Коэффициент теплопроводности кирпича силикатного: Плотность и удельная теплоемкость кирпича: таблица значений

Плотность и удельная теплоемкость кирпича: таблица значений

Кирпич — ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич, но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость.

Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться.

Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу. Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м3. Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м3. Чем выше пористость, тем меньше плотность кирпича.

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м3. Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича
Вид кирпичаТемпература,
°С
Плотность,
кг/м3
Теплоемкость,
Дж/(кг·град)
Трепельный-20…20700…1300712
Силикатный-20…201000…2200754…837
Саманный-20…20 —753
Красный0…1001600…2070840…879
Желтый-20…201817728
Строительный20800…1500800
Облицовочный201800880
Динасовый1001500…1900842
Динасовый10001500…19001100
Динасовый15001500…19001243
Карборундовый201000…1300700
Карборундовый1001000…1300841
Карборундовый10001000…1300779
Магнезитовый1002700930
Магнезитовый100027001160
Магнезитовый150027001239
Хромитовый1003050712
Хромитовый10003050921
Шамотный1001850833
Шамотный100018501084
Шамотный150018501251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град). Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м3.

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м3.

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

Источники:

  1. Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  3. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи.

расчет стены, сравнение с другими материалами, характеристики

В течение многих десятилетий и даже веков в строительстве отдавалось предпочтение кирпичу, как самому износоустойчивому, прочному и долговечному кладочному материалу. Никто и не оспаривает его достоинств, но при строительстве малоэтажного жилья совсем другие приоритеты. Вряд ли кому-то нужна «крепость» в прямом смысле слова. Главное, чтобы ограждающие конструкции как можно лучше сопротивлялись теплопередаче, с чем успешно справляются ячеистые бетоны. Коэффициент теплопроводности газобетона позволяет строить теплые комфортные частные дома без дополнительного утепления. При этом стены получаются достаточно прочные и долговечные со сроком эксплуатации от 100 лет и выше, срок эксплуатации до первого ремонта от 50 лет.

Активное использование газоблоков в отечественном строительстве началось с середины 20 века, после того, как в Европе смогли создать бетонные панели с плотностью, сниженной до 300 кг/м³. При этом в нашей стране была наработана прогрессивная научно-техническая база по производству и применению газобетона. С началом перестройки была даже принята программа по созданию систем эффективного строительства из автоклавных ячеистых бетонов, и увеличения объёмов их производства путём строительства новых заводов-изготовителей.

В то время выпускали блоки только плотностью 600-700 кг/м³, но девиз программы гласил, что при 7-кратном увеличении количества выпускаемой продукции нужно стремиться к 2-х кратному снижению плотности, что автоматически влекло и снижение теплопроводности газоблока.

С развалом Советского Союза и закрытия многих производственных площадок весь опыт наших инженеров остался на бумаге. Уже в 2000х годах начинают открываться на территории России коммерческие производства с патентами и оборудованием западных компаний. Их число продолжает расти, а это значит, что продукция пользуется спросом и качество построенного из газобетона жилья оказалось на высоте. Именно поэтому теплопроводность и другие характеристики газоблока так интересуют потенциальных застройщиков.

Технология его производства несколько схожа с получением силикатного кирпича: компоненты те же — только к цементу, песку и извести добавляются ещё ингредиенты, провоцирующие процесс порообразования. Это алюминиевая пыль или паста, а также сульфат и гидроксид натрия, взаимодействие которых запускает химическую реакцию с высвобождающимся кислородом.

При этом блоки не подвергаются прессованию, так как требуется получить не максимально плотные, а наоборот, воздухонаполненные изделия. Созревание бетона происходит в автоклавах – камерах, где он в течение 12 часов обрабатывается подаваемым под давлением высокотемпературным паром. Это обеспечивает ускоренное твердение камня и более высокую, чем при естественной гидратации прочность.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

На заметку: В процессе автоклавирования в бетоне образуется новый минерал под названием тоберморит (силикат кальция), который встречается в составе камня базальтовых пород и портландцементе. При реакции с водой он принимает участие в связывании цемента, что позволяет получить более высокую прочность.

По этой причине преимущество на стороне автоклавного газобетона, и обсуждая его характеристики, мы по умолчанию будем вести речь именно о нём.

Представляем таблицу с перечнем положительных свойств газобетона и его недостатков:













