Где применяются: Где применяется литий? | Карьера и бизнес | Деньги

Содержание

Где применяется литий? | Карьера и бизнес | Деньги

Горнорудная компания «Росатома» Uranium One намерена к 2030 году занять порядка 10% мирового рынка лития. К концу следующего года предприятие планирует заключить ряд контрактов и в 2023 году выйти на рынок со своей продукцией, начав производство лития из рудного сырья, а к 2025 году — из гидроминерального сырья.

Что представляет собой литий?

Литий (Li, лат. lithium) — серебристо-белый, мягкий и пластичный металл, который в чистом виде не встречается, но является основным компонентом гранита, содержится в морской воде, солевых отложениях, глинах. Сегодня литий является незаменимым сырьевым ресурсом для электротранспорта и систем хранения энергии. Из всех щелочных металлов он характеризуется самыми высокими температурами плавления и кипения, также у него самая низкая плотность при комнатной температуре среди всех металлов.

Где используют литий? 

Литий — один из наиболее востребованных редких металлов в мире. Из этого сырья получают минеральные концентраты сподумена (минерал, силикат лития и алюминия из группы пироксенов), который применяют в производстве различных видов стекла и керамики. Литиевые добавки делают стеклянную массу более вязкой и придают стеклу большую прочность и сопротивляемость атмосферной коррозии. Такие стекла частично пропускают ультрафиолетовые лучи, и их применяют в телевизионной технике.

При производстве керамики применяется карбонат лития. Он улучшает качество, повышает химическую и термостойкость, поэтому глазури и эмали с литием более устойчивы к атмосферным воздействиям. 

В черной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Добавление этого щелочного металла улучшает пластичность, повышает прочность, устойчивость к коррозии. 

Литий также широко применяют в ядерной энергетике и в современной ядерной технике. Его используют для получения трития (радиоактивный изотоп водорода) в термоядерных реакциях, как экранирующее средство для обнаружения тепловых нейтронов, как теплоноситель в ядерных реакторах и как замедлитель или в качестве растворителя для ядерного горючего.

Используют литий и при производстве электромобилей, он является главным компонентом литий-ионных аккумуляторов. Также его применяют в авиации и военной технике, где необходимы литиевые консистентные смазки. Кроме этого, литий используют в щелочных аккумуляторах. Добавки LiOH к электролиту повышают емкость аккумуляторных батарей и срок их службы в 2-3 раза.

Соединения лития, также известные как соли лития, используют в медицине для изготовления препаратов для лечения биполярных расстройств, маний и депрессий. Психотропные препараты на их основе увеличивают синтез серотонина и приводят к усилению нейропротекторных механизмов. 

Литий также используется в системах кондиционирования. Водный раствор бромида лития (50-60%) используется в качестве осушителя. Литий также активно используют для производства литий-полимерных батарей, которые есть в планшетах, тонких ноутбуках, смартфонах. Например, в батарейке iPhone 7 содержится 1 грамм этого металла.

Где больше всего месторождений лития? 

Крупнейшие месторождения лития расположены в Чили, Боливии, США, Аргентине, Конго, Китае, Бразилии, Сербии и Австралии. Наиболее развита добыча этого металла в Австралии, Чили и Аргентине.

Где в России добывают литий и производят литиевую продукцию?

Собственная добыча лития в России была полностью утрачена после распада СССР. Первый литиевый рудник был введен в эксплуатацию еще в 1941 году в Восточном Забайкалье, на Завитинском месторождении сподумена. Предприятие проработало 56 лет и было законсервировано в 1997 году в связи с изменением экономической ситуации. С конца 1990-х годов из-за закрытия единственного рудника в Восточном Забайкалье литиевую продукцию импортировали в основном из Чили, Боливии, Аргентины, США и Китая. 

В 2017 году в России была запущена экспериментальная установка, позволяющая добывать литий из бедных руд с небольшими затратами. Внедряемая технология поможет обеспечить потребность страны в литии полностью за счет собственных запасов и избавиться от импортного сырья. 

Запасы лития в России, по оценке экспертов Аналитического кредитного рейтингового агентства (АКРА), составляют около 900 тыс. тонн. Более 50% запасов сосредоточено в редкометалльных месторождениях Мурманской области. Производство литиевой продукции ведется на Сибирском химическом комбинате (Северск), а также на Химико-металлургическом заводе (Красноярск), Новосибирском заводе химических концентратов, также им занимается «ТД Халмек» (Москва).

Язык в цифре. Где применяются технологии системного программирования? | Наука | Общество

В главном здании Российской академии наук прошла открытая конференция Института системного программирования им. В. П. Иванникова РАН. Она проводится ежегодно, но в этот раз оказалась приурочена к юбилею института. Ему исполнилось 25 лет.

«И вот теперь наши алгоритмы в самом тренде»

Институт системного программирования (ИСП РАН) был основан Виктором Иванниковым — выдающимся учёным в области вычислительной техники, одним из первых разработчиков операционных систем в нашей стране. За четверть века ИСП РАН стал ведущим научным и образовательным центром в области системного программирования и информационной безопасности. А школа Иванникова получила высокий авторитет как в России, так и за рубежом. Сейчас институт возглавляет один из его учеников — академик Арутюн Аветисян.

«В Советском Союзе существовала мощнейшая научная школа программирования, работали способные алгоритмисты и кодировщики, создавалось системное ПО мирового уровня для электронно-вычислительных машин отечественного производства, — говорит он. — И в наши дни на ИСП РАН лежит забота о национальной базе программирования. Хоть государство и приняло ряд решений, ограничивающих применение иностранного системного ПО, часть софта, используемого организациями, сохраняет западное происхождение. Мы, если сказать коротко, занимаемся анализом программ и данных. Эту область с недавних пор называют «большие данные», Big Data. А мы с большими данными работали всегда. Например, получали их из ЦЕРНа. И вот теперь наши алгоритмы и методы работы с ними оказались в самом тренде».

Специалисты ИСП РАН создают технологии мирового уровня, конкурирующие с разработками иностранных компаний. К слову, и среди партнёров института полно зарубежных гигантов IT-индустрии — Samsung, Huawei, Intel, Dell, Bentley Systems и др. Со многими из них созданы совместные лаборатории. Например, в рамках нынешней конференции ИСП РАН и Huawei открыли совместную лабораторию по развитию средств разработки программного обеспечения. Её работа в итоге позволит создавать современные и продвинутые гаждеты массового пользования — умные часы, телевизоры, смартфоны и пр.



