мраморе ,
Район Могок, Мьянма (t) $ 24


# 79320, Корунд вар. Рубин , Лонгидо,
Танзания (тонны) $ 40


# 79299, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 25


№ 78996, Корунд вар.Рубин , Танзания
(t) $ 15


# 79103, Корунд вар. Рубин , Танзания
(t) $ 40


# 79332, Корунд вар. Рубин в мраморе ,
Район Могок, Мьянма (t) $ 26


# 79307, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 42


№ 79352, Корунд вар.Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 85


# 79099, Корунд вар. Рубин , Лонгидо,
Танзания (тонны) $ 48


# 79308, Корунд вар. Рубин , Могокский район,
Мьянма (тонны) $ 28


# 79350, Корунд вар. Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 36


# 79336, Корунд вар.Рубин , Winza, Mpwapwa
Район, Танзания (t) $ 36

ФЛУОРЕСЦЕНТНЫЕ И ФОСФОРЕСЦЕНТНЫЕ АЛМАЗНЫЕ КРИСТАЛЛЫ

Алмазы, показанные ниже, флуоресцируют в длинноволновом ультрафиолете 365 нм.
освещение. Ультрафиолетовое освещение невидимо для человеческого глаза. Эти
алмазы поглощают энергию невидимого ультрафиолета, затем
излучают видимый свет различных цветов.В результате кристаллы алмаза
кажутся светящимися в темноте. Некоторые, как указано в отдельных описаниях,
фосфоресцирует, когда все освещение погашено — действительно светится в
темно.


Длинноволновый флуоресцентный алмаз # 70946, Бриллиант
(2,62 карата драгоценных камней, параллельных бледно-желтым, соединенным между собой кристаллам)
,
Мирный, Россия (т) $ 4595


Длинноволновый флуоресцентный алмаз # 73300, Бриллиант
(1.Ограненный бледно-желтый октаэдрический кристалл, 54 карата)
, Алмазы
Шахта Анабара, Россия (т) $ 5085


Длинноволновый флуоресцентный алмаз # 72248, Бриллиант
(1,52 карата ограненный фантазийно-зеленый макл, сдвоенный необработанный алмаз)
, Алмазы
Шахта Анабара, Россия (т) $ 4260


Длинноволновый флуоресцентный алмаз # 73541, Бриллиант
(Желтый сложный кристалл ювелирного качества превосходного качества огранки 1,99 карата)
, Бразилия
(t) $ 5675


Длинноволновый флуоресцентный алмаз # 75343, Бриллиант
(3.Огранываемый комплексный желто-зеленый кристалл, 31 карат)
, Orapa
Шахта, Ботсвана (тонна) $ 4855


Длинноволновый флуоресцентный алмаз # 70943, Бриллиант
(4.00 карат ограненный бледно-желтый восьмигранный кристалл)
, Мирный, Россия
(t) $ 6995


Длинноволновый флуоресцентный алмаз # 75228, Бриллиант
(3,11 карата сложный желто-коричневый кристалл превосходного ювелирного качества)
, Letlhakane
Шахта, Ботсвана (тонна) $ 4215


Длинноволновый флуоресцентный алмаз # 73014, Бриллиант
(1.Жёлтый огранённый сложный алмаз 75 карат)
, Саха
(Якутия) Республика, Россия (т) $ 4735


Длинноволновый флуоресцентный алмаз # 72561, Бриллиант
(1,67 карата фантазийно-желтый тетрагексаэдрический кристалл)
, Шахта Джваненг,
Ботсвана (тонны) $ 1650


Длинноволновый флуоресцентный алмаз # 73012, Бриллиант
(Желтый ограненный бриллиант сложной огранки 1,41 карата)
, Саха
(Якутия) Республика, Россия (т) $ 3820

Размеры: (t) = эскиз, (m) = миниатюрный, (c) = шкаф, (lc) = большой шкаф

Показаны ДОСТУПНЫЕ минералы.Из галерей удалено
ПРОДАНО минералов.



Посетите другие наши галереи по ссылкам ниже:

Новые минералы в продаже на этой неделе

New_Minerals_For_Sale_Week2

New_Minerals_For_Sale_Week3

New_Minerals_For_Sale_ Week4

Мои лучшие минералы

Минералы 100–199 долларов

Минералы $ 200- 399

Минералы от 400 до 999 долларов.

Минералы от 1000 $ и выше

Избранные галереи

Мои лучшие минералы

Классические минералы

Драгоценные минералы

Природные бриллианты

Исторический и породистый

Кристальные странности

Просмотренные сокровища

Большой размер декоратора

Книги и журналы

Минерал / Индекс местности

Минеральные наборы в штучной упаковке

Минеральные партии оптом

Идеи для подарка

Галереи населенных пунктов

Штаты Новой Англии

Нью-Йорк и Нью-Джерси

Среднеатлантические государства

Средние западные штаты

Аризона и Нью-Мексико

Rocky Mountain States

Западные штаты

Канада

Мексика

Бразилия и Южная Америка

Британия и Северная Атлантика

Европа

Россия и бывший СССР

Индия, Пакистан и Афганистан

Китай, _Japan _ & _ Pacific_Rim

Африка

Шахта Цумеб, Намибия

Шахта Милпиллас, Мексика

Карьер Миллингтон, Нью-Джерси

Минералы из типовых местностей

Категории минералов

Апатит

Апофиллит

Аквамарин Берилл

Арфведсонит

Азурит

Барит

Берил

Бурнонит

Брошантит

Кальцит

Карбонаты

Селестина

Церуссит

Медь

Корунд рубиновый сапфир

Куприт

Датолит

Бриллианты

Диоптаз

Элементы

Ферберит / Huebnerite

Флюорит

Галенит

Гранаты

Драгоценные минералы

Золото

Галогениды

Гематит

Herkimer Diamonds

Гейландит

Inesite

Киноит

Лиддикоатит турмалин

Лудлокит

Магнетит

Малахит

Микроклин _ & _ Альбит

Миметит

Молибдаты, арсенаты, ванадаты

Натролит, мезолит, колецит и др.

Оксиды

Фосфаты

Фосфогедифан

Пренит

Пирит

Пироморфит

Кварцевый

Рамсделлит

Родохрозит

Силикаты

Серебряный

Смитсонит

Сфалерит

Сульфаты

Сульфиды / сульфосоли

Танзанит

Топаз

Турмалины

Вольбортит

Ванадинит

Вульфенит

Цеолиты

Флуоресцентные минералы

Псевдоморфы

Неограненные алмазные кристаллы

Бриллианты от 1 до 199 долларов

Бриллианты $ 200- 399

Бриллианты $ 400- $ 999

Бриллианты $ 1000 +

Бриллианты менее 1 карата

Бриллианты 1-2 карата

Бриллианты 2-5 карат

Бриллианты более 5 карат

Кластеры алмазных кристаллов

Бриллианты ювелирного качества

Бриллианты для украшений

Отсортированные списки всех минералов на этом
сайт

Сортировать по цене

Сортировать по размеру

Сортировать по видам

По номеру

.

Want to say something? Post a comment

Ваш адрес email не будет опубликован.