ДостоинстваНедостатки
Низкий коэффициент теплопроводности газоблока. Зависит от марки изделия по плотности, но в среднем составляет 0,14 Вт/м*С, что втрое меньше, чем у керамзитобетона и в 6 раз – чем у полнотелого кирпича.Применяемость. Характеристики, безусловно являющиеся достоинствами материала, можно рассматривать и как недостатки. В частности, из-за относительно невысокой прочности ограничена применяемость поризованного бетона в многоэтажном строительстве. Здесь их используют только для заполнения пролётов несущих каркасов из железобетона.
Теплоемкость газобетона. Цифра характеризует количество тепла, необходимого, чтобы нагреть материал на 1 градус. При условии влажности, не превышающей 5-6%, теплоемкость газобетона d400 составляет не более 1,10 кДж/кг, в абсолютно сухом состоянии — до 0,84, как и у кирпича.Повышенная чувствительность к влаге. Наличие открытых пор делает камень гигроскопичным, а это требует принятия мер для защиты стен от воздействия паров и насыщения водой. Этот недостаток легко нивелируется за счёт правильного структурирования стенового пирога.
Сопротивление теплопередаче газобетона d500 (среднее значение). Чем выше цифра, тем лучше слои материала сопротивляются отдаче тепла. Составляет 2,67 м²*С/Вт при толщине стены 300 мм. Для примера, у кирпичной стены в два кирпича эта цифра составляет всего 1,09 м²*С/Вт.Трещиностойкость. Газобетон – материал довольно хрупкий, и сильно реагирует на перепады температуры и влажности. В результате возникающих напряжений появляются трещины, которые хоть и не ослабляют прочность кладки, но портят её внешний вид. Именно поэтому для ячеистобетонной кладки предусматривают наружное утепление – а не потому, что теплоизоляционные свойства газобетона не позволяют без него обойтись. Примечание: Однако трещины могут появляться и из-за недостаточно жёсткого основания. Поэтому фундаменты для газобетонных домов всегда нужно проектировать в монолите.
Геометрия блоков на самом высоком уровне. Погрешности в параметрах составляют не более 2 мм, что позволяет производить монтаж на тонкий слой клея. При наличии у блоков пазогребневых соединений, вертикальные клеевые швы и вовсе отсутствуют.Морозостойкость. Чем ниже прочность бетонного камня, тем меньше циклов заморозки и оттайки он выдерживает. Газобетон D600 соответствует классу прочности В2,5, что обеспечивает только 25 циклов. Но это распространяется только на незащищённый от увлажнения материал — а в таких условиях даже и кирпич не всегда служит дольше.
Трудоёмкость и скорость возведения стен. Благодаря малому весу и крупному формату блоков, в процессе кладки не приходится пользоваться грузоподъёмными механизмами. Работа продвигается быстро, 1 м² кладки в час – это в 4 раза быстрее, чем с использованием кирпича.Ограничения по выбору материалов для утепления и внешней отделки. Чтобы дать пару беспрепятственно проходить через кладку, не конденсируясь в её толще, коэффициент паропроницаемости каждого следующего слоя в направлении от стены к улице должен быть более высоким.
Экологичность. Больше всего поборников экологичности волнует радиоактивность материала, которая в общепринятой норме составляет 370 Бк/кг. Фон газобетона далеко не дотягивает до этой цифры и составляет чуть больше 50 Бк/кг. У того же кирпича в зависимости от вида глины он варьируется в пределах 126-840 Бк/кг.Необходимость в специальном крепеже. Стены из пористого бетона имеют слабую устойчивость к вырывающим нагрузкам. По этой причине повесить тяжёлый предмет на обычные дюбель-гвозди невозможно. Нужны более дорогие спиральные, распорные или забивные дюбели.
Огнестойкость. Поризованный бетон имеет класс пожарной устойчивости К0 – как не представляющий опасности. Показатель REI (предел огнестойкости) составляет 4 часа при толщине стен более 20 см. Именно столько времени они выдержат воздействие открытого огня без деформации. При этом газобетон не выделяет токсичных веществ.Слабая адгезия. Очень гладкая поверхность блоков снижает сцепляемость бетона со штукатуркой. Делать насечки бучардой, как в случае с тяжёлым бетоном, здесь нежелательно, проще всего использовать грунтовки с кварцевым наполнителем.
Затраты на фундамент. Достаточно высокие, если учесть, что кладка из ячеистого материала чувствительна к подвижкам основания, и надо обязательно заливать монолит. Но высокое сопротивление теплопередаче газобетона позволяет уменьшать толщину стен — а это реальная экономия на количестве бетона. 
Затраты на кладочный материал. Несмотря на то, что клеевая смесь обходится вдвое дороже аналогичного количества обычного ЦПС, за счёт более низкого расхода (в 5-6 раз) получается немалая экономия. 
Простота обработки. С газобетонными блоками легко работать, так как их можно пилить и штробировать ручным инструментом. Камню несложно придать нужную форму, что позволяет быстро изготовить доборный элемент и выкладывать стены радиусной формы. 
Стоимость. Всё, конечно, относительно. Однако по цене кубометр газобетонных блоков в три раза дешевле кирпича и более чем в 5 раз – пиломатериала. 

Перечень недостатков не так велик по сравнению с количеством преимуществ, да и те не столь существенны, чтобы быть помехой для постройки прочного, долговечного, а главное — тёплого жилого дома.

Коэффициент теплопроводности газобетонных блоков, как и любого другого материала, характеризует его возможность проводить тепло. Численно он выражается плотностью теплового потока при определённом температурном градиенте. Способность удерживать тепло зависит от влияния таких факторов, как:

  1. степень паропроницаемости;
  2. плотность материала;
  3. способность усваивать тепло;
  4. коэффициент водопоглощения.

Последнее особенно хорошо видно в представленной ниже таблице:






Марка газобетона по плотностиТеплопроводность газоблока в сухом состоянии (Вт/м*С)Коэффициент теплопроводности газобетона при влажности до 6% (ВТ/м*С)Теплоемкость газобетона (Вт/м²*С) за 24 часаПаропроницаемость (мг/м ч Па)
d4000,090,143,120,23
d5000,110,163,120,20
d6000,120,183,910,17
D7000,140,193,910,16

Как видите, чем более плотная у бетонного камня структура, тем меньше он пропускает пара и больше тепла. Поэтому, выбирая материал для строительства дома, не стоит стремиться покупать блоки с запасом прочности без необходимости.

Теплопроводность газобетонного блока во многом обусловлена структурой материала, который более чем на 80% состоит из заполненных воздухом пор. Воздух является лучшим утеплителем, благодаря его присутствию меняется характеристика бетонного камня. Влажность воздуха тоже оказывает влияние на показатели теплопроводности – они будут тем ниже, чем суше климат.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: При стабильно высокой влажности всё преимущество пористого материала может быть сведено к нулю, и его способность пропускать тепло станет такой же, как у кирпича. Поэтому в районах с климатически обусловленной высокой влажностью внешние ограждающие конструкции увеличивают в толщине.