Фото пресс-службы ИСП РАН

И авиаторам, и лингвистам

В честь 25-летия института на конференцию прибыло много гостей. «По академическим меркам, 25 лет — это мало. Но сделано за это время очень много, — рассуждал вице-президент РАН, академик Валерий Козлов. — У института не только хорошее прошлое и настоящее, но и прекрасное будущее. Достаточно взглянуть в зал — посмотрите, сколько в нём молодёжи. Институт системного программирования — один из самых молодых по составу».

Действительно, около 80% сотрудников ИСП РАН — молодёжь. Директор Арутюн Аветисян подчёркивает, что, сумев удержать этих ребят, институт решил важную проблему, которая стоит перед нашей наукой: сохранить преемственность поколений, школ. Пока это делать удаётся.

Руководитель департамента перспективных технологий «Лаборатории Касперского» Андрей Духвалов заметил, что «системное программирование и кибербезопасность — это сейчас одно и то же», и пообещал, что в ближайшее время их компания станет партнёром ИСП РАН. А ректор Московского авиационного института, академик Михаил Погосян поблагодарил за совместные работы по математическому моделированию. Ведь без него в современной авиации никуда. «Математическое моделирование — наиважнейшая область, — подчеркнул Погосян. — Без него испытания систем затягиваются на десятилетия, и продукт начинает устаревать ещё до того, как он вышел на рынок. За последние 10-15 лет в матмоделировании произошла революция — появились возможности, которые позволяют нам проводить исследования на новом уровне и в разы сократить объёмы физических испытаний».

Матмоделирование, кибербезопасность, цифровая медицина — это очевидные применения технологий системного программирования. Но, оказывается, они необходимы и в лингвистике. Ведущий сотрудник Института языкознания РАН Юлия Норманская посвятила свою презентацию исчезающим языкам и лингвистической цифровой платформе Lingvodoc, разработанной для их документации, составления многослойных словарей и научной работы с полученными звуковыми и текстовыми данными.

«В России 136 языков находятся на грани исчезновения — они уже не передаются детям. Их только учат в школах, но и в школах не остаётся квалифицированных педагогов. Это, например, удмуртский язык, коми-пермяцкий, хантыйский, мансийский…

Благодаря платформе, разработанной ИСП РАН, мы можем эти языки сохранить, хотя бы оцифровав их. На данный момент коллеги из 31 филологического института уже прошли обучение по работе на этой платформе. Однако и зарубежные исследователи проявляют к ней большой интерес. Потому что равной ей в Европе просто нет, а там огромное значение придают сохранению исчезающих языков».



Фото пресс-службы ИСП РАН

Как настроение, Facebook?

С другими полезными разработками ИСП РАН можно было ознакомиться на выставке технологий. Вот лишь несколько примеров.

Технологию Svace используют для поиска дефектов в исходном коде программ. Это необходимый инструмент при разработке безопасного ПО. Он составляет конкуренцию лучшим мировым аналогам. Достаточно упомянуть, что Samsung применяет его у себя как основной статический анализатор.

Платформа SciNoon предназначена для учёных, которые ведут совместную научную работу. Она позволяет группе исследователей быстро погружаться в новую предметную область, находить научные статьи и ответы на различные вопросы, а затем отслеживать новые публикации по изучаемой тематике.

Программный комплекс DigiTEF позволяет решать прикладные задачи газовой динамики, аэродинамики, гидродинамики и акустики. С его помощью можно создавать сложные цифровые модели промышленных устройств.

Система Protosphere производит глубокий анализ сетевого трафика, может встраиваться как компонент в системы мониторинга, защиты от вторжений и утечек информации. А платформа Talisman позволяет узнавать настроение соцсетей, анализировать мнение пользователей и отдельных групп, создавать полный отчёт об их действиях. С этой целью программа быстро и точно обрабатывает большой объём данных, используя методы машинного обучения и компьютерной лингвистики.

Смотрите также:

виды и типы, достоинства и недостатки, область применения, назначение, общие сведения, из чего состоят, где применяются, характеристики, определение, принцип действия

08.07.2020


Огромное количество устройств с механическими деталями использует принцип переноса силового усилия, вращательного момента, направления давления посредством особого способа. И именно его мы сегодня и затронем в обзоре. Мы разберем типы и виды, применение и назначение, преимущества зубчатых передач. А также рассмотрим смежные моменты.

Общее описание


Для того чтобы передать усилия, ранее использовался повсеместно лишь один метод — ременный, который имел важное промежуточное звено — ремень. В нашем же случае способ меняется. Ненужный переходник исключается, вместо него появляется сцепление между элементами.


Таким образом, увеличивается не только уровень надежности и минимизируется размер всей системы, но также достигается и еще одно важное преимущество. Снижается расход энергии, необходимый для активации всей конструкции.


Существует масса ключевых факторов, которые определяют эффективность, сферу применения механизма. Разумеется, важным аспектом становятся габариты, материал производства и точность.


Если говорить про общие сведения о зубчатых передачах, нужно знать, что в хорошем продукте между зубьями всегда присутствует зазор. Они не располагаются вплотную. Иначе скольжение будет невозможным по определению. А также будет крайне неудобно смазывать подвижные части. Эксплуатационный срок, равно как и эффективность применения будет значительно снижена. Не нужно забывать, что многие типы производства подразумевают образование высоких температур на производственных площадках. А сами механические детали во время работы ввиду банальной силы трения разогреваются. Значит, металл будет расширяться, незначительно увеличиваться в размерах. И без зазора зубья просто встанут, упираясь друг в друга и заблокировав дальнейший ход.


Поэтому выбор конечного продукта всегда стоит останавливать на том, что точно не подведет. Именно поэтому мы в компании «Сармат» всегда внимательно относимся к деталям. И любая часть наших станков и иной продукции отвечает не только всем требованиям нормативной документации, но и желаниям наших клиентов.

Элементы конструкции зубчатой передачи


Данное устройство по своей сути является довольно простым. В нем используется минимальное количество составных частей. Соответственно, это значительный плюс в пользу эксплуатационного срока. Как бы далеко ни шагнула наука и прогресс — чем проще механизм, тем реже он ломается. Это факт, с которым невозможно спорить.


