Кирпич силикатный теплопроводность: Теплопроводность кирпича, сравнение кирпича по теплопроводности

Содержание

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Сравнение кирпича по теплопроводности при 15…25°С
Кирпич Плотность, кг/м3 Теплопроводность, Вт/(м·град)
Пеношамотный 600 0,1
Диатомитовый 550 0,12
Изоляционный 500 0,14
Кремнеземный 0,15
Трепельный 700…1300 0,27
Облицовочный 1200…1800 0,37…0,93
Силикатный щелевой 0,4
Керамический красный пористый 1500 0,44
Керамический пустотелый 0,44…0,47
Силикатный 1000…2200 0,5…1,3
Шлаковый 1100…1400 0,6
Керамический красный плотный 1400…2600 0,67…0,8
Силикатный с тех.  пустотами 0,7
Клинкерный полнотелый 1800…2200 0,8…1,6
Шамотный 1850 0,85
Динасовый 1900…2200 0,9…0,94
Хромитовый 3000…4200 1,21…1,29
Хромомагнезитовый 2750…2850 1,95
Термостойкий хромомагнезитовый 2700…3800 4,1
Магнезитовый 2600…3200 4,7…5,1
Карборундовый 1000…1300 11…18

Теплопроводность кирпича также зависит от его структуры и формы:

  • Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
  • Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С. 

Теплопроводность огнеупорного кирпича в зависимости от температуры
Кирпич Плотность, кг/м3 Теплопроводность, Вт/(м·град) при температуре, °С
20 100 300 500 800 1000 1700
Диатомитовый 550 0,12 0,14 0,18 0,23 0,3
Динасовый 1900 0,91 0,97 1,11 1,25 1,46 1,6 2,1
Магнезитовый 2700 5,1 5,15 5,45 5,75 6,2 6,5 7,55
Хромитовый 3000 1,21 1,24 1,31 1,38 1,48 1,55 1,8
Пеношамотный 600 0,1 0,11 0,14 0,17 0,22 0,25
Шамотный 1850 0,85 0,9 1,02 1,14 1,32 1,44

Источники:

  1. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина и др.; под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991 — 1232 с.
  2. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977 — 344 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  6. Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М.: Атомиздат. 1979 — 212 с.
  7. Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.

Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0. 29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 897
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0. 64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0. 2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0. 27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0. 064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Воздух сухой при 20°С 1.205 0.0259 1005
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат 280…1000 0.07…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0. 25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1. 7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0. 17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ 810…840 0.14…0.185
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0. 29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0. 23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0. 22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0. 5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0. 56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0. 29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2. 21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0. 7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.045
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0. 15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0. 19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол Пеноплэкс 22…47 0.03…0.036 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0. 041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1. 55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1. 5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плита огнеупорная теплоизоляционная Avantex марки Board 200…500 0.04
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0. 082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые   0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0. 042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0. 029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0. 2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996– 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 150…600 0.052…0.145 1060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0. 075…0.085 1060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная техническая 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.073…0.096
Пробковое покрытие для полов 540 0.078
Ракушечник 1000…1800 0.27…0.63 835
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

Теплопроводность кирпича силикатного: норма параметра

Силикатный кирпич

Силикатный кирпич нельзя назвать изделием новым. Однако определенный набор свойств и качеств помогает ему удержаться в списке лидеров по использованию в строительной сфере.

В данной статье мы будем рассматривать одно из свойств, важное для любого стенового материала, которое непосредственным образом влияет на способность будущего здания к сохранению тепла. Итак, теплопроводность кирпича силикатного: что это такое, и каковы ее числовые значения?

Что представляет собой силикатный кирпич

Для начала, давайте разберемся, что собой представляет данный материал.

Силикатный кирпич: состав и основные свойства

Силикатные кирпичи – изделия, изготовленные из смеси песка, извести и воды. Также при производстве используются шлак, зола и иные взаимозаменяемые компоненты.

Состав сырья непосредственно влияет на итоговые характеристики изделий, приуменьшая либо наоборот, преувеличивая их.

Ориентировочный состав силикатного кирпича

Основные требования к изделиям изложены в следующей технической документации:

  • ГОСТ 379-95 Кирпичи и камни силикатные
  • ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича
  • СНиП 3.03.01-87 Несущие и ограждающие конструкции

Рассмотрим таблицу, отражающую основной набор свойств и качеств изделий. Таблица 1. Характеристики силикатного кирпича:

Наименование свойства Значение и комментарии
Морозостойкость В соответствии с ГОСТ, морозостойкость лицевых изделий должна быть не менее 25.

Производители утверждают, что силикатный кирпич способен выдержать до 100 циклов замораживания и оттаивания.

Прочность и плотность Кирпич обладает достаточно высокими показателями, которые позволяют использовать его при возведении зданий различной этажности.

Числовое значение марки прочности варьируется в пределах от 75 до 300.

В зависимости от средней плотности, выделяют кирпичи: плотные, характеризующиеся показателем более 1500 кг/м3 и пористые, обладающие показателем до 1500 кг/м3.

Водопоглощение Показатель составляет от 6 до 16%. В сравнении с другими материалами, предназначенными для возведения стен, достаточно неплохой результат.
Паропроницаемость 0,11. Данная способность отвечает за установление благоприятного микроклимата внутри помещения.
Огнестойкость Кирпич не горит, и не вступает во взаимодействие с огнем.
Экологичность Изделия не содержат в своем составе вредных или ядовитых веществ. Они абсолютно безопасны для окружающей среды и человека.
Ценовая категория Средняя. Зависит от типа и вида кирпича, региона.

Виды материала и область применения

Силикатный кирпич имеет несколько классификаций, основанных на тех или иных свойствах и факторах. Рассмотрим их более подробно.

В соответствии с составом компонентов, материал бывает:

  • Известково-зольный, содержащий в себе золу в количестве 75-80% и известь, в количестве – 20-25%.
  • Известково-шлаковый. Характеризуется наличием в составе легкого шлака вместо песка, совмещенного с известью.
  • Известково-песчаный. Наиболее популярный на производстве вариант. Такие изделия содержат песок и известь. Причем первый, в количестве — до 93%.

В соответствии с ГОСТ, стандартным размером кирпича является- 250*120*65, именуют такие изделия — одинарными.

Одинарный кирпич

Также возможен выпуск утолщенного варианта, толщиной в 88 мм. В конструкционном отношении, силикатный кирпич может быть полнотелым и пустотелым. Полнотелые изделия – более тяжелые по массе, более прочные и обладающие большим коэффициентом теплопроводности.

Полнотелый кирпич

Пустотелые, в свою очередь, могут быть представлены в нескольких вариантах, в зависимости от количества пустот, их формы и доли объема:

  • 14-пустотные изделия. Диаметр пустот – 30-32 м, пустотность -28-30%;
  • 11-пустотные изделия. Диаметр пустот -27-32 мм, пустотность – 20-25%;
  • 3-пустотные изделия. Диаметр пустот – 52 мм, пустотность-15%.

Кирпич силикатный 3-х пустотный, фото

Кирпич силикатный 11-ти пустотный

На переднем плане — 14-пустотный

Обратите внимание! ГОСТ допускается выпуск и иных вариантов изделий, при этом обязательно соблюдение всех технических требований к основным показателям, таким как теплопроводность, морозостойкость, прочность.

Наличие пустот влияет на коэффициент теплопроводности, а также на расход раствора при возведении стены.

В соответствии с назначением, силикатный кирпич может быть:

  • Рядовой;
  • Лицевой.

Первый вид используется при возведении стен и перегородок. Нуждается в последующей отделке. Технической документацией допускается шероховатость поверхности, наличие небольшого процента сколов и отбитостей.

Облицовочный, или лицевой кирпич, отличается особо строгими требованиями к внешнему виду. Поверхность его – гладкая, декоративная, может иметь фактуру. Такой кирпич должен обладать двумя декоративными сторонами — тычковой и ложковой, однако наличие одной – допускается по договоренности с потребителем.

Кирпич силикатный облицовочный фактурный

В зависимости от цвета, кирпич выделяют:

  • Окрашенный;
  • Неокрашенный.

Неокрашенные изделия имеют белый либо слегка сероватый оттенок. Окрашенный – колеруются после затвердения, либо на стадии замеса раствора, путем добавления красителей.

В целом, у силикатного кирпича достаточно широкая сфера применения. Его используют при:

  • Мало- и многоэтажном строительстве, возведении производственных и жилых зданий, садовых домиков;
  • Устройстве вентканалов;
  • Возведении перегородок, заборов и многое другое.

Забор из силикатного кирпича

Здание из силикатного кирпича

Дачный дом из силикатного кирпича

Исключается возможность использования материала при строительстве цоколя, более приемлемым вариантом считаются керамические изделия.

Понятие теплопроводности и ее показатель у силикатного кирпича

Поскольку в общих характеристиках мы уже разобрались, пришло время перейти непосредственно к теме статьи. Рассмотрим, что такое коэффициент теплопроводности силикатного кирпича.

Способность силикатного кирпича к сохранению тепла

Теплопроводность – это способность материалов (изделий) к сохранению температуры. Чем он ниже, тем выше эта способность. В будущем, низкий показатель может способствовать экономии на утеплении строения и его отоплении.

В целом, при учете соотношения коэффициента теплопроводности силикатного кирпича и его плотности, показатель достаточно конкурентный, однако, если рассматривать данные свойства по отдельности, то многим материалам он уступает.

Рассмотрим, при помощи каких приемов, можно увеличить способность к сохранению тепла:

  • При использовании специализированных добавок можно добиться процентного увеличения воздушных пор по отношению к общей массе, при этом плотность будет уменьшена;
  • Возможно формирование в теле изделия искусственно созданных пустот, которые приведут к снижению веса и теплопроводности;
  • Возможно также применение теплоизолирующего покрытия лицевой части изделия, а также гидрофобной добавки.