  • Очень важно предварительно сделать теплотехнический расчет стены из газобетона – чтобы в итоге проживание в доме не оказалось некомфортным. При этом обязательно учитывают параметры применяемых для кладки блоков, округляя итоги в большую сторону до ближайшего показателя толщины.
  • Теплопроводность готовой стены может отличаться от теплопроводности газобетона d400, если, к примеру, блоки смонтировали не на клею, и на растворе. Затвердевшая пескоцементная стяжка имеет коэффициент теплопроводности 0,76 Вт/м*С – и это при расчётном коэффициенте газобетона этой марки 0,12 Вт/м*С!
  • Разница очевидна, и не надо быть великим специалистом, чтобы понять, что тепло будет уходить если не через блоки, то через их стыки. Вывод напрашивается сам: чем тоньше слой, тем лучше. А это возможно только при использовании тонкослойных клеёв.

Это же касается и армирующего пояса из тяжёлого бетона. Чтобы он не оказался одним большим мостом холода, монтировать его лучше по несъёмной опалубке. Её роль исполняют газобетонные U-блоки, внутрь которых укладывается арматура и производится уже заливка обычного бетона.

Низкая теплопроводность газобетонных блоков даёт возможность получить экономию не только за счёт уменьшенной толщины стен и ширины фундамента, но и снизить расходы на эксплуатацию дома. Ведь для поддержания комфортной температуры в помещениях будет тратиться гораздо меньше электричества или газа.

Как этого добиться, мы расскажем чуть позже, а пока предлагаем оценить теплопроводность газоблока в сравнении с другими материалами:




ХарактеристикаГазобетонПенобетонКерамзитобетонПолистиролбетонПустотелый кирпичКерамоблокДревесина
Плотность кг/м³300-600400-700850-1800350-5501400-1700400-1000500
Теплопроводность Вт/м*С0,08-0,140,14-0,220,38-0,080,1-0,140,50,18-0,280,14

Как видите, теплопроводность газобетона в сравнении с группой популярных теплоэффективных материалов стен соответствует показателю древесины. Из кладочных материалов конкурировать с ним могут только пенобетон и полистиролбетон.

Если теплопроводность газобетона в большинстве случаев обеспечивает комфорт проживания в доме, зачем тогда утеплять стены? Выше уже было сказано, что поризованный материал необходимо защитить от перепадов температур и влажности. Но это лишь один аспект, второй заключается в стремлении снизить расходы на отопление помещений.

Для дачного дома, который в зимнее время практически не эксплуатируется, толщины стен в 200 мм более чем достаточно. Что касается жилья постоянного проживания, то имеет смысл сделать стены более толстыми. Теплопроводность газоблока 30 см будет при аналогичной плотности такой же, но уменьшится количество теплопотерь.

По этой причине, особенно в холодных регионах, для возведения стен берут более толстые блоки. Теплопотери дома из газобетона 375 мм снижаются ещё на треть, и стены получаются гораздо теплее тех нормативов, что применяются в официальном строительстве. При плотности 400 кг/м³ теплопроводность такой кладки составит 0,08 Вт/м*С, а сопротивление передаче тепла установится на уровне 3,26 м²*С/Вт.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Чтобы получить точные цифры, необходимо произвести теплотехнический расчет газобетонной стены, с учётом среднезимних температур, характерных для данной местности. Приобретая типовой, или заказывая индивидуальный проект для будущего дома, заказчик вместе с рабочей документацией получает и такой расчёт.

Однако в частном строительстве многие предпочитают обходиться без проектирования. Для самостоятельного расчёта можно использовать онлайн калькулятор теплопотерь дома из газобетона.

Вот когда газобетонные стены однозначно нуждаются в утеплении:

  1. При плотности блоков d500 и выше.
  2. При толщине стены менее 30 см.
  3. Когда газоблоками производится заполнение пролётов железобетонного каркаса.
  4. Когда кладка производится не на клей, а на раствор.
  5. При использовании неавтоклавных изделий более низкого качества.

В таком случае, автоматически возникает вопрос: чем утеплять?

В силу ячеистой структуры газобетон называют дышащим материалом, в среднем, его коэффициент паропроницаемости составляет 0,20 мг/м*ч*Па (это в 3,5 раза выше, чем у дерева поперёк волокон).

  • Чтобы пар не задерживался в толще бетона и не конденсировался в нём, утеплитель должен иметь ещё больший показатель паропроницаемости. У пенопласта, даже невысокой плотности, этот коэффициент намного ниже – порядка 0,023 мг/м*ч*Па, то есть пар он практически не пропускает.
  • Если утеплить ячеистобетонные стены пенопластом снаружи, сырость и грибок вам будут обеспечены. Уж если и использовать пенопласт в качестве утеплителя, то только изнутри. Там он будет препятствовать попаданию пара в стены, но для этого нужно, чтобы все стыки между плитами были хорошо герметизированы, и использовалась пароизоляционная плёнка.
  • Толщина утеплителя для блоков D400 толщиной 300 мм должна быть не менее 100 мм. Но если при этом стены не будут утеплены снаружи, влажность кладки с нормативных 6% увеличится до 12%.

Это значит, что в итоге теплопроводность газоблока окажется выше расчётной, ухудшив теплоэффективность стен в целом.

Минвата – самый надёжный и подходящий по паропроницаемости вариант, её показатели в зависимости от плотности варьируются в пределах 0,30-0,60 мг/м*ч*Па. Это выше, чем у газобетона, поэтому для пара этот утеплитель не создаёт никаких препон.

Здесь важно, чтобы сама минвата не аккумулировала в себе влагу и не отсыревала. Поэтому, поверх неё монтируют паропроницаемую мембрану с ещё большей степенью проходимости. Так же, если для наружной отделки будет использоваться навесной материал или кирпич, для хорошей вентиляции предусматривают технологический зазор.