Хотя, говоря о герое нашего обзора, в первую очередь в воображении предстает колесо, но это лишь вершина айсберга. Посмотрим более подробно:

  • • Практически во всех моделях присутствует корпус. Он необходим для надежной фиксации всех частей в условиях одной системы. А также не позволяет смазочным материалам утекать, тратиться впустую. Габариты и форма конуса допускается различная. Конкретика опирается на задачу, которую и должен выполнять инструмент.
  • • Колеса. Разбирая разновидности, какие передачи называют зубчатыми в принципе, в голову сразу приходят шестерни. Их по стандарту две штуки. Если не подразумевается посредников, всегда есть ведущее и ведомое. Первое получает импульс силы, поворачивается по своей оси, заставляет двигаться второе. Крутящий момент зависит от качества сцепления между ними.
  • • Вал. Главный двигатель, который и содержит в себе импульс. Получает он его уже непосредственно источника. В большинстве случаев таковым выступает привод на электрике. Крепится данная часть уже на само колесо. А значит, его форма также подбирается исходя из всей системы в целом. Допускается ступенчатые варианты при необходимости.
  • • Подшипники. Характеристики и определение зубчатых передач подразумевает подвижность колес. Но для обеспечения подобного необходимо крепить вал не напрямую, а с помощью промежуточных переходников. Ими и становятся подшипники. Поскольку в этом месте происходит толчок подвижности, его тоже нужно регулярно обрабатывать смазочными материалами.


Стоит также осознавать, что основа для любой шестерни – это зубья. Они и подарили название всей системе. Величина, количество, периодика расположения отличает виды друг от друга. Наклон тоже может существенно меняться в различных моделях.


Важно уточнить, что эти шестерни устанавливаются на вал через прессование. В результате общая конструкция обладает изрядной прочностью, а холостой поворот колеса исключается по определению. А это означает, что будет меньше потерь энергии. В большей части случаев снижается расход электрического тока, служащего источников для движения вала.

Как классифицируются зубчатые передачи


Сложно выделить единую градацию, на которую бы опирался каждый производитель. Существует значительное количество разнообразных факторов, становящихся фундаментальными в зависимости от задач на производстве. Поэтому и используется несколько вариаций группировки.


Посмотрим, по каким аспектам разделяют эти инструменты на подвиды:

  • • Основываясь на расположении осей по сравнению друг с другом. Так появляются параллельные типы, а также пересекающиеся. Отдельной строкой идут перекрещивающиеся. Разумеется, первый вариант – самый простой. И чаще всего выбирается именно он. Но существуют нетипичные задачи, где приходится использовать иные способы. Под осями подразумеваются механизмы, которые крепят колеса.
  • • Также некоторые классы опираются на расположение зубьев. Так у нас появляются внутренние и наружные варианты. Эффективность их напрямую опирается на всю систему. Панацеи нет. Им сказать, кто лучше не получится. Используются чаще наружные, но нельзя утверждать, что они результативнее.
  • • Корпус тоже имеет значение. Мы уже уточнили, зачем он нужен. Но пока не рассказали, что существуют модели с открытым типом оболочки. И что примечательно, такой вариант работает в принципе без внешней смазки. Сухой ход, как это принято называть. А закрытая модель – ближе к стандарту.
  • • Следует внимательно относиться и к размеру. Корректнее – к протяженности окружности. Чем она длиннее, тем больший путь проходит точка при одиночном повороте колеса. Соответственно, выделяют тихоходные и скоростные. Но стоит понимать, что динамика все же зависит от вала. Какой импульс он передаст. А форма лишь подскажет, сможет ли колесо справиться с ним и применить его по назначению.

Основные достоинства и недостатки зубчатых передач


Ключевые преимущества видны невооруженным взглядом. Это:

  • • Длительный срок эксплуатации. Мы уже пояснили, что простой инструмент редко ломается. А в обозначенном случае мы имеем дело с крепким металлом, отсутствием ломких деталей, закаленной частью, соприкасающейся с партнером (зубьями). Поэтому такой механизм по праву можно считать долгожителем.
  • • Простая регулировка скорости. Масса вариантов настройки, установки.
  • • Высочайший уровень КПД при небольших затратах.
  • • Компактность. Что особенно важно. Ведь минимальный размер всего механизма позволяет сэкономить место в устройстве. Как пример, зубчатая передача позволяет сделать более компактный насос, сохраняя высокую мощность.


Но и минусы тоже существуют:

  • • Динамически во время работы невозможно сменить темп.
  • • Дороговизна, а также сложность. Выполнить кустарными методами, как муфту или что-то схожее, не выйдет. Необходимо обращаться к профессиональным производителям. И одним из лучших вариантов будет «Сармат». Где при эталонном качестве продукта не задираются расценки выше среднерыночных. Что редкость для современной экономической ситуации.
  • • Шумовой эффект. Избавиться от аспекта не получится, и чем выше скорость, тем сильнее будет сопровождающий работу звук. Вращательное движение не может быть беззвучным, зацепление зубьев делает свое дело. Такой способ является очень надежным, но и весьма шумным.

Типы


А теперь пройдемся по конкретным представителям своего жанра. Сначала остановимся на наиболее общих группах. А после уже перейдем к узким нишам.

Конические


Название говорят за себя. Основа колеса имеет форму конуса. Оси в таком варианте всегда перекрещиваются. Есть и иные отличительные стороны. Как непрямые зубья. Хотя, в принципе существует и аналог с прямыми, просто это менее распространенный выбор.


Примечательно, что в результате форму позволяет увеличить площадь соприкосновения между элементами. А угол достигает 90 градусов. Поэтому фиксация, по заверению экспертов, становится более надежной. Также интересно то, что зубья утолщаются от основания к вершине. А значит, после зацепа они весьма надежно держатся за партнеров. И соскальзывание почти полностью исключается.


Понятие, принцип действия зубчатой передачи конической формы строится на надежности. Но нельзя сказать, что это экономичный вариант. Ведь он неотвратимо теряет в среднем 15% импульса, который передает ему вал. Прямой угол просто не позволяет сохранить всю прилагаемую силу.

С переменным передаточным отношением


Это относительно новое веяние в сфере. Смысл строится на том, что в стандартном механизме положение полюса зацепления всегда остается неизменным, статичным. А в этом прогрессивном виде оно «гуляет», изменяется под среду и нужды. Нельзя сказать, что это очень популярная разновидность, но в определенных случаях он показывает весьма завидные результаты.