Стоит обратить внимание на то, что чем плотнее кирпич, тем меньше его процент водопоглощения. Последнее также влияет на коэффициент теплопроводности. При эксплуатационной влажности он повышается.

На заметку! В качестве наполнителя, при изготовлении силикатного кирпича иногда применяется керамзитовый песок. Он не только придает изделиям светло кофейный цвет, но и значительно повышает способность к сохранению температуры.

А теперь рассмотрим при помощи таблицы, как изменяется теплопроводность разных марок кирпича силикатного.

Таблица 2. Показатели свойств кирпича в зависимости от прочности:

Наименование показателя Кирпич силикатный полнотелый М125 Кирпич силикатный полнотелый М150 Кирпич силикатный полнотелый М200
Прочность на сжатие кг/см2 135-145 150-185 215-2560
Морозостойкость 30-40 35-50 35-50
Теплопроводность 0,6 0,65 0,7
Водопоглощение 8,3% 7,2% 8-9%
Масса в сухом виде 3,7 3,7-3,8 3,8-4,0

Способность будущего здания к сохранению тепла будет увеличиваться при большей толщине стены. Так, например, при ее толщине, равной 20 см, теплопроводность будет составлять 4,5, а при 90 см, она будет уменьшена до 1,4.

Понижают данный коэффициент и при помощи утепления конструкции, но об этом поговорим несколько позже.

Сравнение теплопроводности силикатного кирпича с другими стеновыми материалами

А сейчас давайте сравним теплопроводность силикатного кирпича с другими видами изделий, предназначенных для возведения стен.

Таблица 3.Кирпич силикатный: теплопроводность, плотность, прочность и сравнение этих показателей с другими материалами:

Наименование материала Плотность кг/м³ Прочность МПа Теплопроводность Вт/м·°С
Силикатный кирпич 1800-1900 7,5-15 В среднем – 0,7
Газоблок 300-1200 1,5-7,5 0,09-0,34
Пеноблок 300-1200 1,5-5 0,08-0,32
Керамзитобетон 400-2000 7,5-10 От 0,14
Керамический кирпич 1550-1900 7,5-10 От 0,45

Как видно, соотношение плотности, прочности и теплопроводности материала достаточно хорошее. Ячеистые бетоны, разумеется, в лидерах, однако плотность их значительно ниже.

Кирпич силикатный коэффициент теплопроводности, сравнение

Перечень материалов, пригодных для утепления стен из силикатного кирпича

Как уже говорилось, понизить коэффициент теплопроводности силикатного кирпича и будущей стены можно при помощи технически верно выполненного утепления поверхности.

Рассмотрим, какие материалы можно использовать, и как происходит процесс работ. Утепление стены из силикатного кирпича можно производить при помощи нескольких материалов.

Воспользуемся таблицей. Таблица 4. Стены из силикатного кирпича: утепление при помощи различных материалов.

Наименование материала Комментарии, преимущества и недостатки
Минеральная (базальтовая) вата Достаточно популярный материал, обладает низким коэффициентом теплопроводности.

Из плюсов можно выделить:

  • Малый вес;
  • Простота в монтаже;
  • Невысокая цена;
  • Возможность фиксации своими руками;
  • Экологичность;
  • Биологическая устойчивость;
  • Паропроницаемость;
  • Высокие эксплуатационные характеристики.

Основные минусы сводятся к следующему:

  • Водопоглощение;
  • Возгораемость;
  • Отсутствие устойчивости к деформационным процессам.
Пенопласт (пенополистирол) Достоинства:

  • Невысокая стоимость;
  • Быстрый монтаж;
  • Легкий вес;
  • Устойчивость к влаге;

Недостатки:

  • Материал не дышит;
  • Изделия подвержены горению, при этом выделяются вредные вещества;

Обратите внимание! При утеплении строения пенопластом, специалисты советуют делать внутреннюю отделку герметичной.

Керамзит Достоинств у керамзита много: это и цена, и экологичность, и высокие шумо- и теплоизоляционные показатели.

Его используют для утепления стен, возводимых по технологии колодцевой кладки.

Пенополиуретан Такой метод утепления считается достаточно дорогостоящим. Напыление требует наличия специализированного оборудования и без помощи профессионалов, обычно, не обойтись.

Теплоизоляционные характеристики – высокие.

Теплая штукатурка Это-один из самых лучших вариантов. Такие специализированные составы стоят дорого, однако результат может превзойти все ожидания.

Сложность также заключается в нанесении, так как смесь очень быстро схватывается.

Материал не подвержен горению и устойчив к влаге.

Видео в этой статье расскажет подробнее о материалах, пригодных для утепления стен из силикатного кирпича.

Преимущества и недостатки строений, возведенных из силикатного кирпича

Силикатный кирпич и строения, возведенные из него, обладают рядом иных преимуществ. Из них можно выделить:

  • Невысокая стоимость изделий;
  • Экологичность материала;
  • Хорошая геометрия изделий;
  • Высокие эстетические качества;
  • Показатель прочности, плотности и морозостойкости – достаточно конкурентные;
  • Звукоизоляционные характеристики;
  • Разнообразие выбора размеров, цветов и производителей;
  • Большое количество вариантов отделки как внешней, так и внутренней;
  • Широкая сфера применения материала;
  • Возможность произвести кладку самостоятельно, для этого понадобится только инструкция.

Что касается теплопроводности, то, скорее, данный показатель можно отнести к плюсам, так как при этом стоит учесть высокую плотность изделий.

Недостатки заключаются в следующем:

  • Материал достаточно тяжелый, особенно, в сравнении с ячеистыми бетонами;
  • Влагопоглощение;
  • В ассортименте продукции отсутствуют декоративные элементы, что не позволяет расширить архитектурные возможности при использовании материала;
  • Ограничение применения в строительстве силикатного кирпича помещений, для которых характерна постоянная влажность. Например, это – баня.

В заключение

Теплопроводность силикатного кирпича нельзя отнести к недостаткам, так как соотношение этого показателя с прочностью и плотностью достаточно приемлемо. Выбирая для строительства дома подобные изделия, и соблюдая технологию при возведении, вы сможете получить в результате практичную постройку с высокими теплоизоляционными и эксплуатационными характеристиками.

Керамический или силикатный кирпич: в чью пользу сделать выбор

Что это: силикатный кирпич или керамический

При нынешнем многообразии конструктивных материалов, предлагаемых сегодня производителями для малоэтажного строительства, человеку бывает непросто определиться с выбором, так как при этом возникает масса вопросов. Потребитель должен располагать подробной информацией.

Какой кирпич: керамический или силикатный, выгоднее для строительства с финансовой точки зрения; какие стены будут лучше сохранять тепло; как реагирует кладка на атмосферную влагу и перепады температур? Видео в этой статье, под названием: «Кирпич силикатный и керамический: сравнение», даст ответы на многие из них, и поможет нашим читателям сделать правильный выбор.

Известково-песчаный кирпич

Быстрое размокание и медленное твердение извести, длительное время служили преградой для её применения в производстве искусственного камня, чем по большому счёту и является любой кирпич. Тем не менее, в конце XIX века была создана технология автоклавной обработки смесей извести и песка, из которых, при высоком давлении и одновременном нагреве, получались влагостойкие, и очень прочные камни.

Всё дело в том, что при стопроцентной влажности, и температуре от +170 градусов и выше, диоксид кремния, содержащийся в песке, вступает в химическую реакцию с известью. В результате, образуется принципиально новое вещество, которое называется гидросиликат кальция, очень близкое по характеристикам к цементу.

Поэтому такие технологии используют сегодня не только в производстве кирпича, но и для изготовления бетонов и крупноформатных стеновых изделий. Бетоны с использованием гидросиликата кальция в качестве вяжущего вещества, требуют меньшего, по сравнению с цементными вариантами, расхода. Отсюда и более низкая цена, что является несомненным достоинством данного сырья.

Изготовление

Кирпич известково-песчаный, который мы все привыкли называть силикатным, более чем на 90% состоит из песка. Извести в нём всего 5-8%, и примерно столько же воды.

Гасится известь уже после соединения с песком — в зависимости от применяемого способа, в барабанах или силосах. Затем, масса подаётся для дополнительного увлажнения в мешалку, после чего направляется в пресс.

Итак:

  • Для прессовки силикатного кирпича требуется давление до 200 кг/см2. Сырец формуется, укладывается на вагонетку, и направляется для твердения в автоклав, который представляет собой двадцатиметровый цилиндр с герметичными крышками. По мере повышения температуры, реакция образования гидросиликата кальция ускоряется, и протекает не менее 8 часов.

Готовый к штабелированию силикатный кирпич

  • Для ускорения твердения, в автоклав подаётся пар, и под повышающимся и периодически снижающимся давлением, изделия выдерживаются ещё полсуток, в течение которых кирпич-сырец превращается в очень прочный камень. Что касается формы и размеров, то тут никакой разницы нет – силикатный или керамический кирпич.

Габариты кирпича стандартные: длина 250 мм, ширина 120 мм. По высоте могут быть варианты: одинарный, соответствует 65 мм; полуторный 88 мм; и двойной 138 мм.

Единственно, у керамического кирпича бывает ещё формат «ЕВРО»: 250*85*65 мм, который появился не так давно, но предусматривается обновлённым в 2007 году стандартом. Самая низкая марка силикатного кирпича – М75, самая высокая – М300, всего же их семь.

Анализируем достоинства и недостатки

Применяют известково-песчаный кирпич для тех же целей, что и кирпич глиняный — но всё же, для него есть некоторые ограничения.