Если же по утеплителю будет выполняться штукатурка, то её коэффициент паропроницаемости должен быть выше, чем у минваты. При толщине плит в 50 мм, влажность газобетона может достигать 7%. Это хоть и незначительно, но превышает норму, поэтому лучше всего в расчёт закладывать утеплитель толщиной 100 мм.

Эковатой называют рыхлый целлюлозный утеплитель, обработанный для биологической стойкости борной кислотой. У него аналогичный минеральной вате коэффициент паропроницаемости и теоретически он подходит для наружного утепления ячеистобетонных стен.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Внимание: На практике же любой насыпной материал неудобен для утепления стен, так как имеет способность самоуплотняться, в результате чего в теплоизоляционной прослойке образуются пустоты. Эковата сильнее минваты подвержена сорбционному увлажнению, поэтому проектировщиками в качестве материала для утепления стен она вообще не рассматривается.

Существует такое понятие, как тёплая штукатурка, которая получила своё название за счёт применения в качестве крупного заполнителя гранул перлита или пеностекла – материалов, которые сами по себе являются утеплителем. Если вы взяли для строительства дома блоки толщиной 375 мм, можно прекрасно обойтись теплоизоляционной штукатуркой, используя её и внутри, и снаружи.

Для внутренних работ применяют составы на основе цемента, гипса или извести с более низкой паропроницаемостью. Фасадные штукатурки имеют цементно-карбонатно-перлитовый состав с коэффициентом паропроницаемости 0,17 мг/м*ч*Па. Это немного меньше, чем у газобетона, но учитывая его толщину и наличие почти непроницаемого слоя штукатурки внутри, стена будет работать как надо.

Вопрос, как правильно утеплять дом из газобетона, является одним из самых важных, потому что от выбора теплоизоляционного материала зависит и долговечность конструкций, и комфорт эксплуатации жилья в целом. Надеемся, что представленная здесь информация окажется полезной, хотя окончательное решение, конечно же, остаётся за вами.

Теплопроводность пенобетона, коэффициент теплопередачи

Теплопроводность пенобетона – один из основных показателей, влияющих на стремительное повышение интереса к данному материалу. Наряду с небольшим весом и значительными габаритами, идеальной геометрией и другими особенностями, существенно упрощающими и удешевляющими процесс строительства, теплоизоляционные характеристики пенобетона делают его одним из самых популярных материалов.

Коэффициент теплопроводности пенобетона может быть разным и зависит от числа, величины пор внутри ячеистого материала, уровня плотности. Марки с самыми высокими теплоизоляционными характеристиками демонстрируют невысокую прочность, материал с большой теплопроводностью способен выдерживать большие нагрузки. И часто главная задача при выборе марки пеноблока – сохранение баланса: оптимального уровня прочности и высокого теплосбережения.

По мере повышения коэффициента теплопроводности ухудшаются теплоизоляционные свойства материала: это значит, что зимой тепло будет уходить из дома быстро, а летом конструкция станет стремительно нагреваться. Пенобетон изготавливают из цемента, песка, воды и специального пенообразователя. Вещество вспенивает смесь, благодаря чему в структуре материала появляются воздушные поры закрытого типа. В них находится воздух, который сохраняет тепло.

Чем больше пор – тем более высокие характеристики теплоизоляции, но тем менее плотный и более хрупкий материал. Показатель теплопроводности меняется от марки к марке (у D100 минимальный, у D1200 – максимальный). Но в общем, если сравнивать пенобетон и другие строительные материалы (кирпич обычный или силикатный, бетон), ячеистый бетон значительно превосходит показатели остальных вариантов, немного уступая лишь дереву.

Виды пеноблоков

Пенобетон производят по единой технологии путем смешивания основных компонентов, разливки смеси в формы, сушки под давлением и высокой температурой в автоклаве, дальнейшей нарезки и складирования. Производство осуществляется по единой технологии, но вот состав раствора для заливки может быть разным. Чем меньше пенообразователя добавлено в смесь, тем более плотным и прочным, тяжелым получится материал.

Но за счет уменьшенного числа пор способность сохранять тепло у такого материала понижается пропорционально уменьшению количества пустот в структуре. По уровню плотности (а значит, и весу, прочности, теплопроводности) пенобетон делят на три основных категории – для теплоизоляции, строительства и комбинированный тип.

Основные виды пенобетонных блоков:

  1. Конструкционные (марки D900-1200) – плотность и вес, прочность максимальные за счет малого количества пор в структуре, можно использовать материал для кладки фундамента, создания цокольных этажей, несущих конструкций. Теплопроводность самая высокая, в диапазоне 0.29-0.38 Вт/м*К. Блоки предполагают обязательное проведение мероприятий по теплоизоляции.
  1. Конструкционно-теплоизоляционные (марки D500-800) – блоки демонстрируют средние показатели теплопроводности, плотности, прочности. Используются для кладки несущих стен, внутренних перегородок. Самый популярный материал на рынке, который чаще всего применяется в строительстве, особенно жилых зданий. Способность сохранять тепло средняя – теплопроводность в диапазоне от 0.15 до 0.29 Вт/м*К.
  2. Теплоизоляционные (марки D100-400) – применяются исключительно с целью утепления, наименее плотные и прочные, с самым небольшим значением теплопроводности (показатель на уровне 0.09-0.12 Вт/м*К). В структуре материала содержится максимальное число ячеек с воздухом. Строить здания и класть стены из материала нельзя, он выступает только теплоизоляционным слоем.