Планетарные


Их еще можно назвать подвижными. В этом варианте ось колеса может перемещаться. Чтобы было яснее, в механизме шестерни не крутятся на месте, а более мелкое «бегает» по крупному. Движением становится намного разнообразнее, приходится пройти весь круг. И ось должна двигаться по траектории, меняя свое положение постоянно.


Разновидности колес


А теперь разберем основные виды, параметры зубчатых передач в зависимости от колес. Это самая популярная градация, на которой основываются чаще всего.


Цилиндрические


Наиболее распространенный способ. Используется два колеса с различным количественным фактором зубьев. Характеризуются постоянным передаточным отношением, никаких «плавающих» переменных. Оси по традиции параллельные. Существуют две вариации реализации такого механизма, с повышающим и понижающим фактором. В первом случае отношение количества зубьев больше единицы, во втором, соответственно, меньше.

Коническая


Об этой вариации мы уже немного поговорили. Смысл заключается в наличии угла между элементами. Разумеется, такой подход снижает КПД. Но для пущей надежности, особенно если подразумеваются высокие скорости вращения – это идеальное решение.

Червячная


Особый тип. В этом случае используется скрещивание осей. И принцип работы зубчатой передачи строится на заходах, каждый из которых немного тормозит движение. Меньшее колесо описывает от одного до четырех кругов по крупному собрату. Ход в обратную сторону, кстати, в такой конструкции не допускается. Сила трения слишком велика, она просто не позволит пойти назад. Зачастую к общему набору составных частей добавляются еще и редукторы.

Механизмы


Помимо описанных вариаций, есть еще парочка, которые являются более редкими, но все столь же результативными. В первую очередь, реечная. Используется не для передачи крутящего момента. Напротив, здесь вращательное движение проходит преобразование с помощью рейки. И на выходе мы видим поступательное. Возможен и обратный процесс.


А также существуют винтовые. Они весьма точны и надежны, поэтому реализуются в различных компактных приборах. Но есть и негативная сторона. Проседает эксплуатационный срок, соприкосновение почти без зазоров, а значит, поверхность просто стирается при работе.

Форма и характеристика зуба


Мы уже пояснили, из чего состоит зубчатая передача. И главным фактором колеса являются зацепы. Поэтому конструкция так и называется. Но им пока уделили недостаточно внимания. А ведь у них есть свои отличительные стороны и видовое разнообразие.



Это:

  • • Прямые. Используется повсеместно, нет отклонений по оси.
  • • Косые. Значительно повышает уровень сцепления. Но начинает страдать КПД. Да и срок службы снижается.
  • • Шевронные. Смысл кроется в снижении нагрузок на подшипник. Оси не давят на элемент, что выгодно при длительной работе.
  • • Внутренние. Прекрасно функционируют на изгиб. А также практически единственный тип, который не создает сильный шумовой эффект при эксплуатации.

Материалы


Чаще всего используется сталь. Но более мягкая и дешевая в вале и подшипниках. И максимально жесткая в колесах. Ведь они постоянно контактируют, трутся, давят. Поэтому применяется не только легированная сталь или углеродная, но и специальные методы обработки. Азотирование как вариант, а также цементирование. Закалка поверхностного уровня.


Любопытно, что в середине зацепы куда мягче, чем на поверхности. Ведь если сделать их твердыми по всему объему, они начнут ломаться при постоянных нагрузках, станут хрупкими. А если учитывать сферы, где применяются зубчатые передачи, особенности использования – такого допускать нельзя.

Геометрические параметры колес


Есть определенные нюансы конструкционного плана. Боковые стороны всегда соприкасаются. Это главная точка поверхности, передающая импульс. А угол всегда подбирается с учетом смещения, чтобы при некорректной работе не заблокировались шестерни.


Поэтому важно учитывать: диаметр, длину окружности, размер зацепов, периодику, частоту. Все эти параметры указываются в сопутствующей документации. И должны точно соответствовать требованиям нормативов.

Методы обработки


Для пущей надежности каждая деталь после производства и обкатки проходит еще термическую закалку. И это обязательный процесс для продукта, который прослужит долго. В большей части случаев термообработки хватает, но есть некоторые детали, которые используются в высокоточных приборах. И тогда уже понадобится еще шлифовать каждый продукт.

Области применения


Существует масса промышленных сфер, где с успехом нашли свое отражение такие конструкции. Проще найти отрасль, где их нет. От точных приборов до гигантских буровых установок. Используются в двигателях внутреннего сгорания, а значит, почти в каждом виде транспорта на земле: станки, конвейеры на фабричном производстве и в цехах. Даже в небольших элитных наручных часах применяется все тот же принцип. Просто без электрического привода.


Изучив классификацию и область применения зубчатых передач, остается только пожелать вам подобрать грамотный продукт для своего производства. И гидом, помогающим обойти все перипетии современного рынка, станет компания «Сармат».


Конденсатор в цепи переменного и постоянного тока: что это такое, виды

Элементная база для конструирования электронных устройств усложняется. Приборы объединяются в интегральные схемы с заданным функционалом и программным управлением. Но в основе разработок — базовые приборы: конденсаторы, резисторы, диоды и транзисторы.

Что такое конденсатор?

Прибор, который накапливает электроэнергию в виде электрических зарядов, называется конденсатором.

Количество электричества или электрический заряд в физике измеряют в кулонах (Кл). Электрическую ёмкость считают в фарадах (Ф).

Уединенный проводник электроёмкостью в 1 фараду — металлический шар с радиусом, равным 13 радиусам Солнца. Поэтому конденсатор включает в себя минимум 2 проводника, которые разделяет диэлектрик. В простых конструкциях прибора — бумага.

Работа конденсатора в цепи постоянного тока осуществляется при включении и выключении питания.Только в переходные моменты меняется потенциал на обкладках.

Конденсатор в цепи переменного тока перезаряжается с частотой, равной частоте напряжения источника питания. В результате непрерывных зарядов и разрядов ток проходит через элемент. Выше частота — быстрее перезаряжается прибор.

Сопротивление цепи с конденсатором зависит от частоты тока. При нулевой частоте постоянного тока величина сопротивления стремится к бесконечности. С увеличением частоты переменного тока сопротивление уменьшается.

Где применяются конденсаторы?

Работа электронных, радиотехнических и электрических устройств невозможна без конденсаторов.