Обратите внимание!  Силикатные материалы не рекомендуется использовать для возведения фундаментов, заглублённых стен подвалов и цокольной части зданий, так как в увлажнённом состоянии прочность камня снижается. Не используют этот кирпич и для кладки печей, так как при длительном нагреве его структура разрушается.

  • В остальных случаях силикатный кирпич можно использовать без каких-либо ограничений, так как по многим показателям он практически не уступает своему керамическому собрату. Кстати, существует ещё две разновидности силикатного кирпича, где в качестве наполнителя вместо песка используется шлак или зола. Это очень дешёвое сырьё, фактически являющееся отходами производства.

Кирпич силикатный или керамический – что лучше

  • Изготовление кирпича на основе золы и шлака наиболее выгодно с экономической точки зрения. Технологии производства при этом используются те же, только этот кирпич по формату больше (250*120*140 мм). По характеристикам, он ничем не уступает кирпичу известково-песчаному, и изготавливается по тем же стандартам. А вот как соперничают керамический, силикатный кирпич по теплотехническим показателям, вам будет проще увидеть в сравнительной таблице.

Возьмём за основу наиболее популярный в частном строительстве, одинарный полнотелый вариант марки М125:

Вид кирпича Теплопроводность

Вт/(м*К)

Прочность на

Кгс/см2

Морозостойкость

(марка)

Плотность

кг/м3

Вес изделия

кг

Водопоглощение

%

Керамический 0,72 125 F50 1900 3,1 8
Силикатный 0,81 125 F50 2100 3,7 12
  • Теперь, когда перед глазами есть конкретные цифры, будет проще увидеть разницу в показателях — а мы их прокомментируем. Теплопроводность силикатного, керамического кирпича — если и тот, и другой полнотелый, отличается незначительно. Чем этот показатель ближе к нулю, тем лучше кладка держит тепло.
  • Увы, никакой полнотелый кирпич не может похвастать высокими теплоизоляционными свойствами, и хуже него в этом плане только железобетон. У пустотелого кирпича эти характеристики намного лучше, но он уступает полнотелому кирпичу, именуемому рядовым, по прочности.

Силикатный кирпич с пустотами

  • Чтобы достичь золотой серединки, несущие стены возводят из обычного кирпича, а облицовывают пустотным, закладывая при этом между двумя стенками утеплитель. Кстати, пустотелый кирпич бывает не только керамическим, но и силикатным.
  • Разница состоит только в том, что у последнего пустоты не бывают сквозными, что мы и видим на фото. Глиняный кирпич чаще всего имеет сквозные вертикальные или горизонтальные пустоты, и называется щелевым. Прочность и морозостойкость у глиняного и силикатного полнотелого кирпича одинаковая.

Но плотность, и соответственно, вес у силикатного кирпича, несколько больше. Этот факт можно отнести к отрицательным качествам, так как фундамент под такую кладку должен быть более мощным.

Зато эти расходы в полной мере компенсируются более низкой стоимостью самого кирпича. Только вот более высокое водопоглощение ничем не компенсируешь, поэтому у силикатного кирпича и есть ограничения в применении.

Немного о керамическом кирпиче

Итак, продолжаем рассуждать на тему: «Что лучше, керамический кирпич, или силикатный?». Вообще, в русских толковых словарях слово «кирпич» трактуется, как «сбитый из глины, и обожжённый брусок».

Следовательно, всё, что делается не из глины, под определение кирпича не подходит. По сути, силикатный кирпич — это твёрдый камень, лишь похожий на кирпич по форме, а так же некоторым физико-техническим характеристикам.

Итак:

  • Несмотря на некоторое сходство, производят эти два материала по разным стандартам, и между ними существует достаточно чёткая граница. Силикатный кирпич сегодня изготавливают не только для простой кладки, но и предлагают декоративные варианты: цветные, рельефные. И, тем не менее, сравниться по ассортименту с кирпичом керамическим он никак не может.

Разнообразие керамического кирпича

Разновидности глиняного кирпича

Кроме рядового и пустотелого кирпича, есть ещё декоративные варианты, которые принято называть облицовочным, или лицевым кирпичом. Тут есть масса вариаций: это и широчайшая цветовая гамма; и поверхности, обработанные такими способами, как ангобирование, глазурование, механическое нанесение рельефа. У декоративного кирпича, кстати, облагорожено как минимум две грани.

  • Есть ещё и фасонный кирпич, с помощью которого можно облицевать колонны, закруглить внешний угол, красиво оформить оконные проёмы, сформировать цокольный отлив, или выложить арочную перемычку. Возможно, такие сложные конструкции не всегда получится сделать своими руками. Но если есть желание, то и нужная инструкция, которая поможет в работе, непременно найдётся.

Колонны и арочный свод из фасонного кирпича

  • Ещё один довод, который говорит в пользу керамического кирпича – так это то, что он не боится повышенных температур. По этой причине, именно его и используют для возведения печей, каминов и дымоходов. Обычно ту часть, которая непосредственно контактирует с огнём, выкладывают из огнеупорного кирпича, изготавливаемого из шамотной глины.

А вот для облицовки внешних поверхностей печи или камина, примыкающей стены, а так же грубы печи, используется клинкерный, либо обычный керамический — в том числе и фасонный кирпич.

Теплотехника и другие свойства

Из всего, сказанного выше, вполне понятно, что рядовой кирпич используется для кладки наружных стен и перегородок, а лицевой служит декоративным обрамлением стенки из рабочего кирпича. Если говорить о теплотехнических свойствах, то по этому показателю данный материал условно подразделяется на три категории.

Итак:

  • К первой группе относятся варианты с высокими теплоизоляционными характеристиками. Это щелевой кирпич и керамические блоки плотностью менее 1400 кг/м3. Их использование позволяет уменьшить толщину стен — если сравнивать её с толщиной кладки из полнотелого кирпича.
  • Второй вариант обозначается, как условно эффективный. Это пустотелый облицовочный кирпич, с плотностью в пределах 1410-1600 кг/м3, который всего лишь улучшает характеристики основной конструкции. Ну а к третьей, неэффективной категории, относится обыкновенный кирпич, плотность которого превышает 1610кг/м3.

Кирпич рядовой эффективный (щелевой)

Эффективный кирпич: особенности

На фото сверху вы видите представителя первой группы — это утолщённый (полуторный) щелевой кирпич марки М-125. Его плотность в среднем составляет 1210 кг/м3, а коэффициент теплопроводности соответствует всего 0,36 Вт/(м*К).

Сравнивая данные показатели с табличкой, в которой мы приводили характеристики полнотелых кирпичей такой же марки, мы сразу видим разницу, которая не оставляет сомнений в том, что этот вариант не зря назвали эффективным.

  • Его теплотехнические свойства вдвое лучше, чем у полнотелого кирпича. Щелевой кирпич также называют рабочим, потому, что его можно использовать для основной кладки стен. Хотя конечно, такая кладка не может соперничать по прочности с кладкой из полнотелого кирпича. Если вам, к примеру, нужно возвести фундамент, то ни о каком пустотном материале речи и быть не может.

Стены из пустотной керамики

  • Для возведения многоэтажных зданий эффективный кирпич тоже не используют, так как слишком велики нагрузки. Единственно, могут выкладывать из него стены верхних этажей, или заполнять пролёты каркасных зданий. Но там всю нагрузку несёт каркас, а задача заполняющего его материала как раз и состоит в обеспечении надлежащей теплоизоляции.
  • Зато для стен малоэтажных домов – это именно то, что надо. Применение пустотелых керамических кирпичей и блоков, позволило идеально решить задачу по теплоизоляции стен зданий. Как результат, это повлекло снижение расходов на их эксплуатацию, причём, без ущерба качеству конструкций.
  • Кроме того снижается и себестоимость объекта, ведь благодаря меньшему весу ограждающих конструкций, становятся ниже нагрузки, и соответственно, расходы на фундамент. И это ещё не все достоинства щелевого кирпича. Благодаря профилю, имеющемуся на боковых гранях, стыки между кирпичами получаются практически герметичными, и расход раствора при этом значительно снижается.

Дом и ограда из глиняного кирпича

Кирпич силикатный ГОСТ — прочность на сжатия и другие параметры

Белый силикатный кирпич — автоклавное изделие, категория бетона из силиката и мелкодисперсного заполнителя. Производится продукт путем автоклавной термообработки при нагнетании горячего пара. Регламентируются качества, технология изготовления, свойства кирпича силикатного по ГОСТ 379-2015, принятому в октябре 2015 года. Блоки подразделяются на категории по размеру:

  • одинарный — 250х120х65 мм;
  • полуторный — 250х120х88 мм;
  • двойной — 250х120х138 мм.

Объемы материалов устанавливает ГОСТ 530-2012. Силикатные камни классифицируются по следующим характеристикам:

  1. по назначению — конструкционные, которые требуют дальнейшего облицовывания или оштукатуривания, лицевые с расшивными швами;
  2. по геометрическим параметрам — полнотелые, пустотелые;
  3. по прочности — на серии М75-М300;
  4. по морозоустойчивости — на категории F15-F50;
  5. по теплопроводности;
  6. по пожаробезопасности;
  7. по водостойкости.

Данные характеристики регламентируются ГОСТ 379-2015.

Марки прочности силикатного кирпича

Важное качество силикатного камня — прочность. Материал применяют для постройки многоэтажных домов, рассчитанных на долгий период службы. Для высоток с различным количеством этажей необходимо сырье с разной прочностью, марки которой обозначаются буквой “M”. Идущие следом числа показывают значения давления при сжатии, после действия которого материал разрушается. Стандарт ГОСТ регулирует марки прочности силикатного кирпича, разделяет их на 8 серий.