Зависимость сопротивления теплопередаче от плотности бетона

Воздух – эффективный натуральный теплоизоляционный материал. За счет того, что структура пеноблоков пористая, они хорошо сохраняют тепло и демонстрируют невысокий показатель теплопроводности (если сравнивать с другими строительными материалами). Так, значение намного ниже, чем у бетона или кирпича.

Обычным пользователям значения теплопроводности не говорят ни о чем, поэтому сравнить строительные материалы можно в таком примере: для получения стены, способной демонстрировать показатель теплопроводности на уровне 0.18 Вт/м*К, нужно применить пеноблоки марки D700 величиной 600х300х200 миллиметров. Для получения аналогичного значения при строительстве из шлакоблоков толщина стены должна быть минимум 108 сантиметров, из кирпича – около 140 сантиметров.

При расчете коэффициента теплопередачи учитывают уровень плотности пенобетона, который обозначается маркой и буквой D: так, индекс D900 значит, что один кубометр пенобетона данной марки весит 900 килограммов.

Коэффициент теплопроводности меняется от марки к марке и напрямую влияет на плотность/прочность материала. Блоки с минимальной прочностью и небольшим весом используют для выполнения мероприятий по теплоизоляции, подходят они для строительства межкомнатных перегородок, на которые будут воздействовать минимальные нагрузки. Плотность таких блоков должна быть на уровне 400-500 кг/м3.

Пенобетон с высоким показателем плотности (в районе 1000-1200 кг/м3) за счет уменьшенного размера и числа ячеек в структуре более плотный и прочный, но теплопередача выше. Такой материал используют для возведения несущих стен малоэтажных зданий. Средней плотности пеноблоки (в районе 600-700 кг/м3) демонстрируют свойства на среднем уровне: могут выдерживать оптимальные нагрузки и достаточно теплостойкие.

Расчет теплопроводности стен из пенобетона

Выполняя расчеты перед строительством здания, очень важно учитывать уровень теплопроводности, который влияет на выбор пеноблоков, а также поиск оптимальной толщины стены, возведенной из материала. Сначала определяются с вариантом выполнения стен: это могут быть кирпич/блок/штукатурка или блок, покрытый штукатуркой с обеих сторон.

Для выполнения расчетов нужно знать показатель коэффициента теплопередачи выбранных материалов, которые используются для строительства стены. Так, кирпич демонстрирует значение 0.56, штукатурка на уровне 0.58, блоки могут давать разные значения в зависимости от марки (обязательно нужно смотреть в таблице). Также важно учитывать коэффициент сопротивления стен теплопередаче – средний показатель обычно равен 3.5.

От общего значения 3.5 отнимают показатель сопротивления теплопередаче слоя штукатурки в 2 сантиметра (0.02/0.58=0.03), 12 сантиметров кирпича (0.12/0.56=0.21), если выбран первый вариант, либо 4 сантиметра штукатурки (0.04/0.58=0.06), если выбран второй вариант создания стен.

В первом варианте (если применяется кирпич) стена из пенобетона должна обеспечить показатель сопротивления теплопередаче на уровне 3.26. Так, если для строительства выбран пеноблок марки D600, толщина стены должна быть 45.6 сантиметра (3.26х0.14=456 миллиметров), если D800 – толщина стены нужна 68.4 сантиметра (3.26х0.21=684 миллиметра). Сделать стены тоньше и добиться нужных значений можно с использованием теплоизоляционных материалов.

Для расчета стены по второму варианту (пеноблок и штукатурка снаружи/внутри), значения будут такие: 3.5-0.06=3.44. А далее расчеты проводятся с учетом найденных значений в таблице, где указаны показатели теплопроводности для разных марок пенобетона.

Что учитывают при выборе пенобетона:

  • Оптимальная марка – обозначается индексом D, означает плотность, вес, прочность, теплопроводность. Чем выше марка, тем больше прочность/плотность, теплопроводность и вес.
  • Толщина стены – высчитывают в каждом случае отдельно, с учетом используемых материалов, теплоизоляции и других аспектов.
  • Качество пенобетона – материал лучше выбирать автоклавный, созданный в условиях завода, с применением специального оборудования, проверкой качества, выдачей сертификатов и гарантией соответствия всем указанным характеристикам.

Теплопроводность пенобетона – один из ключевых показателей, который обязательно нужно учитывать при выборе материала и составлении проекта будущего строения, выполнении расчетов, планировании всех этапов строительства.

Теплопроводность керамических блоков (Поротерм): коэффициент, теплопередача поризованного кирпича

Керамические блоки становятся все более распространенным строительным материалом. Одной из их важнейших характеристик, которая влияет на потребительские качества, является теплопроводность.  

Определение термина

В физике теплопроводностью называется способность тела (в нашем случае, поризованного блока) проводить тепло от более нагретых частей к менее нагретым. Количественно она выражается в величине, называемой коэффициентом теплопроводности и обозначается как Вт/(м*С). Еще одни вариант международного обозначения – греческая буква λ (лямбда).

Проще говоря, теплопроводность керамического блока показывает, сколько тепла (в градусах) уходит из здания через внешнюю стену, в пересчете на единицу площади. Важно знать о том, что тем этот показатель ниже, тем меньше тепла будет уходить наружу, и тем более «теплой», при прочих равных условиях, будет стена.

Уровень теплопроводности тесно связан с другими характеристиками керамоблока (как впрочем, и любого другого строительного материала). В их числе:

  • Пустотность.
  • Пористость.
  • Плотность.