В электротехнике прибор используется для сдвига фаз при запуске асинхронных двигателей. Без сдвига фаз трехфазный асинхронный двигатель в переменной однофазной сети не функционирует.

Конденсаторы с ёмкостью в несколько фарад — ионисторы, используются в электромобилях, как источники питания двигателя.

Для понимания, зачем нужен конденсатор, нужно знать, что 10-12% измерительных устройств работают по принципу изменения электрической ёмкости при изменении параметров внешней среды. Реакция ёмкости специальных приборов используется для:

  • регистрации слабых перемещений через увеличение или уменьшение расстояния между обкладками;
  • определения влажности с помощью фиксирования изменений сопротивления диэлектрика;
  • измерения уровня жидкости, которая меняет ёмкость элемента при заполнении.

Трудно представить, как конструируют автоматику и релейную защиту без конденсаторов. Некоторые логики защит учитывают кратность перезаряда прибора.

Ёмкостные элементы используются в схемах устройств мобильной связи, радио и телевизионной техники. Конденсаторы применяют в:

  • усилителях высоких и низких частот;
  • блоках питания;
  • частотных фильтрах;
  • усилителях звука;
  • процессорах и других микросхемах.

Легко найти ответ на вопрос, для чего нужен конденсатор, если посмотреть на электрические схемы электронных устройств.

Принцип работы

В цепи постоянного тока положительные заряды собираются на одной пластине, отрицательные — на другой. За счет взаимного притяжения частицы удерживаются в приборе, а диэлектрик между ними не дает соединиться. Тоньше диэлектрик — крепче связаны заряды.

Конденсатор берет нужное для заполнения ёмкости количество электричества, и ток прекращается.

При постоянном напряжении в цепи элемент удерживает заряд до выключения питания. После чего разряжается через нагрузки в цепи.

Переменный ток через конденсатор движется иначе. Первая ¼ периода колебания — момент заряда прибора. Амплитуда зарядного тока уменьшается по экспоненте, и к концу четверти снижается до нуля. ЭДС в этот момент достигает амплитуды.

Во второй ¼ периода ЭДС падает, и элемент начинает разряжаться. Снижение ЭДС вначале небольшое и ток разряда, соответственно, тоже. Он нарастает по той же экспоненциальной зависимости. К концу периода ЭДС равна нулю, ток — амплитудному значению.

В третьей ¼ периода колебания ЭДС меняет направление, переходит через нуль и увеличивается. Знак заряда на обкладках изменяется на противоположный. Ток уменьшается по величине и сохраняет направление. В этот момент электрический ток опережает по фазе напряжение на 90°.

В катушках индуктивности происходит наоборот: напряжение опережает ток. Это свойство стоит на первом месте при выборе, какие цепи использовать в схеме: RC или RL.

В завершении цикла при последней ¼ колебания ЭДС падает до нуля, а ток достигает амплитудного значения.

«Ёмкость» разряжается и заряжается по 2 раза за период и проводит переменный ток.

Это теоретическое описание процессов. Чтобы понять, как работает элемент в цепи непосредственно в устройстве, рассчитывают индуктивное и емкостное сопротивление цепи, параметры остальных участников, и учитывают влияние внешней среды.

Характеристики и свойства

К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:

  1. Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
  2. Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
  3. Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
  4. Полярность. При неверном подключении произойдет пробой и выход из строя.
  5. Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
  6. Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
  7. Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.

Виды конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Бумажные и металлобумажные конденсаторы

Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.

В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.

Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.

В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.

Электролитические конденсаторы

Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.

В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.

В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.

Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.

Алюминиевые электролитические

В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.

Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.

Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.

Танталовые электролитические

Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.

С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.

Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.

Полимерные

В конденсаторах используются электролит из твердых полимеров, что дает ряд преимуществ:

  • увеличивается срок эксплуатации до 50 тыс. часов;
  • сохраняются параметры при нагреве;
  • расширяется диапазон допустимых пульсаций тока;
  • сопротивление обкладок и выводов не шунтирует ёмкость.

Пленочные

Диэлектрик в этих моделях — пленка из тефлона, полиэстера, фторопласта или полипропилена.

Обкладки — фольга или напыление металлов на пленку. Конструкция используется для создания многослойных сборок с увеличенной площадью поверхности.

Пленочные конденсаторы при миниатюрных размерах обладают ёмкостью в сотни мкФ. В зависимости от размещения слоев и выводов контактов делают аксиальные или радиальные формы изделий.

В некоторых моделях номинальное напряжение 2 кВ и выше.

В чем отличие полярного и неполярного?

Неполярные допускают включение конденсаторов в цепь без учета направления тока. Элементы применяются в фильтрах переменных источников питания, усилителях высокой частоты.

Полярные изделия подсоединяют в соответствии с маркировкой. При включении в обратном направлении прибор выйдет из строя или не будет нормально работать.

Полярные и неполярные конденсаторы большой и малой ёмкости отличаются конструкцией диэлектрика. В электролитических конденсаторах, если оксид наносится на 1 электрод или 1 сторону бумаги, пленки, то элемент будет полярным.

Модели неполярных электролитических конденсаторов, в конструкциях которых оксид металла нанесли симметрично на обе поверхности диэлектрика, включают в цепи с переменным током.

У полярных на корпусе присутствует маркировка положительного или отрицательного электрода.

От чего зависит ёмкость?

Главная функция и роль конденсатора в цепи заключается в накоплении зарядов, а дополнительная — не допускать утечек.

Величина ёмкости конденсатора прямо пропорциональна диэлектрической проницаемости среды и площади пластин, и обратно пропорциональна расстоянию между электродами. Возникает 2 противоречия:

  1. Чтобы увеличить ёмкость, электроды нужны как можно толще, шире и длиннее. При этом размеры прибора увеличивать нельзя.
  2. Чтобы удерживать заряды и обеспечить нужную силу притяжения, расстояние между пластинами делают минимальным. При этом ток пробоя уменьшать нельзя.

Для разрешения противоречий разработчики применяют:

  • многослойные конструкции пары диэлектрик и электрод;
  • пористые структуры анодов;
  • замену бумаги на оксиды и электролиты;
  • параллельное включение элементов;
  • заполнение свободного пространства веществами с повышенной диэлектрической проницаемостью.

Размеры конденсаторов уменьшаются, а характеристики становятся лучше с каждым новым изобретением.

что это такое, применение, сущность, правила, примеры

Вопрос о том, что такое электролиз, рассматривается еще в школьном курсе физике, и для большинства людей не является секретом. Другое дело – его важность и практическое применение. Этот процесс с большой пользой используется в различных отраслях и может пригодиться для домашнего мастера.

Что такое электролиз?

Электролиз представляет собой комплекс специфических процессов в системе электродов и электролита при протекании по ней постоянного электрического тока. Его механизм основывается на возникновении ионного тока. Электролит – это проводник 2-го типа (ионная проводимость), в котором происходит электролитическая диссоциация. Она связана с разложением на ионы с положительным (катион) и отрицательным (анион) зарядом.

Электролизная система обязательно содержит положительный (анод) и отрицательный (катод) электрод. При подаче постоянного электрического тока катионы начинают двигаться к катоду, а анионы – к аноду. Катионами в основном являются ионы металлов и водород, а анионами – кислород, хлор. На катоде катионы присоединяют к себе избыточные электроны, что обеспечивает протекание восстановительной реакции Men+ + ne → Me (где n – валентность металла). На аноде, наоборот, электрон отдается из аниона с протеканием окислительной реакции.

Таким образом, в системе обеспечивается окислительно-восстановительный процесс. Важно учитывать, что для его протекания необходима соответствующая энергия. Ее должен обеспечить внешний источник тока.

Законы электролиза Фарадея

Великий физик М.Фарадей своими исследованиями позволил не только понять природу электролиза, но и производить необходимые расчеты для его осуществления. В 1832 г. появились его законы, связавшие основные параметры происходящих процессов.

Первый закон

Первый закон Фарадея гласит, что масса восстанавливающегося на аноде вещества прямо пропорциональна электрическому заряду, наведенному в электролите: m = kq = k*I*t, где q — заряд, k – коэффициент или электрохимический эквивалент вещества, I – сила тока, протекающего через электролит, t – время прохождения тока.

Второй закон

Второй закон Фарадея позволил определить коэффициент пропорциональности k. Он звучит следующим образом: электрохимический эквивалент любого вещества прямо пропорционален его молярной массе и обратно пропорционален валентности. Закон выражается в виде:

k = 1/F*A/z, где F – постоянная Фарадея, А- молярная масса вещества, z – его химическая валентность.

С учетом обоих законов можно вывести окончательную формулу для расчета массы, оседающего на электроде вещества: m = A*I*t/(n*F), где n – количество электронов, участвующих в электролизе. Обычно n соответствует заряду иона. С практической точки зрения важна связь массы вещества с подаваемым током, что позволяет контролировать процесс, изменяя его силу.

Электролиз расплавов

Один из вариантов электролиза – использование в качестве электролита расплав. В этом случае в электролизном процессе участвуют только ионы расплава. В качестве классического примера можно привести электролиз солевого расплава NaCl (поваренная соль). К аноду устремляются отрицательные ионы, а значит, выделяется газ (Cl). На катоде будет происходить восстановление металла, т.е. оседание чистого Na, образующегося из положительных ионов, притянувших избыточные электроны. Аналогично можно получать другие металлы (К, Са, Li и т.д.) из расправа соответствующих солей.

При электролизе в расплаве электроды не подвергаются растворению, а участвуют только в качестве источника тока. При их изготовлении можно использовать металл, графит, некоторые полупроводники. Важно, чтобы материал имел достаточную проводимость. Один из наиболее распространенных материалов – медь.

Особенности электролиза в растворах

Электролиз в водном растворе существенно отличается от расплава. Здесь имеют место 3 конкурирующих процесса: окисление воды с выделением кислорода, окисление аниона и анодное растворение металла. В процессе задействованы ионы воды, электролита и анода. Соответственно, на катоде может происходить восстановление водорода, катионов электролита и металла анода.

Возможность протекания указанных конкурирующих процессов зависит от величины электрических потенциалов системы. Протекать будет только тот процесс, который требует меньше внешней энергии. Следовательно, на катоде будут восстанавливаться катионы, имеющие максимальный электродный потенциал, а на аноде – окисляться анионы с наименьшим потенциалом. Электродный потенциал водорода принят за «0». Для примера, у калия он равен (-2,93 В), натрия – (-2,71 В), свинца (-0,13 В), а у серебра – (+0,8 В).

Электролиз в газах

Газ может исполнить роль электролита только при наличии ионизатора. В этом случае ток, проходя через ионизированную среду, вызывает необходимый процесс на электродах. При этом законы Фарадея не распространяются на газовый электролиз. Для его осуществления необходимы такие условия:

  1. Без искусственной ионизации газа не поможет ни высокое напряжение, ни большой ток.
  2. Для электролиза подходят лишь кислоты, не содержащие кислорода и находящиеся в газообразном состоянии, и некоторые газы.

Важно! При выполнении необходимых условий процесс протекает аналогично электролизу в жидком электролите.

Особенности процессов, происходящих на катоде и аноде

Для практического применения электролиза важно понимать, что происходит на обоих электродах при подаче электрического тока. Характерны такие процессы:

  1. Катод. К нему устремляются положительно заряженные ионы. Здесь происходит восстановление металлов или выделение водорода. Можно выделить несколько категорий металлов по катионной активности. Такие металлы, как Li, K, Ba, St, Ca, Na, Mg, Be, Al, хорошо восстанавливаются только из расплава солей. Если используется раствор, то выделяется водород за счет электролиза воды. Можно обеспечить восстановление в растворе, но при достаточной концентрации катионов, у следующих металлов — Mn, Cr, Zn, Fe, Cd, Ni, Ti, Co, Mo, Sn, Pb. Процесс протекает наиболее легко для Ag, Cu, Bi, Pt, Au, Hg.
  2. Анод. К этому электроду поступают отрицательно заряженные ионы. Окисляясь, они отбирают электроны у металла, что приводит к их анодному растворению, т.е. переходу в положительно заряженные ионы, которые направляются к катоду. Анионы также подразделяются по своей активности. Только из расплавов могут разряжаться такие анионы PO4, CO3, SO4, NO3, NO2, ClO4, F. В водных растворах электролизу подвергаются не они, а вода с выделением кислорода. Наиболее легко реагируют такие анионы, как ОН, Cl, I, S, Br.

При обеспечении электролиза важно учитывать склонность материала электродов к окислению. В этом отношении выделяются инертные и активные аноды. Инертные электроды делаются из графита, угля или платины и не участвуют в снабжении ионами.

Факторы, влияющие на процесс электролиза

Процесс электролиза зависит от следующих факторов:

  1. Состав электролита. Значительное влияние оказывают различные примеси. Они подразделяются на 3 типа – катионы, анионы и органика. Вещества могут быть более или менее отрицательными, чем основной металл, что и мешает процессу. Среди органических примесей выделяются загрязнители (например масла) и ПАВ. Их концентрация имеет предельно допустимые значения.
  2. Плотность тока. В соответствии с законами Фарадея, масса осаждаемого вещества увеличивается с увеличением силы тока. Однако возникают неблагоприятные обстоятельства – концентрированная поляризация, повышенное напряжение, интенсивный разогрев электролита. С учетом этого существуют оптимальные значения плотности тока для каждого конкретного случая.
  3. рН электролита. Кислотность среды также выбирается с учетом металлов. Например оптимальное значение кислотности электролита для цинка – 140 г/куб.дм.
  4. Температура электролита. Она влияет неоднозначно. С увеличением температуры растет скорость электролиза, но повышается и активность примесей. Для каждого процесса есть оптимальная температура. Обычно она находится в пределах 38-45 градусов.

Важно! Электролиз можно ускорить или замедлить путем различных воздействий и выбора состава электролита. Для каждого варианта применения существует свой режим, который следует строго соблюдать.

Где применяется электролиз?

Электролиз применяется во многих сферах. Можно выделить несколько основных направлений использования для получения практических результатов.

Гальваническое покрытие

Тонкое, прочное гальваническое покрытие из металла можно наложить путем электролиза. Покрываемое изделие устанавливается в ванну в виде катода, а электролит содержит соль нужного металла. Так можно покрыть сталь цинком, хромом или оловом.

Электроочистка — рафинирование меди

Примером электроочистки может служить такой вариант: катод – чистая медь, анод – медь с примесями, электролит – водный раствор медного сульфата. Медь из анода переходит в ионы и оседает в катоде уже без примесей.

Добыча металлов

Для получения металлов из солей они переводятся в расплав, а затем обеспечивается электролиз в нем. Достаточно эффективен такой способ для получения алюминия из бокситов, натрия и калия.

Анодирование

При этом процессе покрытие выполняется из неметаллических соединений. Классический пример – анодирование алюминия. Алюминиевая деталь устанавливается, как анод. Электролит – раствор серной кислоты. В результате электролиза на аноде оседает слой из оксида алюминия, обладающего защитными и декоративными свойствами. Указанные технологии широко используются в различных отраслях промышленности. Можно осуществить процессы и своими руками с соблюдением техники безопасности.

Энергетические затраты

Электролиз требует больших энергетических затрат. Процесс будет иметь практическую ценность при достаточной величине анодного тока, а для этого необходимо приложить значительный постоянный ток от источника электроэнергии. Кроме того, при его проведении возникают побочные потери напряжения – анодное и катодное перенапряжение, потери в электролите за счет его сопротивления. Эффективность работы установки определяется путем отнесения мощности энергозатрат к единице полезной массы полученного вещества.

Электролиз давно и с высокой эффективностью используется в промышленности. Анодированные и гальванические покрытия стали обычным явлением в повседневной жизни, а добыча и обогащение материалов помогает добывать многие металлы из руды. Процесс можно запланировать и рассчитать, зная основные его закономерности.

где применяются, область использования транзисторов

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. Транзистор управляет током на выходе пропорционально изменению силы входного тока и величины входного напряжения, причем при незначительном изменении входных параметров при определенных условиях можно добиться существенного усиления выходного сигнала. Поэтому полупроводниковые транзисторы часто применяются в усилительных схемах.

Области, где используются транзисторы, зависят от технических характеристик последних. Транзисторы разного конструктивного исполнения рассчитаны на работу в ключевом или усилительном режимах.

  • Ключевой режим. Полупроводниковый транзистор в этом случае находится в одном из двух состояний – открытом или закрытом. Это экономичный вариант, поскольку для руководства значительными нагрузками требуются небольшие управляющие токи.
  • Усилительный (динамический). В основе этого режима лежит принцип значительного усиления выходного сигнала при незначительном повышении управляющего сигнала.

  • Применение транзисторов


    Транзисторы востребованы практически во всех отраслях народного хозяйства. Минимализация габаритов этих приборов обеспечивает рост быстродействия электронных компонентов при снижении количества потребляемой энергии и выделения тепла.


    Производство слуховых аппаратов


    Благодаря практическому применению усиливающих свойств полупроводникового транзистора, стало возможным создание для слухового аппарата мощного микрофона с миниатюрными размерами.


    Принцип работы слухового аппарата:


    • звуковые волны, попадая на микрофон, преобразуются в электрический сигнал;
    • транзистор усиливает поступивший на него электрический сигнал;
    • усиленный электрический импульс преобразуется в акустический сигнал, и владелец слухового аппарата получает доступ к звуковой информации.

    Производство компьютеров и калькуляторов


    Полупроводниковые транзисторы используются во всех электронных компонентах компьютеров и калькуляторов. Они находятся в составе материнских плат, процессоров, карт расширения, периферийных устройств. Системы обработки, передачи и защиты данных – одни из основных областей, где применяются полупроводниковые транзисторы.


    Транзисторы, работающие в ключевом режиме, используются для защиты программ от взлома и предотвращения кражи информации. Управление силой тока – аналоговое, регулирование – с помощью ширины импульса.


    Транзисторы Дарлингтона (сборного типа)


    Это составной транзистор, состоящий из двух или нескольких биполярных транзисторов, расположенных на одном монокристалле и заключенных в общий корпус. В высоковольтной электронике используются составные гибридные транзисторы IGBT, в состав которых входят биполярные и полевые модели. Основное назначение транзистора сборного типа – получение высокомощного сигнала в электрической цепи. Однако из-за низкого быстродействия они эффективны только в низкочастотной аппаратуре.


    Силовые преобразователи инверторного типа


    Мощные транзисторы с изолированным затвором применяются в оборудовании, рассчитанном на питание током высокого напряжения. Это индукционные нагреватели, мощные сварочные аппараты, мостовые и полумостовые резонансные преобразователи.


    Где применяются транзисторы — видео




    В этой статье мы только кратко перечислили области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов. Более того, без этих радиоэлементов были бы невозможны достижения современной микроэлектроники, полеты в космос, создание систем наземного и воздушного наблюдения, связи, радиолокации и многих других.



    Была ли статья полезна?

    Да

    Нет

    Оцените статью

    Что вам не понравилось?


    Другие материалы по теме





    Анатолий Мельник


    Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.











    Подать заявку — Университет Восточного Вашингтона

    Перейти к основному содержанию

    Ресурсы для:

    • Будущие студенты
    • Нынешние студенты
    • Сотрудники факультета
    • Выпускники и сообщество

    Визит

    Жизнь в EWU

    Изучить программы

    Оплата колледжа

    Стипендии

    Применять

    Холст

    Каталог курсов

    Электронная почта Eagles

    Финансовая помощь

    Библиотека

    Внутри ЕС

    Холст

    Факультет Commons

    Внутри ЕС

    Новости и события

    Отдел кадров

    Каталог

    Разница между CROSS APPLY и OUTER APPLY в SQL Server

    SQL Server поддерживает функции с табличным значением, т.е. функции, возвращающие данные в виде таблиц.

    Операции JOIN в SQL Server используются для объединения двух или более таблиц. Однако операции JOIN нельзя использовать для соединения таблицы с выходными данными функции с табличным значением.

    Для этого используются операторы APPLY.

    Есть два основных типа операторов APPLY. 1) КРЕСТНОЕ ПРИМЕНЕНИЕ и 2) НАРУЖНОЕ ПРИМЕНЕНИЕ.

    Оператор CROSS APPLY семантически аналогичен оператору INNER JOIN. Он извлекает эти записи из функции с табличным значением и присоединяемой таблицы, где находит совпадающие строки между ними.

    С другой стороны, OUTER APPLY извлекает все записи как из функции с табличным значением, так и из таблицы, независимо от совпадения.

    В этой статье мы рассмотрим операторы CROSS APPLY и OUTER APPLY. Посмотрим, как они реализуются на практике, на примере, а также обсудим, чем они отличаются друг от друга.

    Подготовка фиктивных данных

    Во-первых, давайте создадим фиктивную базу данных с фиктивными записями в ней.В этой статье мы будем использовать эту фиктивную базу данных для выполнения различных операций. Как всегда, если вы пробуете что-то в действующей базе данных, убедитесь, что вы полностью зарезервированы.

    Выполните следующий скрипт:

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    140002

    14

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    000

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    CREATE DATABASE Library

    GO

    USE Library;

    СОЗДАТЬ ТАБЛИЦУ Автор

    (

    id INT PRIMARY KEY,

    author_name VARCHAR (50) NOT NULL,

    )

    CREATE TABLE Book

    000 PRIMARY KEY Book

    имя_книги VARCHAR (50) NOT NULL,

    цена INT NOT NULL,

    author_id INT NOT NULL

    )

    USE Library;

    INSERT INTO Author

    VALUES

    (1, ‘Author1’),

    (2, ‘Author2’),

    (3, ‘Author3’),

    (4, ‘Author4’ ),

    (5, «Автор5»),

    (6, «Автор6»),

    (7,

    Подать заявку на визу | Global Home

    В понедельник, 22 июня, президент Трамп подписал прокламацию о приостановлении въезда в Соединенные Штаты некоторых иммигрантов и неиммигрантов, представляющих опасность для США.С. рынок труда после вспышки коронавируса. Прокламация, вступающая в силу немедленно, продлевает приостановление въезда для определенных иммигрантов (Президентская декларация 10014) до 31 декабря 2020 года. Новые ограничения, налагаемые прокламацией, вступают в силу в 12:01 по восточному времени в среду, 24 июня, и истекают 31 декабря. 2020, если не будет продолжено Президентом. Граждане США, законные постоянные жители и иностранцы, которые находятся или находились на территории Соединенных Штатов, или те, кто имеет действующие неиммиграционные или иммиграционные визы на дату вступления в силу, не подпадают под действие провозглашения.

    Прокламация приостанавливает въезд неиммигрантов следующих категорий: H-1B, H-2B, J (для иностранцев, участвующих в стажировке, стажере, учителе, консультанте лагеря, помощнице по хозяйству или программе летних рабочих поездок) и L, а также их супруги и дети. Действующие визы не будут отозваны в соответствии с прокламацией. Указ президента 10014 и данное постановление предусматривают исключения из их ограничений для определенных категорий иммигрантов и неиммигрантов. С полным текстом президентских прокламаций можно ознакомиться на сайте Белого дома: https: // www.whitehouse.gov/presidential-actions/proclamation-suspending-entry-aliens-present-risk-u-s-labor-market-following-coronavirus-outbreak/.


    Въезд иностранных граждан, которые физически присутствовали в следующем списке стран в течение 14 дней до их въезда или попытки въезда в Соединенные Штаты, приостановлен в соответствии с президентскими прокламациями 9984, 9992, 9993, 9996 и последующим указом от 24 мая. , 2020:

    — Бразилия

    — Соединенное Королевство Великобритании и Северной Ирландии, за исключением заморских территорий за пределами Европы;

    — Республика Ирландия;

    — 26 стран, входящих в Шенгенскую зону (Австрия, Бельгия, Чешская Республика, Дания, Эстония, Финляндия, Франция, Германия, Греция, Венгрия, Исландия, Италия, Латвия, Лихтенштейн, Литва, Люксембург, Мальта, Нидерланды, Норвегия, Польша, Португалия, Словакия, Словения, Испания, Швеция и Швейцария)

    — Исламская Республика Иран;

    — Китайская Народная Республика, не включая Особые административные районы Гонконг и Макао

    Существуют определенные исключения из приостановки въезда, включая исключения для U.S. законные постоянные жители и некоторые члены семей граждан США и законных постоянных жителей, среди других исключений, перечисленных в прокламациях. Если вы проживаете, недавно путешествовали или намереваетесь переехать транзитом или поехать в вышеуказанный список стран перед запланированной поездкой в ​​Соединенные Штаты, мы рекомендуем вам отложить собеседование на получение визы на 14 дней после вашего отъезда страна (рай). Кроме того, если вы испытываете симптомы гриппа или полагаете, что, возможно, подверглись воздействию нового коронавируса, вам настоятельно рекомендуется отложить прием как минимум на 14 дней.Плата за изменение записи на прием не взимается, а сборы за подачу заявления на визу действительны в течение одного года в стране, где они были уплачены.

    .

    Want to say something? Post a comment

    Ваш адрес email не будет опубликован. Обязательные поля помечены *