М75

Подобная маркировка говорит, что сырье рассыпается при давлении на него, не превосходящем 7,5 МПа. Такая модель кирпича востребована для частного использования, характеризуется относительной легкостью. Вышеупомянутая серия не пожаробезопасна, но имеет хорошую звукоизоляцию, чем обусловлено ее частое использование в возведении перегородок в помещениях.

М100

Серия продукта отличается более высоким уровнем допустимого давления. Материал разрушается при давлении свыше 10 МПа. Камень используется для постройки зданий высотой в 2 этажа, так как показатели стойкости считаются недостаточными для возведения многоэтажных домов.

М125

Изделие вида М125 имеет наиболее высокую стойкость к давлению — предел составляет 12,5 МПа. Областью применения сырья являются малоэтажные здания. Используя при строительстве данный вид кирпича, не стоит возводить дома выше 3 этажей. При игнорировании такого правила возникнет перегруз, конструкция будет разрушена. Однако неоспоримым плюсом строительного компонента является экологическая чистота, безвредность.

М150

Подобного рода вещество применяется для сооружения самонесущих и несущих стен в зданиях высотой в 5-6 этажей, стойкость к сжатию достигает 15 МПа. Благодаря своей прочности материал не имеет ограничений в использовании. Камень хорошо сохраняет тепло и отличается высокой морозостойкостью.

М175

Блок используется не только для жилого, но и для промышленного строительства. При отсутствии контактов с грунтовыми водами и хорошей гидроизоляции он применяется для изготовления подземных конструкций. Прочность на сдавливание достигает 17,5 МПа. Материал характеризуется большой степенью сопротивления ветрам, резким скачкам температуры воздуха, влаге.

М200

В возведении построек высотой в 9-10 этажей используется строительный материал с данным сертификатом. М200 выдерживает нагрузку в 20 МПа. Для возведения подземных и надземных построек промышленного характера стоит использовать сырье прочное, с высоким классом морозостойкости. Кроме того, последнее характеризуется малым влагопоглощением.

М250

Силикатный блок данной серии способен выдержать давление до 25 МПа при сжатии. Подобный строительный материал предназначен для возведения многоэтажных зданий и любых надземных конструкций.

М300

Выдерживает оказываемое давление в 30 МПа. Это максимум для данного вида сырья. Камень применяется для усиления прочности любых построек при наличии хорошей гидроизоляции, для изготовления фундаментов зданий, которым необходимо будет выдерживать большие нагрузки. М300 огнеупорен, поэтому из него возводят камины и печные трубы.

Классы морозостойкости

Морозостойкость — способность материала выносить сменяющие друг друга замораживание и оттаивание без каких-либо последствий, без существенной потери внешнего вида — появления шелушений, сколов, утраты технических характеристик. Согласно ГОСТ выделяют следующие классы:

Классификация говорит о долговечности силикатного кирпича. К строительству допускается камень любой марки. Облицовочный по ГОСТ имеет показатель не менее 35.

Свойства и технические характеристики силикатного белого кирпича

В качестве сырья для материала используется 9 долей кварцевого песка и 1 доля извести. В состав возможно вхождение различных модифицирующих добавок. Сырье прессуют и подвергают автоклавной доработке при температуре до 200°С и давлении в 12 атмосфер. Автоклавная обработка придает продукту высокую прочность: силикатный блок — надежный строительный камень. Кроме того, свойственны ему и другие достоинства.

Каждая марка силикатного продукта имеет свои индивидуальные свойства и характеристики. Прочность, теплопроводность, морозостойкость, вес, экологичность, водостойкость, пожаробезопасность — крайне важные критерии при выборе камня. Благодаря знанию таких особенностей проще понять, какой марки силикатный кирпич подходит для необходимой цели.

Плотность и вес

Силикатный блок изготавливается в 2 классах:

  • полнотелый;
  • пустотелый.

Соответственно классу меняется плотность. Пустотелый камень характеризуется средней плотностью, ограниченной рамками от 1100 до 1500 кг на м3. Полнотелый кирпич обладает плотностью, превышающей 1500 кг на м3. Данная классификация характеризуется степенью заполнения объема камня твердым веществом.

Определяется плотность отношением объемного веса сухого вещества к его удельному весу, выражается в процентах. Прочая доля объема приходится на пустоты, поры. Вес камня находится в прямой зависимости от его плотности, размеров и формы. На вес материала оказывает воздействие не только процент плотности, но и уровень пористости. Стандарт веса по ГОСТ 530-2012 силикатного белого кирпича таков:

  • рядовой одинарный — 3,2 кг;
  • полуторный — 3,7 кг;
  • двойной — 5,4 кг;
  • лицевой полуторный — от 3,7 до 4,3 кг;
  • двойной — до 5,8 кг.

Прочность

Показатель для материала регулируется ГОСТ 379-2015. На прочность силикатный блок проверяется при изгибе и сжатии. По этим данным материал разделяют по классам прочности, приведенным в таблице.

Марка Предел прочности, МПа
При сжатии При изгибе
Все изделия Полнотелый кирпич Пустотелый кирпич
300 30 4 2,4
250 25 3,5 2
200 20 3,2 ,8
175 17,5 1 1,6
150 15 2,7 1,5
125 12,5 2,4 1,2
100 10 2 1
50 7,5 1,6 0,8

Указанные значения предельны, при них материал разрушается. Согласно ГОСТ, минимальный класс для лицевого кирпича — 125. Прочнее сжатие будет у материала марки М300.

Теплопроводность

Критерий описывает число единиц тепла, проходящих через препятствие из материала толщиной в 1 м. Этот параметр у силикатного материала не на высоте, зданиям из него необходимо обязательное утепление, иначе толщина стены должна достигать больших размеров. По стандарту кирпичного требования полнотелый силикатный кирпич имеет теплопроводность 0,65 — 0,88 Вт/м*С, параметр у пустотелого — 0,56-0,81 Вт/м*С. Имеются некоторые способы, с помощью которых возможно увеличить способность к сохранению тепла:

  1. использование специализированных добавок;
  2. создание в теле сырья искусственных пустот;
  3. применение теплоизолирующего покрытия наружной части материала;
  4. добавление в качестве наполнителя керамзитового песка.

Необходимо заметить, что чем плотность камня выше, тем ниже процент водопоглощения. Последнее влияет на коэффициент теплопроводности.

Морозостойкость

Критерий морозостойкости зависит от числа циклов полного замораживания и оттаивания. Признаков разрушения строительного материала, таких как рассыпание, расслоение, быть не должно. Прочность же может уменьшиться не более чем на 20%. Совсем недавно в материал при изготовлении стали добавлять дисперсные фракции, чтобы предупредить замерзание влаги в микрокапиллярах.

Требования по морозостойкости к сырью серии М150 и выше предъявляются только в случае использования для облицовки построек. Материал должен пройти 25 циклов испытаний без уменьшения прочности более чем на 20%. Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований.

Водостойкость

По ГОСТ предельным является значение в 6%. При наибольшем поглощении влаги этот критерий достигает 11%, материал теряет в прочности. В районах с постоянной сыростью, дождливостью применение силикатных блоков не рекомендуется. Не используются они в регионах с высоким уровнем грунтовых вод. Силикатный блок нуждается в защите — при сооружении фундамента, при кладке стен для влажных помещений, при возведении открытых незащищенных конструкций. В противном случае он утрачивает свое главное свойство — прочность.

Пожаробезопасность

Пожарная безопасность домов, строений, конструкций зависит от способности строительных материалов выдерживать воздействие высоких температур и противостоять открытому огню. Силикатный блок — негорючее сырье. Подобный материал из-за высокой огнестойкости используют при возведении каналов для вентиляции. Однако кроме огнеупорной марки М300 применять материал для изготовления печей, каминов нельзя, температура в 500°С станет критичной, камень начнет рушиться.

Радиационная активность

Критерий регламентирует стандарт ГОСТ 30108-94. Согласно его требованиям, активность естественных радионуклидов должна не превышать 370 Бк/кг. Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может ухудшать экологию помещения. Вследствие этого людей беспокоят:

  1. головные боли;
  2. аллергия;
  3. слабость.

Но уровень радиационного фона при использовании такого рода сырья не превышает безопасных пределов. По величине излучения блок отличается минимальными показателями в сравнении как с природными, так и с искусственными строительными материалами.

//www.youtube.com/watch?v=ktiDRMBHW7s

Экологичность

Камень изготавливается из природного сырья, техника производства коренным образом не меняет исходных характеристик. Экологически чист материал из-за составляющих:

  • песок;
  • известь.

Такое сырье безопасно для человека и для окружающей среды, оно не содержит вредных для здоровья компонентов. Силикатный блок, имеющий свойства и характеристики, описанные выше, является достаточно востребованным строительным материалом.

Плотность кирпича — керамический, силикатный, пустотелый

Кирпичи относятся к строительным материалам, имеющим повышенную прочность, стойкость к смене климатических условий и перепадам температуры. Важным техническим показателем искусственного камня является его плотность, которая влияет на теплопроводность, износостойкость и весовую категорию.

Плотность кирпича в качестве физической величины отражает соотношение массы состава к габаритам блока с пустотами. Единица измерения — килограмм на кубический метр (кг/м3). Параметр считается основным при подборе марки строительного сырья.

Плотность керамического кирпича

Керамические кирпичные блоки производятся из глины, которая проходит обработку при высоких температурных режимах. Показатели плотности различаются в зависимости от разновидности изделия — пустотелой либо полнотелой.

Государственные стандарты предписывают допустимый показатель плотности состава для керамического блока полнотелого от 1600 до 2000 кг/м3. Параметры для кирпичей керамических пустотелых варьируются в пределах от 1100 до 1400 кг/м3 и обусловлены большим числом пор в составе.

Блоки керамические подходят для возведения устойчивых конструкций — вспомогательных либо несущих. Полнотелые кирпичи за счет отсутствия большого числа пустот имеют повышенную прочность и массу. Подходят для конструкций, подверженных постоянным нагрузкам.