Чем выше уровень пустотности, пористости и ниже плотность, тем теплопроводность будет ниже (что в нашем случае – хорошо), и наоборот. Получается, что оптимальная теплопроводность керамоблока достигается путем увеличения технологических пустот, а также пор (от чего и произошло название материала – поризованная керамика). Но при этом, как правило, будет снижаться плотность блока и его марка прочности. Сразу же хочется отметить, что этой прочности, в любом случае, с большим запасом будет достаточно для возведения малоэтажных (2-3 этажа) коттеджей с несущими стенами. И уж тем более ее будет достаточно для заполнения внешних стен и перегородок в многоэтажном каркасно-монолитном строительстве. Для сравнения: марка прочности газобетонных блоков в 2-3 раза ниже, чем у керамических блоков, но даже они вполне подходят для кладки несущих стен коттеджей.

Сравнение разных материалов

Сравним популярные стеновые материалы. Чтобы было понятно, приведенные ниже расчеты в таблицах основаны на СНиП 23-02-2003 «Тепловая защита зданий». Учитывалось, что в стенах нет дополнительной теплоизоляции (пенопласт, минеральная вата) или облицовочного кирпича.









  МатериалРасчетное содержание влагиТеплопроводность  Вт/(м*С) в сухом состоянииТеплопроводность  Вт/(м*С) расчетное значение  Толщина стены, см
Древесина*20%0,090,1848
Керамический кирпич полнотелый  2%0,560,81219
Керамический кирпич пустотелый2%0,410,58155
Ячеистый бетон**6%0,120,1643
Силикатный кирпич4%0,700,87230
Керамзитобетон10%0,580,79209
Поризованный блок***1%0,130,1438

* – сосна и ель поперек волокон; ** – ячеистый бетон плотностью 500 кг/1м3; *** – керамический блок Porotherm 38 Thermo, кладка на теплосберегающем растворе.

Теперь сравним коэффициент теплопроводности керамических блоков нескольких наиболее распространенных на российском рынке. Источники – официальные сайты производителей.

















  Наименование блокаТеплопроводность,  Вт/(м*С)Толщина стены, ммНужно ли дополнительное утепление*
Porotherm 250,24250Да
Porotherm 380,145380Да
Porotherm 38 Thermo0,123380Нет
Porotherm 440,136440Нет
Porotherm 510,143510Нет
BRAER Ceramic Thermo 10,7 NF0,14380Да
BRAER Ceramic Thermo 12,4 NF0,139440Нет
BRAER Ceramic Thermo 14,3 NF0,14510Нет
KERAKAM 380,19380Да
KAIMAN 38 Самара0,084380Нет
KERAKAM 44 Самара0,128440Нет
KERAKAM 51 Самара0,16510Нет
10,7НФ 250ММ Гжель0,143250Да
12,3НФ Гжель0,131440Нет
14,3НФГжель0,143-0,17510Нет

* На примере г.Москвы и Московской области. В других городах с разными климатическими условиями потребность в дополнительном утеплении может меняться. Информацию о других регионах на примере блоков Поротерм (Wienerberger) можно узнать на официальном сайте компании.

Кстати, в большинстве случаев небольшие блоки формата 2,1NF, также именуемые двойным поризованным камнем, имеют чуть худшую теплопроводность, по сравнению с более крупными «собратьями». Причем это касается всех производителей.

Коэффициент теплопроводности Поротерм и других перечисленных изготовителей примерно сопоставим. То же самое касается и теплопередачи внутренних перегородочных и доборных блоков. Кстати, о перегородках. В них уровень λ, как правило выше, чем для стеновых блоков и колеблется в пределах 0,20-0,25 Вт/(м*С). Однако это не является проблемой, поскольку они все равно используются только для внутренних работ.

Мои рекомендации по толщине стен

В таблице были рассмотрены лишь 4 производителя из числа наиболее распространенных. Есть и другие, но общая картина видна и так: мы видим, что при строительстве в климатических условиях Московского региона блоки толщиной 440мм и 510мм не требуют дополнительного утепления или использования облицовочного кирпича. В то же время, для всех блоков толщиной 250мм и части 330-миллиметровых требуется дополнительное утепление. В любом случае, ассортимент продукции, представленной на рынке – намного шире, чем в нашей таблице, поэтому в случае с каждым блоком разных производителей, все детали следует узнавать индивидуально.

При этом, теплопроводность поризованного кирпича, предназначенного для перегородок, не столь важна. Он используется для внутренних работ и не от него попросту не требуется таких же характеристик, как и для стеновых блоков.

Общие выводы

Как мы видим, теплопроводность теплой керамики – это исключительно важный параметр. Однако помимо этого, при выборе следует учитывать и другие факторы, в том числе климатические условия региона и отсутствие или наличие дополнительного утепления или отделки облицовочным кирпичом. В целом же, для средней полосы России подходят все керамоблоки. Тем не менее, если вы не хотите использовать дополнительную теплоизоляцию, то имеет смысл купить блоки толщиной 440мм или 510мм, или же некоторые разновидности 380мм блоков. Если же вас не смущает будущий монтаж дополнительной «термошубы», то вполне можно обойтись и блоками для толщины стен 250мм и 380мм, при том условии, что вы обеспечите дополнительную теплоизоляцию в виде минваты или пенопласта, и декоративной штукатурки. Плюс этого варианта в том, что вам будет достаточно более тонкого фундамента, что сократит расходы и сроки его возведения.

Теплопроводность элементов — Angstrom Sciences Справочник по теплопроводности

Теплопроводность элементов — Angstrom Sciences Справочник по теплопроводности

Перейти к навигации

Теплопроводность Имя Символ #
0,0000364 Вт / см · K Радон Rn 86
0.0000569 Вт / см · K Ксенон Xe 54
0,000089 Вт / см · K Хлор класс 17
0,0000949 Вт / см · K Криптон Кр 36
0,0001772 Вт / см · K Аргон Ar 18
0,0002598 Вт / см · K Азот N 7
0,0002674 Вт / см · K Кислород O 8
0.000279 Вт / см · K Фтор F ​​ 9
0,000493 Вт / см · K Неон Ne 10
0,00122 Вт / см · K Бром руб. 35
0,00152 Вт / см · K Гелий He 2
0,001815 Вт / см · K Водород H 1
0,00235 Вт / см · K фосфор P 15
0.00269 Вт / см · K Сера S 16
0,00449 Вт / см · K Йод I 53
0,017 Вт / см · K Астатин в 85
0,0204 Вт / см · K Селен SE 34
0,0235 Вт / см · K Теллур Te 52
0,063 Вт / см · K Нептуний Np 93
0.0674 Вт / см · K Плутоний Pu 94
0,0782 Вт / см · K Марганец Мн 25
0,0787 Вт / см · K Висмут Bi 83
0,0834 Вт / см · K Меркурий Hg 80
0,1 Вт / см · K Америций утра 95
0,1 Вт / см · K Калифорний Cf 98
0.1 Вт / см · K Нобелий 102
0,1 Вт / см · K Кюрий см 96
0,1 Вт / см · K Лоуренсий Lr 103
0,1 Вт / см · K Фермий Fm 100
0,1 Вт / см · K Эйнштейний Es 99
0,1 Вт / см · K Берклий Bk 97
0.1 Вт / см · K Менделевий Md 101
0,106 Вт / см · K Гадолиний Gd 64
0,107 Вт / см · K Диспрозий Dy 66
0,111 Вт / см · K Тербий Тб 65
0,114 Вт / см · K Церий CE 58
0,12 Вт / см · K Актиний Ac 89
0.125 Вт / см · K празеодим Пр 59
0,133 Вт / см · K Самарий см 62
0,135 Вт / см · K Лантан La 57
0,139 Вт / см · K Европий Eu 63
0,143 Вт / см · K Эрбий Er 68
0,15 Вт / см · K Франций Fr 87
0.158 Вт / см · K Скандий SC 21
0,162 Вт / см · K Гольмий Ho 67
0,164 Вт / см · K Лютеций Лю 71
0,165 Вт / см · K Неодим Nd 60
0,168 Вт / см · K Тулий ТМ 69
0,172 Вт / см · K Иттрий Y 39
0.179 Вт / см · K Прометий вечера 61
0,184 Вт / см · K Барий Ba 56
0,186 Вт / см · K Радий Ra 88
0,2 Вт / см · K Полоний Po 84
0,219 Вт / см · K Титан Ti 22
0,227 Вт / см · K Цирконий Zr 40
0.23 Вт / см · K Гафний Hf 72
0,23 Вт / см · K Резерфордий Rf 104
0,243 Вт / см · K Сурьма Сб 51
0,274 Вт / см · K Бор B 5
0,276 Вт / см · K Уран U 92
0,307 Вт / см · K Ванадий В 23
0.349 Вт / см · K Иттербий Yb 70
0,353 Вт / см · K Стронций Sr 38
0,353 Вт / см · K Свинец Пб 82
0,359 Вт / см · K Цезий CS 55
0,406 Вт / см · K Галлий Ga 31
0,461 Вт / см · K Таллий Tl 81
0.47 Вт / см · K Протактиний Па 91
0,479 Вт / см · K Рений Re 75
0,502 Вт / см · K Мышьяк как 33
0,506 Вт / см · K Технеций Tc 43
0,537 Вт / см · K Ниобий Nb 41
0,54 Вт / см · K торий Чт 90
0.575 Вт / см · K Тантал Ta 73
0,58 Вт / см · K Дубний Дб 105
0,582 Вт / см · K Рубидий руб. 37
0,599 Вт / см · K Германий Ge 32
0,666 Вт / см · K Олово Sn 50
0,716 Вт / см · K Платина Pt 78
0.718 Вт / см · K Палладий Pd 46
0,802 Вт / см · K Утюг Fe 26
0,816 Вт / см · K Индий В 49
0,847 Вт / см · K Литий Li 3
0,876 Вт / см · K Осмий Os 76
0,907 Вт / см · K Никель Ni 28
0.937 Вт / см · K Хром Cr 24
0,968 Вт / см · K Кадмий Кд 48
1 Вт / см · K Кобальт Co 27
1,024 Вт / см · K Калий К 19
1,16 Вт / см · K Цинк Zn 30
1,17 Вт / см · K Рутений Ру 44
1.29 Вт / см · K Углерод С 6
1,38 Вт / см · K Молибден Пн 42
1,41 Вт / см · K Натрий Na 11
1,47 Вт / см · K Иридий Ir 77
1,48 Вт / см · K Кремний Si 14
1,5 Вт / см · K Родий Rh 45
1.56 Вт / см · K Магний мг 12
1,74 Вт / см · K Вольфрам Вт 74
2,01 Вт / см · K Кальций Ca 20
2,01 Вт / см · K Бериллий Be 4
2,37 Вт / см · K Алюминий Al 13
3,17 Вт / см · K Золото Au 79
4.01 Вт / см · K Медь Cu 29
4,29 Вт / см · K Серебро Ag 47

| Электропроводность | теплопроводность | Сравнение материалов: коэффициент теплового расширения и проводимость металла

Фундаментальный
Техника изготовления инструмента и штампов


Бесплатные статьи
Изгиб
Радиус
Глубокая вытяжка
Fine
Заглушка
Formula
Макет полосы прогресса
Slug
предотвращение выдергивания
Матрица Конструкция
Зазор от резания


Загружаемый
Электронные книги

Инструмент
die design bookn
d
Светильник


Полоса
макет

Приспособления
и Книга проектирования приспособлений


Геометрический
Допуски


GDT
Допуск ISO для валов
Допуск ISO для отверстий
Шероховатость поверхности
Текстура поверхности