Керамические кирпичи пустотелые применяют при возведении жилых зданий. Для многоквартирных домов важна невысокая плотность, позволяющая сохранять тепло в помещениях. При определении теплосберегающих качеств материала необходимо обращать внимание на наличие специальных щелей. При возведении крупных объектов рекомендована проверка каждой партии кирпичей на подтверждение госстандартов.

Плотность силикатного кирпича

По требованиям ГОСТа 379-79, силикатные блоки имеют марки прочности М125-150. Материал производят из извести, масса которой может достигать 90%. Объем песчаной смеси составляет около 10%. Показатель плотности состава для силикатных полнотелых материалов варьируется в пределах от 1800 до 1950 кг/м3. Для пустотелых блоков из силикатного песка норматив плотности должен быть не менее 1100 кг/м3 и не более 1600 кг/м3.

На характеристики долговечности влияют размеры зерен силикатного щебня, сила сжатия и способ производства. Давление, которое нагнетается на материал во время технологического процесса, варьируется в пределах от 8 до 20 атмосфер. Поэтому расхождение в плотности материала может составлять до 30%.

Относительно невысокая плотность пустотелого силикатного кирпича обусловлена пустотностью материала, которая достигает 33%. За счет этого масса кирпича уменьшается до 2,5 кг, снижаются и показатели теплопроводности возводимых строений.

Характеристики материала оптимальны для возведения перегородок между комнатами в квартирах. Не рекомендован состав в связи с низкой плотностью для строительства несущих стеновых панелей, печей, т.к. возможно деформирование блоков и создание аварийной ситуации.

При планировании строительных работ необходимо учитывать, что силикатное сырье быстро впитывает влагу. Поэтому такие стройматериалы не рекомендованы для возведения зданий в местности с продолжительный осадками, а также на территориях с высоким уровнем грунтовых вод.

Плотность полнотелого кирпича

Характеристики плотности у полнотелого кирпича высокие. Блоки имеют показатели от 1600 до 1900 кг/см3. На качества влияет небольшая пустотность — не выше 8%, сниженная теплопроводность, которая составляет 0,7 Вт/м°С. Материал износостойкий, долговечный, но плохо сохраняет тепло и отличается большим весом. Поэтому стеновые панели из полнотелых блоков часто дополнительно утепляют.

Наибольшую плотность имеют красные полнотелые кирпичи. Показатель достигает 2100 кг/см3. Сырье оптимально для возведения несущих стеновых панелей, цокольных частей зданий, опорных фундаментов и других конструкций с высокой нагрузкой.

На показатели уплотненности кирпича полнотелого влияют особенности сортов глины, способы и температурные режимы обжига. На полнотелых блоках не выполняют полное глазурование, т.к. высокая плотность снизит паровую проницаемость. При чрезмерном воздействии высоких температур материал сильно сжимается и с трудом поддается обработке. Поэтому специалисты рекомендуют корректировать метод остывания блоков после печи. Кирпичи необходимо поэтапно обрабатывать перегретым паром, затем оставлять на открытом воздухе.

Вычокий уровень прочности при сжатии и невосприимчивость к перепадам температурных режимов, высокий показатель поглощения влаги придают полнотелым изделиям износостойкость и морозостойкость. Характеристики позволяют применять кирпичи для возведения стеновых панелей внутри и снаружи здания, колоннад, опорных конструкций, несущих фундаментов, цокольных этажей.

Плотность пустотелого кирпича

Плотность пустотелых кирпичей снижена из-за наличия пустот, процент которых варьируется от 13 до 50% от внутреннего объема. Поризация обеспечивает небольшой вес изделий, высокие теплоизоляционные и звукоизоляционные характеристики.

Типовые показатели уплотненности красного пустотелого блока варьируется в пределах от 1100 до 1450 кг/м3. Стройматериал подходит для возведения перегородок между комнатами, облегченных панелей, а также для заполнения каркасных конструкций домов. Уплотненность состава можно уменьшить до показателя в 1000 кг/см3, при этом увеличится морозостойкость.

Плотность облицовочного кирпича

Облицовочные (лицевые) блоки имеют ровную форму, глянцевую поверхность, обладают средней прочностью и надежной теплоизоляцией. Характеристики плотности фасадных материалов варьируются в пределах от 1300 до 1450 кг/см3. Износостойкость состава обусловлена невысокой пористостью — от 6 до 14%. Кирпичи изготавливают с щелями и применяют для декорирования наружных стен зданий, оформления ограждающих конструкций, парковых декоративных форм и т.д.

Производят и добавочный подвид строительного материала — теплый. Состав отличается большим числом пор, по сравнению со стандартными облицовочными изделиями. Плотность варьируется в пределах от 1100 до 1150 кг/м3.

Облицовочные блоки с глазурированием имеют слой стекловидной массы, непроницаемый для влаги. Повторный обжиг, который положен по технологии изготовления после нанесения глазури, не сказывается на прочности изделий. Характеристики уплотненности у подвида типовые — от 1300 до 1450 кг/м3. Но стоимость состава выше стандартного за счет высоких декоративных качеств.

//www.youtube.com/watch?v=c6ekuNKt6qA

Плотность клинкерного кирпича

Теплопроводность

Теплопроводность

Теплопроводность — это свойство материала. Не будет отличаться от
размеры материала, но это зависит от температуры,
плотность и влажность материала. Тепловой
проводимость материала зависит от его температуры, плотности и
содержание влаги. Обычно значения теплопроводности в таблицах составляют
значение действительно для нормальной комнатной температуры. Это значение не будет отличаться
значительно между 273 и 343 К (0 — 70 ° C).Когда высокие температуры
например, в духовках, влияние температуры должно быть
учтено.

Обычно легкие материалы являются лучшими изоляторами, чем тяжелые.
потому что легкие материалы часто содержат воздухозаборники. Сухой неподвижный воздух
очень низкая проводимость. Слой воздуха не всегда будет хорошим
изолятора, потому что тепло легко переносится излучением и
конвекция.

Когда материал, например изоляционный, становится влажным, воздух
корпуса заполняются водой и, поскольку вода является лучшим проводником
чем воздух, увеличивается проводимость материала.Вот почему это
очень важно устанавливать изоляционные материалы, когда они сухие и
следите за тем, чтобы они оставались сухими.

Проводимость против проводимости

Электропроводность (k) — это свойство материала, означающее его способность
проводят тепло через свою внутреннюю структуру. Поведение на другом
рука является свойством объекта и зависит как от его материала, так и от
толщина. Электропроводность равна удельной электропроводности, умноженной на толщину, в
единиц Вт / м²К. Поскольку проводимость обратно пропорциональна удельному сопротивлению,
поэтому общее сопротивление материала может быть выражено как его общее
толщина, деленная на общую проводимость.В таблице ниже представлен список
строительных материалов и их теплопроводности для сухой (закрытой)
и влажные (наружные) условия.

Группа Материал Удельная масса (кг / м3) Теплопроводность (Вт / мК)
Сухой мокрый
Металл Алюминий 2800 204 204
Медь 9000 372 372
Свинец 12250 35 35
Сталь, железо 7800 52 52
цинк 7200 110 110
Натуральный камень Базальт, Гранит 3000 3.5 3,5
Голубой камень, Мрамор 2700 2,5 2,5
Песчаник 2600 1,6 1,6
Кладка Кирпич 1600-1900 0,6-0,7 0,9–1,2
Кирпич силикатный 1900 0.9 1,4
1000-1400 0,5-0,7
Бетон Гравийный бетон 2300-2500 2,0 2,0
Легкий бетон 1600-1900 0,7-0,9 1,2–1,4
1000-1300 0.35-0,5 0,5-0,8
300-700 0,12-0,23
Пемзобетон 1000-1400 0,35-0,5 0,5–0,95
700-1000 0,23–0,35
Изоляционный бетон 300-700 0.12-0,23
Ячеистый бетон 1000-1300 0,35-0,5 0,7–1,2
400-700 0,17-0,23
Шлакобетон 1600-1900 0,45-0,70 0,7–1,0
1000-1300 0.23-0,30 0,35-0,5
Неорганическое Асбестоцемент 1600-1900 0,35-0,7 0,9–1,2
Гипсокартон 800-1400 0,23–0,45
Гипсокартон 900 0,20
Стекло 2500 0.8 0,8
Пеностекло 150 0,04
Минеральная вата 35-200 0,04
Плитка 2000 1,2 1,2
Пластыри Цемент 1900 0,9 1.5
лайм 1600 0,7 0,8
Гипс 1300 0,5 0,8
Органическое Пробка (расширенная) 100-200 0,04–0,0045
Линолеум 1200 0,17
Резина 1200-1500 0.17-0,3
ДВП 200-400 0,08-0,12 0,09-0,17
Дерево Твердая древесина 800 0,17 0,23
Хвойная древесина 550 0,14 0,17
Фанера 700 0.17 0,23
Оргалит 1000 0,3
Мягкая доска 300 0,08
ДСП 500–1000 0,1-0,3
ДСП 350-700 0,1-0,2
Синтетика Полиэстер (GPV) 1200 0.17
Полиэтилен, полипропилен 930 0,17
Поливинилхлорид 1400 0,17
Синтетическая пена Пенополистирол, эксп. (ПС) 10-40 0,035
То же, экструдированный 30-40 0.03
Пенополиуретан (PUR) 30–150 0,025-0,035
Твердая пена на основе фенольной кислоты 25-200 0,035
ПВХ-пена 20-50 0,035
Изоляция полости Изоляция стенок полости 20–100 0.05
Битумные материалы Асфальт 2100 0,7
Битум 1050 0,2
Вода Вода 1000 0,58
Лед 900 2.2
Снег свежий 80-200 0,1-0,2
Снег, старый 200-800 0,5–1,8
Воздух Воздух 1,2 0,023
Почва Почва лесная 1450 0.8
Глина с песком 1780 0,9
Влажная песчаная почва 1700 2,0
Почва (сухая) 1600 0,3
Напольное покрытие Плитка напольная 2000 1.5
Паркет 800 0,17-0,27
Ковер из нейлонового войлока 0,05
Ковер (поролон) 0,09
Пробка 200 0,06-0,07
Шерсть 400 0.07

Теплопроводность | Scientific.Net

Растворы на основе тройного связующего из извести, метакаолина и полугидрата кальция

Авторы: Владимир Павлик, Алена Стругарова

Реферат: На известково-метакаолин-гипсовом связующем были приготовлены растворы нормальной массы с наполнителем из кварцевого песка и легкие растворы с наполнителем из вспученного перлита.Образцы строительных растворов были отверждены во влажной атмосфере, а также в лабораторных условиях. Развитие процессов упрочнения изучали методами рентгеновской дифракции, термического анализа и наблюдения SEM-EDS. Определены прочность на сжатие, усадка при высыхании, насыпная плотность и теплопроводность растворов. Наличие в смесях гипсового вяжущего позволило образовать эттрингит, который вызвал расширение и уменьшил усадку при высыхании растворов с содержанием гипсового вяжущего 20%.

105

Разработка методики определения срока эффективной эксплуатации теплоизоляционных материалов на 100 лет

Авторы: Геннадий Фаренюк, Елена Олексиенко

Резюме: Целью исследований является определение показателей долговечности изделий из минеральной ваты при использовании их в качестве изоляционного слоя ограждающих конструкций строительных объектов со сроком службы до 100 лет.Задачи исследования заключались в оценке изменения эксплуатационных характеристик материала — теплопроводности, воздухопроницаемости, прочности на сжатие при линейной деформации 10%, внешнего вида и геометрических параметров образца при циклических климатических воздействиях, имитирующих влияние окружающей среды на состояние теплоизоляции. материалы ограждающих конструкций при эксплуатации объектов строительства.

80

Силикатный кирпич с пониженной плотностью и теплопроводностью

Авторы: Олег Животков, Владимир Котляр, Григорий Козлов, Ирина Животкова, А.Козлов

Аннотация: Современная жилищная практика предполагает повсеместное использование силикатного кирпича. Основным недостатком этого строительного материала является его высокая средняя плотность, сопровождающаяся высокой теплопроводностью, что сопровождается большими потерями тепла через ограждающие стены зданий и сооружений. В данной статье рассматривается возможность улучшения термических характеристик силикатных материалов за счет использования микросфер золы при производстве штучных силикатных изделий, что позволит существенно снизить теплопроводность изготавливаемого материала.Микросферы золы, входящие в состав золошлаковых отходов ТЭС, обладают рядом ценных свойств: во-первых, очень низкой плотностью, во-вторых, закрытой микропористостью, в-третьих, химическим и минералогическим составом, склонным к реакциям в условиях повышенных температур. и давления. Нами изучен химический и минералогический состав, а также физико-механические свойства микросфер золы, разработаны составы и технологические параметры производства силикатных материалов.Установлено, что замена кварцевого песка микросферами золы в составе формовочной массы позволяет получить силикатный кирпич среднего класса плотности 1,0 и прочности, достаточной для возведения несущих ограждающих изделий и конструкций. Составы формовочных материалов на силикатном связующем и микросферы алюмосиликатной золы общепринятыми методами разработаны и исследованы свойства полученного силикатного материала в соответствии с требованиями действующих ГОСТ на аналогичные материалы.

37

Влияние наличия солей в материалах на их влажность и теплопроводность

Авторы: Татьяна Эльчищева, Владимир Ерофеев

Аннотация: Энергосбережение в зданиях во многом определяется энергоэффективностью внешних ограждающих конструкций.Последние, как правило, являются многослойными и включают конструкционные и теплоизоляционные слои. Наличие в строительных материалах индивидуальных гигроскопичных солей и их смесей изменяет их физические и химические свойства. Из-за увеличения сорбционных свойств строительных материалов и изменения межпорового состава вещества повышается влажность и снижаются теплозащитные свойства. В данной работе представлены результаты экспериментальных и теоретических исследований по оценке влияния солей на изменение влажности и теплопроводности строительных материалов за счет наличия солевых растворов и кристаллов в поровом пространстве.Для исследования теплопроводности солевых строительных материалов используются методы математического моделирования с использованием теории течения и доведения структуры материалов до элементарной ячейки. Показано, что изменение теплопроводности происходит за счет выпадения кристаллической соли из растворов в порах материала, изменения их исходных химических свойств, изменения свойств паровоздушной смеси над солевыми растворами за счет к распространению. Полученные результаты позволяют установить значимость влияния гигроскопических солей в твердой и жидкой фазах на теплопроводность строительных материалов.Предложена схема определения теплопроводности строительных материалов с учетом солевых эффектов, включающая определение: объемных концентраций компонентов; последовательно теплопроводность материала оболочки; кристаллы соли, твердая фаза, состоящая из оболочки материала и кристаллической соли, бинарного и многокомпонентного солевого раствора, порового пространства и порового вещества внутри. Приведена общая формула для определения теплопроводности солевого строительного материала.

179

Влияние CuZnFe 2 O 4 на механические свойства и теплопроводность АБС, изготовленного с использованием 3D-принтера

Авторы: Хайрул Амали Хамза, Йео Чеу Кит, Мазли Мохд Нур, Тех Пей Ленг, Шулизават Акзна Сазали, Ван Мохд Ван Ибрагим

Аннотация: Целью данного исследования является разработка композитов ABS-CuZnFe 2 O 4 с использованием 3D-принтера.В этом исследовании исследуется влияние загрузки наполнителя на механические свойства и теплопроводность. Результат показывает, что при максимальной загрузке наполнителя (14 мас.%) Предел прочности на разрыв улучшился примерно на 98%, в то время как модуль Юнга увеличился примерно на 23% по сравнению с образцом без наполнителя. Между тем, процент удлинения уменьшается примерно на 49% при заполнении 14 мас.% Наполнителя. Наполнитель CuZnFe 2 O 4 показывает большее влияние на значение твердости композитов около 498% при максимальном содержании наполнителя.Теплопроводность АБС увеличилась до 60% при полной загрузке наполнителя.

148

Сравнение материалов термоинтерфейса УНТ с материалом термоинтерфейса графена с точки зрения теплопроводности

Авторы: Мазлан Мохамед, Мохд Назри Омар, Мохамад Шайфул Ашрул Исхак, Розянти Рахман, Нор Заязмин Яхая, Мохаммад Хайрул Азхар Абдул Разаб, Мохмед Жариф Ахмад Тирмизир

Аннотация: Термоинтерфейсный материал (TIM) был хорошо изучен и разработан с использованием нескольких материалов в качестве материала основы.Для улучшения термических свойств ТИМ было использовано много комбинированных и смешанных материалов. Комбинация материалов, например, углеродных нанотрубок (УНТ) и эпоксидной смолы, использовалась раньше, но значительная часть изученных материалов не совсем соответствует прогнозам. В этом исследовании для увеличения теплопроводности и термоконтактного сопротивления использовались материалы термоинтерфейса с использованием графена и УНТ в качестве основного материала. Эти два типа TIM сравнивали друг с другом, чтобы определить, какой материал может лучше увеличить теплопроводность.Образец, содержащий 20 мас. %, 40 мас. % и 60 мас. % графена и УНТ. Измерена теплопроводность материала термоинтерфейса, и было обнаружено, что ТИМ из графена имеет лучшую теплопроводность, чем УНТ. Наибольшая теплопроводность составляет 23,2 Вт / (мК) при 60 Вт. % графена при 60 Вт. % УНТ дают только 12,2 Вт / (теплопроводность мК).

160

Влияние разной температуры обжига на теплопроводность керамической плитки

Авторы: Хайрул Ануар Шариф, Мухаммад Сяхир Джухари, Линетт Вей Лин Чан, Шах Ризал Касим

Аннотация: Целью данного исследования является изучение влияния различной температуры обжига на теплопроводность керамической плитки.Составы порошков керамической плитки для тела были изготовлены в соответствии с рецептурой, предоставленной компанией, и спрессованы при 18 МПа с использованием пресса для получения образца в форме пуговицы с диаметром 50 мм. Образец в форме пуговицы обжигался при различных температурах обжига: 1150 ° C, 1175 ° C, 1200 ° C и 1225 ° C. Затем была измерена теплопроводность обожженных образцов с помощью анализатора тепловых констант Hot-Disk. Результат теплопроводности показывает, что тело керамической плитки обожжено при 1150 ° C, что дает самые низкие значения теплопроводности (0.97 Вт / мК) по сравнению с другими образцами. Эта низкая теплопроводность обусловлена ​​высокой пористостью образца из-за большего количества захваченного воздуха и подразумевает задержку теплопередачи внутрь или наружу от керамических плиток. Таким образом, это исследование доказало, что при изменении температуры обжига можно получить разные значения теплопроводности керамической плитки.