Качество
Control Co

т AQL

Возможности процесса CPK
План отбора проб

AQL Уровень I,
II, III


E

Металл

Родственник
Электропроводность *

Температура
Коэффициент
Сопротивление **

Растяжение
Прочность
(фунты./ кв. дюймов)

Состав
земной коры
(% по весу)

Алюминий
(2S; чистый)

59

0.0039

30 000

8,1

Алюминий
(сплавы):

  • Мягкий отжиг

  • термообработанные

  • 45-50
    30-45

    Латунь

    28

    0.002-0,007

    70 000

    Кадмий

    19

    0.0038

    Электропроводность

    Электропроводность

    Электропроводность — мера

    легкость, с которой электрический заряд или тепло могут проходить через материал. А

    проводник — это материал, который дает очень небольшое сопротивление потоку

    электрический ток или тепловая энергия.Материалы классифицируются как металлы,

    полупроводники и изоляторы. Металлы — самые проводящие и изоляторы.

    (керамика, дерево, пластмассы) наименее проводящие.

    Электропроводность

    говорит нам, насколько хорошо материал позволяет электричеству проходить через него.

    Многие люди думают о медных проводах как о чем-то, что имеет отличные электрические характеристики.

    проводимость.

    Теплопроводность

    говорит нам, с какой легкостью тепловая энергия (тепло для большинства целей) может

    перемещаться по материалу.Некоторые материалы, такие как металлы, позволяют теплу перемещаться

    через них довольно быстро. Представьте, что одной рукой вы касаетесь

    кусок металла, а с другой — кусок дерева. Какой материал

    становится холоднее? Если бы вы сказали «металл», вы были бы правы. Но,

    Фактически, оба материала имеют одинаковую температуру. Это относительно

    теплопроводность. Металл имеет более высокую теплопередачу или термическую

    проводимость, чем у дерева, позволяя теплу от руки уходить быстрее.Если

    вы хотите, чтобы что-то оставалось холодным, лучше всего это завернуть во что-нибудь

    который не обладает высокой теплопередачей или высокой теплопроводностью,

    это был бы изолятор. Керамика и полимеры обычно являются хорошими изоляторами,

    но вы должны помнить, что полимеры обычно имеют очень низкую температуру плавления.

    Это означает, что если вы разрабатываете что-то, что сильно нагревается, полимер

    может расплавиться, в зависимости от температуры плавления.

    Серебро имеет самую высокую электропроводность из всех металлов.

    На самом деле серебро определяет проводимость — все другие металлы сравниваются с

    Это. По шкале от 0 до 100 серебро занимает 100 место, медь — 97, а золото.

    на 76. Из-за этого свойства, а также из-за того, что он не зажигает легко, серебро

    обычно используется в электрических цепях и контактах. Серебро также используется

    в аккумуляторах, где надежность является обязательной и применяются ограничения по весу,

    например, для портативных хирургических инструментов, слуховых аппаратов, кардиостимуляторов и

    космическое путешествие.

    ССЫЛКИ

    http://www.physics4kids.com/files/elec_conduct.html

    План урока для учителей о проводимости — http://www.infinitepower.org/pdf/09-Lesson-Plan.pdf

    Все

    информация на этой странице взята из U of C — Щелкните по Кембриджскому университету

    значок для благодарностей.

    Преобразование теплопроводности — БЕСПЛАТНЫЙ преобразователь единиц

    914 16
    От: Кому:
    ватт / метр / K [Вт / (м * K)] ватт / сантиметр / ° C [Вт / (см * ° C)] киловатт / метр / K [кВт / (м * K)] калория (IT) / секунда / сантиметр / ° Cкалория (th) / секунда / сантиметр / ° C килокалория (IT) / час / метр / ° C килокалория (th) / час / метр / ° CBtu (IT) дюйм / секунду / квадратный фут / ° FBtu (th) дюйм / секунда / квадратный фут / ° FBtu (IT) фут / час / квадратный фут / ° FBtu (th) фут / час / квадратный фут / ° FBtu (IT) ) дюйм / час / квадратный фут / ° FBtu (th) дюйм / час / квадратный фут / ° F ватт / метр / K [Вт / (м * K)] ватт / сантиметр / ° C [Вт / (см * ° C)] киловатт / метр / K [кВт / (м * K)] калория (IT) / секунда / сантиметр / ° Cкалория (th) / секунда / сантиметр / ° C килокалория (IT) / час / метр / ° C килокалория ( th) / час / метр / ° CBtu (IT) дюйм / секунду / квадратный фут / ° FBtu (th) дюйм / секунда / квадратный фут / ° FBtu (IT) фут / час / квадратный фут / ° FBtu (th) фут / час / квадратный фут / ° FBtu (IT) дюйм / час / квадратный фут / ° FBtu (th) дюйм / час / квадратный фут / ° F
    Результат:

    Как использовать преобразователь теплопроводности
    Выберите единицу измерения для преобразования из в списке входных единиц.Выберите единицу измерения для преобразования в в списке единиц вывода. Введите значение преобразования из в поле ввода слева. Результат преобразования сразу появится в поле вывода.

    Закладка Конвертер теплопроводности — возможно, он вам понадобится в будущем.

    Загрузить конвертер единиц теплопроводности

    наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий.Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения —
    скачайте бесплатную демо-версию прямо сейчас!

    Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения

    Мгновенно добавьте бесплатный виджет «Конвертер теплопроводности» на свой веб-сайт

    Это займет меньше минуты, это так же просто, как вырезать и наклеить.

    Want to say something? Post a comment

    Ваш адрес email не будет опубликован. Обязательные поля помечены *