665

Повышение тепло- и звукоизоляционных свойств цементно-композитной черепицы за счет добавления ананасового волокна с наноцеллюлозным покрытием и модифицированных отходов резиновых покрышек

Авторы: Канокон Ханчароен, Парамес Камхангриттиронг, Пимсири Суванна

Резюме: В работе исследуется улучшение тепло- и звукоизоляционных свойств цементной композитной черепицы с ананасовым волокном, покрытым наноцеллюлозой, и модифицированной отработанной резиной покрышек.Композит состоял из ананасовых волокон, покрытых бактериальной наноцеллозой (BNC), частиц модифицированного каучука, пластификатора и портландцемента типа I в массовом соотношении 10: 50: 0,8: 100 с соотношением воды к цементу (в / ц) 0,5. Теплопроводность фиброцементного композита может быть снижена до 0,1080 ± 0,0048 Вт / м · К по сравнению с 0,3810 ± 0,0041 и 0,5860 ± 0,0050 Вт / м · К для фиброцемента и резиновых цементных композитов соответственно. Кроме того, коэффициент снижения шума фиброцементного композита может быть увеличен до 0.2832 по сравнению с 0,2143 и 0,1899 для фиброцемента и резиновых цементных композитов соответственно. Эти результаты показали, что добавление ананасового волокна, покрытого наноцеллюлозой, и частиц модифицированного каучука вместе в цементный композит может значительно улучшить теплоизоляционные и звукопоглощающие способности композитной черепицы, чем добавление каждого компонента по отдельности.

465

Свойства теплопроводности летних полотенцесушителей

Авторы: Йим Лин Лам, Вен И Ван, Чи Вай Кан, Матурод Виенгсима, Касем Манарунгвит, Нонгнут Саситхорн, Джитти Паттаванич, Раттанапхол Монгхолраттанасит

Резюме: В этом исследовании оценивались охлаждающие свойства летних охлаждающих полотенец различных брендов путем изучения поведения управления влажностью жидкости.Было обнаружено, что все образцы обеспечивают охлаждающий эффект при первом контакте после смачивания. Образцы Perfect Fitness показали наивысший охлаждающий эффект, тогда как образцы N-rit, Cooldyxm и Ice Towel имели худший охлаждающий эффект. С помощью этого исследования можно сравнить общий охлаждающий эффект летних охлаждающих полотенец на рынке, что дает потребителю некоторое представление о выборе продукта.

XFA 600 Температуропроводность Теплопроводность

ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОВОЙ ДИФФУЗИОННОСТЬ

ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОВОЙ ДИФФУЗИВНОСТЬ Нью-Касл, DE США Линдон, Юта США Хюльхорст, Германия Шанхай, Китай Пекин, Китай Токио, Япония Сеул, Южная Корея Тайбэй, Тайвань Бангалор, Индия Сидней,

Дополнительная информация

Устранение аналитического пробела

Устранение аналитического пробела Термический анализ предоставляет идеальные инструменты для определения характеристик всех видов органических и неорганических твердых веществ или жидкостей.Термодинамические переходы, термическая стабильность, разложение

Дополнительная информация

Калибровка датчиков Далласа

Калибровка датчиков Далласа Мариуш Сапински INFN Sezione di Roma1 Рим, Италия (апрель 2006 г.) 1. Цели Целью данной работы является выполнение калибровки датчиков Далласа. Девять датчиков Далласа —

Дополнительная информация

Матрица датчика теплового потока

Microsystems, Inc.Матрица датчика теплового потока Описание Матрица датчика теплового потока Posifa s измеряет поток жидкой или газообразной среды через поверхность матрицы с помощью термотрансфера (калориметрического)

Дополнительная информация

Примечание по применению Пельтье

Замечания по применению Пельтье Ученые начала XIX века Томас Зеебек и Жан Пельтье первыми обнаружили явления, которые лежат в основе современной термоэлектрической промышленности.Зеебек обнаружил, что если вы

Дополнительная информация

Лекция 35: Атмосфера в печах

Лекция 35: Атмосфера в печах Содержание: Выбор атмосферы: Газы и их поведение: Подготовленные атмосферы Применение в защитных атмосферах Требования к объему атмосферы Датчики атмосферы

Дополнительная информация

Список принадлежностей EasyTrack 2

Список принадлежностей EasyTrack 2 РЕГИСТРАТОР ДАННЫХ ET6061 Регистратор данных EasyTrack2 (6 каналов) Диапазон измерений от -150 до 500 C (от -238 F до 932 F) Точность ± 0.5 ° C (0,9 F). Термопара типа К. 6000 показаний на канал.

Дополнительная информация

Хранение тепла и холода с PCM

Харальд Мехлинг Луиза Ф. Кабеза Хранение тепла и холода с PCM Актуальное введение в основы и приложения с 208 рисунками и 28 таблицами 4y Springer Содержание 1 Базовая термодинамика теплоносителя

Дополнительная информация

Системы испытаний на удар

Более разумное решение… Системы испытаний на удар Более интеллектуальное решение … Tronjestraße 8, 44219 Dortmund Тел .: +49 231

0 0 Факс: +49 231 179855 www.coesfeld.com [email protected] Введение

Дополнительная информация

Роботизированная сварочная горелка

Т е Ч Н О Л О Г и ф О Р Т Х е В е Л д е Р с В О Р Л д. Роботизированная сварочная горелка W W Роботизированная сварочная горелка … Универсальная система горелок MIG / MAG для роботизированной сварки: новый интерфейс и кабельная сборка

Дополнительная информация

Презентация компании и продукта

Презентация компании и продукта Презентация компании NBG Systems и FCT — частные компании, принадлежащие NBG Holding. Обе компании являются австрийскими компаниями, работающими в соответствии с высочайшими требованиями Европейского Союза и

.

Дополнительная информация

КАРБИД С ПОКРЫТИЕМ.Банка. Al 2 O 3

КАРБИД С ПОКРЫТИЕМ ОБЩАЯ ИНФОРМАЦИЯ CVD = Марки с покрытием химическим осаждением из паровой фазы GC2015, GC2025, GC2135, GC235, GC3005, GC3015, GC3020, GC3025, GC3115, GC4015, GC4025, GC4035, S05F и CD1810. ПВД =

Дополнительная информация

Естественная конвекция. Сила плавучести

Естественная конвекция При естественной конвекции движение жидкости происходит за счет естественных средств, таких как плавучесть.Поскольку скорость жидкости, связанная с естественной конвекцией, относительно низкая, коэффициент теплопередачи

Дополнительная информация

4 Термомеханический анализ (ТМА)

172 4 Термомеханический анализ 4 Термомеханический анализ (ТМА) 4.1 Принципы ТМА 4.1.1 Введение Дилатометр используется для определения линейного теплового расширения твердого тела как функции температуры.

Дополнительная информация

Основы управления массовым расходом

Основы управления массовым расходом Критическая терминология и принципы работы для газовых и жидких MFC Контроллер массового расхода (MFC) — это устройство с обратной связью, которое устанавливает, измеряет и контролирует расход

Дополнительная информация

Проблемы сажи и накипи

ДокторAlbrecht Kaupp Page 1 Проблемы сажи и накипи Проблема Сажа и накипь не только увеличивают потребление энергии, но также являются основной причиной выхода труб из строя. Цели обучения Понимание значения

Дополнительная информация

Плитка, поглощающая микроволны:

На основе результатов, полученных в ходе первых работ по проекту, были определены условия измельчения в более крупном масштабе. Что касается спекания, проведена корректировка роликовых печей

.

Дополнительная информация

Элементный анализатор multi EA 5000

Элементный анализатор multi EA 5000 Analytik Jena AG Konrad-Zuse-Str.1 07745 Йена / Германия www.analytik-jena.com [email protected] 1/6 multi EA 5000 multi EA 5000 — это мощный элементный анализатор

Дополнительная информация

Противопожарное стекло и остекление START

Противопожарное стекло и остекление START www.pilkington.com/fire Противопожарное стекло и остекление Pilkington Fire Protection Glass Северная Америка 946 Kane Street, Suite A Toledo, OH 43612 Номер поставщика: J200 Course

Дополнительная информация

Выдержка из меди с прямой связкой

xcerpt irect Bonded Copper Представлено ouglas C.Хопкинс, доктор философии. 312 Университет Боннер Холл в Буффало Буффало, Y 14620-1900 607-729-9949, факс: 607-729-7129 Авторы благодарят Curamik lectronics Член

Дополнительная информация

Мастер Панель 1000 R5 Крыша

Master Panel 1000 R5 Roof Описание продукта Важной особенностью элементов крыши является простота установки. Элементы фиксируются точно и сдвигаются без особого усилия. Кровельное покрытие

Дополнительная информация

Приточно-вытяжные установки РПВ — РП — РА

ПРИМЕНЕНИЕ Отопление, вентиляция, охлаждение >> ЗАВОДЫ >> СКЛАДЫ >> ЗАЛЫ >> ДИСТРИБЬЮТНЫЕ ЦЕНТРЫ >> КОММЕРЧЕСКИЕ ПОМЕЩЕНИЯ >> МЕСТА ПОКЛОНЕНИЯ Приточно-вытяжные установки RPV — RP — RA www.reznor.eu ДПЛА — RP

Дополнительная информация

Количественный анализатор газов QGA

QGA Количественный газоанализатор Компактная настольная система для анализа газов и паров в реальном времени Подробная информация о продукте / введение Исследования катализа Анализ газов окружающей среды ферментация отходящих газов

Дополнительная информация

1. ВВЕДЕНИЕ РЕЗЮМЕ

Многоволновая гибридная лазерная обработка элементов микрометрической шкалы для применения в гибкой электронике J.Hillman, Y. Sukhman, D. Miller, M. Oropeza and C. Risser Universal Laser Systems, 7845 E. Paradise

Дополнительная информация

Многофункциональный счетчик HVAC и IAQ

testo 435 Многофункциональный измеритель HVAC и IAQ НОВИНКА! Новейшие технологии для измерения температуры, влажности, воздушного потока и многого другого! куб.футов в минуту P CO 2% RH F Люкс Все подходящие параметры для систем отопления, вентиляции и кондиционирования воздуха и воздуха в помещении testo 435 is perfect

Дополнительная информация

Измеритель удельного сопротивления ACL 395

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ измерителя сопротивления ACL 395 Гарантия на детали и работу составляет один год с даты покупки.Калибровка рекомендуется каждые 12 месяцев. 840 Вт. 49-е место Страница 1 из 13 [email protected]

Дополнительная информация

СИСТЕМЫ ИЗМЕРЕНИЯ ПЛОТНОСТИ

SHIBAYAMA SCIENTIFIC CO., LTD. СИСТЕМЫ ИЗМЕРЕНИЯ ПЛОТНОСТИ Метод трубки градиента плотности Прямое считывание Тип A / Тип B Соответствует следующим стандартам: JIS K-0061-1992, K-7112 1980 ASTM D1505 Type A / Left

Дополнительная информация

Теплопроводность | Справочник элементов в KnowledgeDoor

16

Element

Теплопроводность

Щелкните, чтобы увидеть ссылки

Примечания

цельный, 300 К

11.5 Вт / (м · К)

производное значение

жидкость

8500 K

3,65 Вт / (м K)

экстраполированное или оценочное

8273 K

9.15 Вт / (м · К)

экстраполированное или оценочное

7273 K

32,9 Вт / (м · К)

экстраполированное или оценочное

6273 K

55,5 Вт / (м · К)

экстраполированное или оценочное

5273 К

76.4 Вт / (м · К)

экстраполированное или оценочное

4273 K

95,2 Вт / (м · К)

8

экстраполированный или оценочный

3800 K

103 Вт / (м K)

экстраполированное или оценочное

3400 K

109 Вт / (м · K)

экстраполированное или оценочное

3000 K

113 Вт / (м · К)

экстраполированное или оценочное

2600 K

115 Вт / (м K)

экстраполированное или оценочное

2200 K

115 Вт / (м · К)

экстраполированное или оценочное

2000 K

114 Вт / (м K)

экстраполированное или оценочное

1800 K

112 Вт / (м K)

экстраполированное или оценочное 16005

109 Вт / (м · К)

экстраполированное или оценочное

1400 K

105 Вт / (м K)

экстраполированное или оценочное

1200 K

99.4 Вт / (м · К)

1000 K

93,0 Вт / (м · К)

933,52 K

90,7 Вт / (м K)

экстраполированный или оценочный

твердый

933.52 К

208 Вт / (м · К)

900 K

210 Вт / (м K)

800 K

218 Вт / (м K)

700 K

225 Вт / (м · К)

600 K

231 Вт / (м · К)

500 K

236 Вт / (м K)

400 K

240 Вт / (м K)

350 K

240 Вт / (м K)

300 K

237 Вт / (м · К)

298.2 K

237 Вт / (м · K)

273,2 K

236 Вт / (м · K)

250 К

235 Вт / (м К)

200 К

237 Вт м К)

150 К

248 Вт / (м К)

100 K

302 Вт / (м К)

80 K

432 Вт / (м K)

60 K

64

64

850 Вт / (м · К)

45 К

17.7 × 102 Вт / (м · К)

35 K

33,8 × 102 Вт / (м · К)

25 К

75,2 × 102 Вт / (м · К)

18 K

138 × 102 Вт / (м · К)

15 K

176 × 102 Вт / (м K)

13 K

201 × 102 Вт / (м K)

11 K

226 × 102 Вт / (м K)

9 K

239 × 102 Вт / (м · К)

7 K

229 × 102 Вт / (м · К)

5 K

188 × 102 Вт / (м К)

3 K

121 × 102 Вт / (м К)

1 К

41.1 × 102 Вт / (м · К)

сплошной, 300 К

10 Вт / (м К)

оценка

жидкость

1100 K

28.0 Вт / (м · К)

экстраполированный

1073,2 K

27,7 Вт / (м · К)

экстраполированный

1000 K

27,0 Вт / (м K)

973.2 K

26,7 Вт / (м K)

903,89 K

25,9 Вт / (м · К)

сплошной

903,89 К, поликристаллический

16.7 Вт / (м · К)

900 K, поликристаллический

16,7 Вт / (м K)

873,2 K, поликристаллический

16,7 Вт / (м · К)

850 К, поликристаллический

16.7 Вт / (м · К)

800 К, поликристаллический

16,8 Вт / (м К)

773,2

773,2 911 Кристалл

17,0 Вт / (м · К)

700 К, поликристаллический

17.4 Вт / (м · К)

673,2 K, поликристаллический

17,6 Вт / (м K)

60034

600 K поликристаллический

18,3 Вт / (м · К)

573.2 К, поликристаллический

18,6 Вт / (м · К)

500 K, поликристаллический

19,5 Вт / (м · K)

473,2 K, поликристаллический 900

19,9 Вт / (м · К)

400 К, поликристаллический

21.3 Вт / (м · К)

373,2 K, поликристаллический

21,9 Вт / (м K)

35024 K, поликристаллический 900

22,6 Вт / (м · К)

323.2 К, поликристаллический

23,5 Вт / (м · К)

300 K, поликристаллический

24,3 Вт / (м · K)

298,2 K, поликристаллический

900

24,4 Вт / (м · К)

273.2 K, поликристаллический

25,5 Вт / (м · K)

250 K, поликристаллический

26,7 Вт / (м K)

223,2

поликристаллический

28,3 Вт / (м · К)

200 К, поликристаллический

30.2 Вт / (м · К)

173,2 К, поликристаллический

32,6 Вт / (м К)

1506 поликристаллический 900

35,6 Вт / (м · К)

123.3 K, поликристаллический

40,5 Вт / (м · K)

100 K, поликристаллический

46,4 Вт / (м K)

90 K11, поликристаллический18

50,0 Вт / (м · К)

80 К, поликристаллический

55.0 Вт / (м · К)

70 K, поликристаллический

62,0 Вт / (м K)

60 K, поликристаллический 18

72,5 Вт / (м · К)

50 K, поликристаллический

88.3 Вт / (м · К)

45 K, поликристаллический

99,4 Вт / (м · K)

40 K, поликристаллический

113 Вт / (м K)

35 K, поликристаллический

130 Вт / (м · К)

30 K, поликристаллический

154 Вт / (м · K)

25 K, поликристаллический

187 Вт / (м · K)

20 K, поликристаллический

238 Вт / (м · К)

18 К, поликристаллический

267 Вт / (м · К)

16 К, поликристаллический

304 Вт / (м · К)

15 K, поликристаллический

325 Вт / (м K)

14 K, поликристаллический

351 Вт / (м · К)

13 K, поликристаллический

379 Вт / (м · K)

12 K, поликристаллический

407 Вт / (м · K)

11 К, поликристаллический

450 Вт / (м · К)

10 К, поликристаллический

480 Вт / (м · К)

9 K, поликристаллический

489 Вт / (м · K)

8 K, поликристаллический

463 Вт / (м K)

7 K, поликристаллический

406 Вт / (м · К)

6 K, поликристаллический

334 Вт / (м · K)

5 K, поликристаллический

258 Вт / (м · K)

4 K, поликристаллический

186 Вт / (м · К)

3 К, поликристаллический

127 Вт / (м · К)

2 K, поликристаллический

87 Вт / (м · K)

газ

2500 K, 1 атм

0.0815 Вт / (м · К)

экстраполированное или оценочное

2300 К, 1 атм

0,0766 Вт / (м · К)

экстраполированный или оценочный

2100 K, 1 атм

0,0717 Вт / (м K)

экстраполированный или оценочный

65

1900 К, 1 атм

0.0667 Вт / (м · К)

экстраполированный или оценочный

1700 K, 1 атм

0,0615 Вт / (м K)

экстраполированный или оценочный

65

1500 К, 1 атм

0,0561 Вт / (м · К)

экстраполированное или оценочное

1300 K, 1 атм

0.0508 Вт / (м · К)

1100 К, 1 атм

0,0454 Вт / (м · К)

900 K, 1 атм

0,0398 Вт / (м K)

700 K, 1 атм

0.0336 Вт / (м · К)

500 К, 1 атм

0,02638 Вт / (м · К)

400 К, 1 атм

0,02233 Вт / (м · К)

300 К, 1 атм

0.01772 Вт / (м · К)

290 К, 1 атм

0,01722 Вт / (м · К)

280 К, 1 атм

0,01671 Вт / (м · К)

270 К, 1 атм

0.01619 Вт / (м · К)

200 K, 1 атм

0,01244 Вт / (м · К)

100 K, 1 атм

0,00652 Вт / (м · K)

88 K, 1 атм

0.00574 Вт / (м · К)

экстраполированное или оценочное

насыщенный пар

151 K

0,025 Вт / (м · К)

экстраполированное или оценочное, псевдокритическое значение

65

150 К

0.019 Вт / (м · К)

экстраполированное или оценочное

140 K

0,0120 Вт / (м · K)

экстраполированный или оценочный

130 K

/ (м K)

экстраполированное или оценочное

120 K

0.0088 Вт / (м · К)

экстраполированное или оценочное

110 K

0,0077 Вт / (м · К)

экстраполированное или оценочное

100 K

0,0068 Вт / (м · К)

экстраполированное или оценочное

90 K

0.0059 Вт / (м · К)

экстраполированное или оценочное

85 K

0,0055 Вт / (м · К)

9 экстраполированный или оценочный

насыщенная жидкость

151 K

0.025 Вт / (м · К)

экстраполированное или оценочное, псевдокритическое значение

150 K

0,0404 Вт / (м · К)

140 К

0,0592 Вт / (м · К)

130 К

0.0718 Вт / (м · К)

120 K

0,0842 Вт / (м · К)

110 K

0,0963 Вт / (м K)

100 K
Вт / (м · К)

90 К

0,1201 Вт / (м · К)

цельный

80 K

0,30 Вт / (м K)

70 K
0.

Want to say something? Post a comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *