Что такое элеватор в системе отопления: Что такое элеватор в системе отопления: устройство, принцип работы, расчет
Что такое элеватор в системе отопления: устройство, принцип работы, расчет
Элеваторные узлы применяются в тепловых пунктах многоквартирных домов с середины прошлого века, отдельные экземпляры продолжают успешно работать до сих пор. Жильцы не торопятся менять морально устаревшие элементы на новую арматуру, оборудованную современной автоматикой, причем это нежелание вполне обосновано. Для прояснения сути вопроса предлагаем разобраться, что такое элеватор, его устройство и основные функции в системе отопления.
Назначение и функции узла
Вода в сетях централизованного теплоснабжения достигает температуры 150 °С и движется по наружным магистралям под давлением 6—10 Бар. Зачем поддерживаются столь высокие параметры теплоносителя:
- Чтобы высокотемпературные котлы либо другое теплосиловое оборудование функционировало с максимальным КПД.
- Для доставки нагретой воды в районы, отдаленные от котельной или ТЭЦ, сетевые насосы должны создавать приличный напор. Тогда на тепловых вводах близлежащих зданий давление достигает 10 Бар (опрессовка – 12 Бар).
- Транспортировка перегретого теплоносителя выгодна экономически. Тонна воды, доведенная до 150 градусов, содержит значительно больше тепловой энергии, нежели аналогичный объем при 90 °С.
Справка. Теплоноситель в трубах не обращается в пар, поскольку находится под давлением, удерживающим воду в жидком агрегатном состоянии.
Деталь незамысловатая — с виду обычный тройник с фланцами
Согласно действующим нормативным документам, температура теплоносителя, подаваемого в систему водяного отопления жилого либо административного здания, не должна превышать 95 °С. Да и напор 8—10 атмосфер слишком велик для внутридомовой теплосети. Значит, указанные параметры воды нужно подкорректировать в меньшую сторону.
Элеватор — это энергонезависимое устройство, понижающее давление и температуру входящего теплоносителя путем подмешивания охлажденной воды, поступающей из системы отопления. Показанный выше на фото элемент входит в состав схемы теплового узла, устанавливается между подающим и обратным трубопроводом.
Третья функция элеватора – обеспечить циркуляцию воды в домовом контуре (как правило, однотрубной системы). Вот почему данный элемент представляет интерес – при внешней простоте он совмещает 3 устройства – регулятор давления, смесительный узел и водоструйный циркуляционный насос.
Элеваторный элемент со сменным соплом
Принцип работы элеватора
Внешне конструкция напоминает большой тройник из металлических труб с присоединительными фланцами на концах. Как устроен элеватор внутри:
- левый патрубок (смотри чертеж) представляет собой сужающееся сопло расчетного диаметра;
- за соплом располагается смесительная камера цилиндрической формы;
- нижний патрубок служит для присоединения обратной магистрали к смешивающей камере;
- правый патрубок – это расширяющийся диффузор, направляющий теплоноситель в отопительную сеть многоэтажного дома.
На чертеже патрубок эжектируемого потока условно показан сверху, хотя обычно он располагается снизу
Примечание. В классическом исполнении элеватор не требует подключения к домовой электросети. Обновленный вариант изделия с регулируемым соплом и электроприводом присоединяется к внешнему источнику питания.
Стальной элеваторный узел подключается левым патрубком к подающей магистрали централизованной тепловой сети, нижним – к обратному трубопроводу. С обеих сторон элемента ставятся отсекающие задвижки, плюс сетчатый фильтр – отстойник (иначе – грязевик) на подаче. Традиционная схема теплового пункта с элеватором также включает манометры, термометры (на обеих линиях) и прибор учета потребленной энергии.
Теперь рассмотрим, как работает элеваторная перемычка:
- Перегретая вода из сети теплоснабжения проходит через левый патрубок к соплу.
- В момент прохождения сквозь узкое сечение сопла под высоким давлением течение потока ускоряется согласно закону Бернулли. Начинает действовать эффект водоструйного насоса, обеспечивающего циркуляцию теплоносителя в системе.
- В зоне смесительной камеры напор воды снижается до нормы.
- Струя, движущаяся с высокой скоростью в диффузор, создает разрежение в камере смешивания. Возникает эффект эжекции – поток жидкости с более высоким давлением увлекает через перемычку теплоноситель, возвращающийся из отопительной сети.
- В камере элеватора отопления происходит перемешивание охлажденной воды с перегретой, на выходе из диффузора получаем теплоноситель нужной температуры (до 95 °С).
Уточнение. Стоит отметить, что элеваторный узел также использует в работе принцип инжекции – смешивание двух струй с одновременной передачей энергии. Напор результирующего потока становится меньше, чем первоначального, но больше подсасываемого из обратки. Более понятно процесс показан на видео:
Главное условие нормальной работы элеватора – достаточный перепад давлений между магистральной подачей и обратной линией. Указанной разницы должно хватить на преодоление гидравлического сопротивления домового отопления и самого инжектора. Обратите внимание: вертикальная перемычка врезается в обратку под углом 45° для лучшего разделения потоков.
На подаче из теплосети давление самое высокое, при выходе из диффузора – среднее, в обратной магистрали — наиболее низкое. То же самое в элеваторе происходит с температурой воды
Технические характеристики стандартных изделий
Линейка элеваторов заводского изготовления состоит из 7 типоразмеров, каждому присвоен номер. При подборе учитывается 2 основных параметра – диаметр горловины (камеры смешения) и рабочего сопла. Последнее представляет собой съемный конус, который при необходимости меняется.
Размеры составных элементов изделия смотрите ниже в таблице
Замена сопла производится в двух случаях:
- Когда проходное сечение детали увеличивается в результате естественного износа. Причина выработки – трение абразивных частиц, содержащихся в теплоносителе.
- Если необходимо изменить коэффициент смешивания – повысить либо снизить температуру воды, подающейся в домовую систему теплоснабжения.
Номера стандартных элеваторов и основные размеры приведены в таблице (сопоставляйте с обозначениями на чертеже).
Обратите внимание: в технических характеристиках не указывается проходное сечение сопла, поскольку этот диаметр рассчитывается отдельно. Чтобы подобрать номер готового элеваторного тройника под конкретную отопительную систему, необходимо также вычислить потребный размер смесительно-инжекционной камеры.
Расчет и подбор элеватора по номеру
Сразу уточним порядок действий: первым делом рассчитывается диаметр смешивающей камеры и выбирается подходящий номер элеватора, затем определяется размер рабочего сопла. Диаметр инжекционной камеры (в сантиметрах) вычисляется по формуле:
Участвующий в формуле показатель Gпр – это реальный расход теплоносителя в системе многоквартирного дома с учетом ее гидравлического сопротивления. Величина рассчитывается так:
- Q – количество теплоты, расходуемое на обогрев здания, ккал/ч;
- Тсм – температура смеси на выходе из элеваторного тройника;
- Т2о – температура воды в обратной линии;
- h – сопротивление всей разводки отопления вместе с радиаторами, выраженное в метрах водного столба.
Справка. Чтобы вставить в формулу непонятные килокалории, нужно знакомые ватты умножить на коэффициент 0.86. Метры водного столба преобразуются в более распространенные единицы: 10.2 м вод. ст. = 1 Бар.
Пример подбора номера элеватора. Мы выяснили, что реальный расход Gпр составит 10 тонн смешанной воды за 1 час. Тогда диаметр смесительной камеры равен 0.874 √10 = 2.76 см. Логично взять смеситель №4 с камерой 30 мм.
Теперь выясняем диаметр узкой части сопла (в миллиметрах) по следующей формуле:
- Dr – определенный ранее размер инжекторной камеры, см;
- u – коэффициент смешивания;
- Gпр – наш расход готового теплоносителя на подаче в систему.
Хотя внешне формула кажется громоздкой, но в действительности расчеты не слишком сложные. Остается неизвестным один параметр – коэффициент инжекции, вычисляемый так:
Все обозначения из данной формулы мы расшифровали, кроме параметра Т1 – температуры горячей воды на входе в элеватор. Если предположить, что ее величина составляет 150 градусов, а температура подачи и обратки 90 и 70 °С соответственно, искомый размер Dc выйдет 8.5 мм (при расходе 10 т/ч воды).
Когда известна величина напора Нр на входе в элеватор со стороны централи, можно воспользоваться альтернативной формулой определения диаметра:
Замечание. Результат вычисления по последней формуле выражается в сантиметрах.
В заключение о недостатках элеваторных смесителей
Положительные моменты использования элеваторов в домовых теплопунктах мы выяснили ранее – энергонезависимость, простота, надежность в работе и долговечность. Теперь о недостатках:
- Для нормального функционирования системы нужно обеспечить значительный перепад напора воды между обраткой и подачей.
- Требуется индивидуальный подбор узла к конкретной отопительной сети, основанный на расчете.
- Чтобы изменить параметры выходящего теплоносителя, нужно пересчитать диаметр отверстия форсунки под новые условия и заменить сопло.
- Плавная регулировка температуры на элеваторе не предусмотрена.
- Узел не может применяться в качестве циркуляционного насоса локальной схемы (например, в частном доме).
Уточнение. Существуют усовершенствованные модели элеваторов с регулируемым проходным сечением. Внутри предкамеры установлен конус, перемещаемый шестеренчатой передачей, привод – ручной либо электрический. Правда, теряется главное преимущество узла – независимость от электроэнергии.
Домовые однотрубные системы, действующие совместно с элеваторами, довольно сложно запускать в работу. Нужно сначала выдавить воздух из обратного стояка, затем из подающего, постепенно открывая магистральную задвижку. Подробнее об инжекционных узлах и способе запуска расскажет мастер – сантехник в видеосюжете:
youtube.com/embed/BG-YE-3DzSA?feature=oembed» frameborder=»0″ allow=»autoplay; encrypted-media» allowfullscreen=»»/>
Что такое элеватор отопления ☛ Советы Строителей На DomoStr0y.ru
Содержание
При централизованном теплоснабжении горячая вода, прежде чем попасть в радиаторы отопления многоквартирных домов, проходит через тепловой пункт. Там она доводится до необходимой температуры с помощью специального оборудования. С этой целью в подавляющем большинстве домовых тепловых пунктов, построенных во времена СССР, установлен такой элемент, как элеватор отопления. Рассказать, что он собой представляет и какие задачи выполняет, призвана данная статья.
Назначение элеватора в системе отопления
Теплоноситель, выходящий из котельной или ТЭЦ, имеет высокую температуру – от 105 до 150 °С. Естественно, что подавать в систему отопления воду с такой температурой недопустимо.
Нормативными документами эта температура ограничена пределом 95 °С и вот почему:
- в целях безопасности: можно получить ожоги от прикосновения к батареям,
- не всякие радиаторы могут функционировать при высоких температурных режимах, не говоря уже о полимерных трубах.
Снизить температуру сетевой воды до нормируемого уровня позволяет работа элеватора отопления. Вы спросите – а почему нельзя сразу направить в дома воду с требуемыми параметрами? Ответ лежит в плоскости экономической целесообразности, подача перегретого теплоносителя позволяет передать с одним и тем же объемом воды гораздо большее количество тепла. Если температуру снизить, то придется увеличить расход теплоносителя, а следом существенно вырастут диаметры трубопроводов тепловых сетей.
Итак, работа элеваторного узла, установленного в тепловом пункте, состоит в снижении температуры воды путем подмешивания в подающий трубопровод остывший теплоноситель из обратки. Следует отметить, что данный элемент считается устаревшим, хотя до сих пор повсеместно используется. Сейчас при устройстве тепловых пунктов применяются смешивающие узлы с трехходовыми клапанами либо пластинчатые теплообменники.
Как функционирует элеватор?
Если говорить простыми словами, то элеватор в системе отопления – это водяной насос, не требующий подведения энергии извне. Благодаря этому, да еще простой конструкции и низкой стоимости, элемент нашел свое место практически во всех тепловых пунктах, что строились в советское время. Но для его надежной работы нужны определенные условия, о чем будет сказано ниже.
Чтобы понять устройство элеватора системы отопления, следует изучить схему, представленную выше на рисунке. Агрегат чем-то напоминает обычный тройник и устанавливается на подающем трубопроводе, своим боковым отводом он присоединяется к обратной магистрали. Только через простой тройник вода из сети проходила бы сразу в обратный трубопровод и прямо в систему отопления без снижения температуры, что недопустимо.
Стандартный элеватор состоит из подающей трубы (предкамеры) со встроенным соплом расчетного диаметра и смесительной камеры, куда подводится остывший теплоноситель из обратки. На выходе из узла патрубок расширяется, образуя диффузор. Агрегат действует следующим образом:
- теплоноситель из сети с высокой температурой направляется в сопло,
- при прохождении через отверстие малого диаметра скорость потока возрастает, из-за чего за соплом возникает зона разрежения,
- разрежение вызывает подсасывание воды из обратного трубопровода,
- потоки смешиваются в камере и выходят в систему отопления через диффузор.
Как происходит описанный процесс, наглядно показывает схема элеваторного узла, где все потоки обозначены разными цветами:
Непременное условие устойчивой работы узла заключается в том, чтобы величина перепада давления между подающей и обратной магистралью сети теплоснабжения было больше, чем гидравлическое сопротивление отопительной системы.
Наряду с явными преимуществами данный смесительный узел обладает одним существенным недостатком. Дело в том, что принцип работы элеватора отопления не позволяет регулировать температуру смеси на выходе. Ведь что для этого нужно? Изменять при необходимости количество перегретого теплоносителя из сети и подсасываемой воды из обратки. Например, чтобы температуру снизить, надо уменьшить расход на подаче и увеличить поступление теплоносителя через перемычку. Этого можно добиться только уменьшением диаметра сопла, что невозможно.
Проблему качественного регулирования помогают решить элеваторы с электроприводом. В них посредством механического привода, вращаемого электродвигателем, увеличивается или уменьшается диаметр сопла. Это реализовано за счет дроссельной иглы конусной формы, входящей в сопло изнутри на определенное расстояние. Ниже изображена схема элеватора отопления с возможностью управления температурой смеси:
1 – сопло, 2 – дроссельная игла, 3 – корпус исполнительного механизма с направляющими, 4 – вал с зубчатым приводом.
Примечание. Вал привода может снабжаться как рукояткой для управления вручную, так и электродвигателем, включаемым дистанционно.
Появившийся относительно недавно регулируемый элеватор отопления позволяет производить модернизацию тепловых пунктов без кардинальной замены оборудования. Учитывая, сколько еще подобных узлов функционирует на просторах СНГ, подобные агрегаты приобретают все большую актуальность.
Расчет элеватора отопления
Следует отметить, что расчет водоструйного насоса, коим является элеватор, считается довольно громоздким, мы постараемся подать его в доступной форме. Итак, для подбора агрегата нам важны две главных характеристики элеваторов – внутренний размер смесительной камеры и проходной диаметр сопла. Размер камеры определяется по формуле:
Здесь:
- dr – искомый диаметр, см,
- Gпр – приведенное количество смешанной воды, т/ч.
В свою очередь, приведенный расход вычисляется таким образом:
В этой формуле:
- τсм – температура смеси, идущей на отопление, °С,
- τ20 – температура остывшего теплоносителя в обратке, °С,
- h3 – сопротивление отопительной системы, м. вод. ст.,
- Q – потребный расход тепла, ккал/ч.
Чтобы подобрать элеваторный узел системы отопления по размеру сопла, надо его рассчитать по формуле:
Здесь:
- dr – диаметр смесительной камеры, см,
- Gпр – приведенный расход смешанной воды, т/ч,
- u – безразмерный коэффициент инжекции (смешивания).
Первые 2 параметра уже известны, остается только отыскать значение коэффициента смешивания:
В этой формуле:
- τ1 – температура перегретого теплоносителя на входе в элеватор,
- τсм, τ20 – то же, что и в предыдущих формулах.
Примечание. Для расчета сопла надо взять коэффициент u, равный 1.15u’.
Опираясь на полученные результаты, осуществляется подбор агрегата по двум основным характеристикам. Стандартные размеры элеваторов обозначены номерами от 1 до 7, принимать надо тот, что ближе всего к расчетным параметрам.
Что в итоге?
Поскольку реконструкции всех тепловых пунктов произойдут нескоро, элеваторы еще долго будут служить там в качестве смесителей. Поэтому знание их устройства и принципа действия будет полезным определенному кругу людей.
Настройка системы отопления | Наладка отопления
Здравствуйте! В данной статье я рассмотрю типовой, скажем так, случай наладки и регулировки внутренней системы отопления здания. А именно, системы отопления с элеваторным узлом смешения. По моим наблюдениям, таких ИТП (тепловых пунктов) примерно процентов 80-85 от общего количества теплоузлов. Про элеватор я писал в этой статье.
Наладка элеваторного узла производится после наладки оборудования ИТП. Что это значит? Это значит, что для нормальной работы элеватора у вас в тепловом пункте должны быть известны рабочие параметры от теплоснабжающей организации по давлению и температуре в подающем трубопроводе (подаче) P1 и T1. То есть, температура в подаче T1 должна соответствовать температуре по утвержденному на отопительный сезон температурному графику отпуска тепла. График такой можно и нужно взять в теплоснабжающей организации, это не тайна за семью печатями. И вообще такой график должен быть у каждого потребителя теплоэнергии в обязательном порядке. Это ключевой момент.
Затем давление в подаче P1. Оно должно быть не меньше необходимого для нормальной работы элеватора. Ну обычно теплоснабжающая организация рабочее давление по подаче все таки выдерживает.
Далее необходимо, чтобы регулятор давления, или регулятор расхода, или дроссельные шайба были правильно отрегулированы, настроены. Или как я обычно говорю, «выставлены». Об этом я как нибудь напишу отдельную статью. Будем считать, что все эти условия соблюдены, и можно приступать к наладке и регулировке элеваторного узла. Как это обычно делаю я?
Первым делом я стараюсь посмотреть проектные данные по паспорту ИТП. Про паспорт ИТП я писал в этой статье. Здесь нас интересуют все параметры, что касаются элеватора. Сопротивление системы, перепад давлений и т.д.
Во вторых, проверяю по возможности соответствие факта и рабочих данных из паспорта ИТП.
В третьих, смотрю и проверяю поэлементно элеватор, грязевики, запорнуюи регулирующую арматуру, манометры, термометры.
В четвертых, смотрю перепад давлений между подачей и обраткой (располагаемый напор) перед элеватором. Он должен соответствовать или быть близким к расчетному, просчитанному по формуле.
В пятых, по манометрам после элеваторного узла, перед домовыми задвижками смотрю потери давления в системе (сопротивление системы). Они не должны превышать 1 м. вст. для зданий до 5 этажей, и 1,5 м.в.ст. для зданий от 5 до 9 этажей. Это в теории. Но и по факту, если у вас потери давления 2 м.в.ст. и выше, то скорее всего, возникнут проблемы. Если у вас шкала делений на манометрах после элеваторного узла в кгс/см2 (более частый случай), то смотреть показания нужно так, если на подаче показания манометра 4,2 кгс/см2, то на обратке должно быть 4,1 кгс/см2. Если же на обратке 4,0 или 3,9 кгс/см2, то это уже тревожный сигнал. Конечно, здесь нужно учитывать, что манометры могут давать погрешность измерений, всякое бывает.
В шестых, проверяю, каков коэффициент смешения элеватора. Про коэффициент смешения я писал здесь. Коэффициент смешения должен соответствовать расчетному, или быть близким по значению к нему. Коэффициент смешения определяем по температурам теплоносителя, которые берем либо с мгновенных показаний теплосчетчика, либо с ртутных термометров. Причем здесь нужно учитывать, что чем больше перепад температур в системе отопления, тем точнее можно просчитать коэффициент смешения. Соответственно, чем меньше перепад температур в системе, тем более высока может быть погрешность в определении коэффициента смешения элеватора.
Нечасто, но бывает так, что разность давлений между подачей и обраткой перед элеватором (располагаемый напор) является недостаточным для обеспечения необходимого коэффициента смешения. Это, я бы так сказал, тяжелый случай. Если теплоснабжающая организация не может (или не хочет) обеспечить вам необходимый перепад давлений, то скорее всего вам придется переходить на схему с циркуляционным насосом.
Наладку элеватора можно считать удовлетворительной и законченной, если принятый размер сопла обеспечивает необходимый расход сетевой воды и коэффициент смешения элеватора.
После наладки элеваторного узла приступают к наладке системы отопления здания. Сначала смотрят схему разводки системы отопления по зданию (если она есть, конечно). Если нет, я просматриваю разводку отопления по зданию визуально. Хотя визуальный осмотр необходим в любом случае. Здесь необходимо узнать, какая разводка , верхняя или нижняя, какие отопительные приборы установлены, есть ли на них регулирующая арматура, есть ли балансировочные краны на стояках отопления, терморегуляторы на отопительных приборах, есть ли устройства для удаления воздуха в верхних точках.
Наладка системы отопления включает в себя проверку и регулировку системы как по горизонтали (распределение теплоносителя по стоякам), так и по вертикали (распределение теплоносителя по этажам).
Сначала проверяем прогрев нижних точек всех стояков. Можно делать это на ощупь. Но в этом случае лучше, чтобы температура воды была 55-65 °С. При более высокой температуре трудно уловить степень прогрева. Нижние точки стояков отопления, как правило, находятся в подвале здания. Хорошо, если на всех стояках установлена хоть какая — то регулирующая арматура. Это вообще необходимо, но к сожалению, не всегда бывает по факту. Отлично, если на стояках установлены балансировочные клапаны. Тогда перегревающиеся стояки прикрываем регулирующей арматурой.
Но лучше, конечно, проверку распределения воды по стоякам производить с помощью замеров температур в подаче и обратке. Хотя это более трудоемкий вариант.
Так, например, температуру обратки T2 в двухтрубной системе следует принимать с учетом остывания температуры воды в подаче. Если по графику T1 = 68 °С, а фактическиT1 = 62 °С, T2 по графику равна 53 °С. В этом случае расчетная температура T2 = 62- (68-53) = 47 °С, а не 53 °С.
Вообще, в результате регулировки по стоякам должна быть примерно одинаковая разность температур воды у входа и выхода ее из всех стояков.
Далее производится регулировка по отдельным отопительным приборам. У меня на многих объектах установлены ручные прямые регулирующие краны.
Очень хорошая штука для регулировки. Еще лучше, если у вас установлены на отопительных приборах терморегуляторы. Тогда регулировка производится в автоматическом режиме. Замеры температуры отопительных приборов проводим с помощью пирометра.
Наладка элеваторного узла и системы отопления считается удовлетворительной, если достигнута равномерная температура отапливаемых помещений здания.
На тему устройства и настройки тепловых пунктов я написал книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно. Вот содержание книги:
1. Введение
2. Устройство ИТП, схема без элеватора
3. Устройство ИТП, элеваторная схема
4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.
5. Заключение
Просмотреть книгу можно по ссылке ниже:
Устройство ИТП (тепловых пунктов) зданий
Что такое элеватор отопления?
Виды элеваторов отопления
Как ни странно, но об элеваторах отопления знают даже не все сантехники, обслуживающие многоэтажные дома. В лучшем случае, они имеют представление о том, что этот прибор устанавливается в системе. Но как он устроен и какую функцию выполняет, известно далеко не всем, не говоря уже о простых людях.
Поэтому давайте ликвидируем подобный пробел в знаниях об отопительных системах и разберем это устройство подробнее.
Что такое элеватор?
Если говорить простым языком, то элеватор — это специальное устройство, относящееся к отопительному оборудованию и выполняющее функцию инжекционного или водоструйного насоса. Ни больше, ни меньше.
Его основная задача — повысить давление внутри отопительной системы. То есть, увеличить прокачку теплоносителя по сети, что приведет к росту его объема. Чтобы было понятнее, приведем простой пример. Из подающего водопровода забирается 5-6 кубометров воды в качестве теплоносителя, а в систему, где расположены квартиры дома, попадает 12-13 кубометров.
Как такое возможно? И за счет чего происходит увеличение объема теплоносителя? Данный феномен основан на некоторых законах физики. Начнем с того, что если в системе отопления установлен элеватор, значит, эта система подключена к центральным сетям отопления, по которым горячая вода движется под давлением из большой котельной или ТЭЦ.
Так вот температура воды внутри трубопровода, особенно в сильные холода, достигает +150 С. Но разве это может быть? Ведь температура кипения воды +100 С. Вот тут-то и вступает в силу один из законов физики. При такой температуре вода закипает, если она находится в открытой емкости, где отсутствует какое-либо давление. Но в трубопроводе вода движется под давлением, которое создается работой подающих насосов. Поэтому она и не закипает.
Идем дальше. Температура +150 С считается очень высокой. Подавать такую горячую воду в систему отопления квартир нельзя, потому что:
- Во-первых, чугун не любит больших перепадов температур. И если в квартирах установлены чугунные радиаторы, они могут выйти из строя. Хорошо, если они просто дадут течь. Но их может разорвать, поскольку под действием высоких температур чугун становится хрупким, как стекло.
- Во-вторых, при такой температуре металлических элементов отопления не составит большого труда получить ожог.
- В-третьих, для обвязки отопительных приборов сейчас часто используют пластиковые трубы. А максимально, что они смогут выдержать, это температура +90 С (к тому же при таких цифрах производители гарантируют 1 год эксплуатации). Значит, они просто расплавятся.
Поэтому теплоноситель необходимо остудить. Вот здесь и потребуется элеватор.
Для чего служит элеваторный узел
Схема присоединения элеваторного узла
Вот мы и подошли к вопросу о том, для чего нужны элеваторы в системе отопления?
Эти приборы предназначены для того, чтобы понизить температуру подводимой воды до необходимой. И уже охлажденная она подается в систему отопления квартир. То есть, в элеваторе происходит охлаждение теплоносителя. Каким образом?
Все достаточно просто. Это устройство состоит из камеры, где происходит смешение горячей перегретой воды и воды, поступающей из обратного контура отопительной системы. То есть, смешиваются теплоноситель из котельной с теплоносителем из обратки этого же дома. Так можно, не забирая много горячей воды, получить нужный объем теплоносителя необходимой температуры.
Теряем ли мы температуру? Да, теряем, и здесь нельзя отрицать очевидное. Но теплоноситель подается через сопло, которое намного меньше диаметра трубы, поставляющей в дом горячую воду. Скорость в этом сопле настолько большая за счет давления внутри трубопровода, что теплоноситель очень быстро распределяется по всем стоякам. Поэтому независимо от того, где расположена квартира, близко или далеко от распределительного узла, температура в отопительных приборах будет одинаковой. Равномерное распределение, таким образом, обеспечивается на все 100%.
А знаете, что иногда делают сантехники-всезнайки? Они убирают сопло и устанавливают металлические заслонки, тем самым стараясь регулировать вручную скорость подачи теплоносителя. Хорошо, если устанавливают. А в некоторых домах заслонки вообще отсутствуют, и тогда начинаются проблемы.
В квартирах, расположенных ближе к элеваторному узлу, будет климат Африки. Здесь даже в самые лютые морозы всегда открыты форточки. А в дальних квартирах, особенно угловых, люди ходят в валенках и включают электрические отопительные приборы или газовую плитку. Они ругают все на свете, не подозревая, что в этом виноваты компании, обслуживающие их дом. Вот вам результат незнания и простой некомпетентности.
Как же работает элеватор?
Принцип работы элеватора
Принцип работы элеватора
Элеваторный узел представляет собой достаточно объемную емкость, чем-то похожую на горшок. Но это не сам элеватор, хотя его так и называют. Это целый узел, в состав которого также входят:
- Грязеуловители — ведь вода из трубы поступает не совсем чистая.
- Сетчато-магнитные фильтры — узел должен обеспечить определенную чистоту теплоносителя, чтобы не забивались батареи и трубы.
Очистившись, горячая вода поступает через сопло в камеру смешения. Здесь она движется с большой скоростью, в результате чего подсасывается вода из обратного контура, который присоединен к камере смешения сбоку. Процесс подсасывания, или инжекции, происходит самопроизвольно. Теперь понятно, что изменяя диаметр сопла, можно регулировать и объем подаваемого теплоносителя, и его температуру на выходе из элеватора.
Как вы понимаете, для системы отопления элеватор — это насос и смеситель одновременно. И что важно — никакой электроэнергии.
Есть еще один момент, на который специалисты обращают внимание — это соотношение напора внутри подающего трубопровода и сопротивление элеватора. Этот показатель должен быть равен 7:1. Только такое соотношение обеспечивает эффективность работы всей системы.
Но это еще не все, что касается эффективности. Обратите внимание на тот факт, что давление внутри системы — а это подающий контур и обратный — должно быть одинаковым. Допустимо, если в обратке оно будет немного меньше. Но если разница существенна, например, в подающем трубопроводе 5,0 кгс/см2, а в обратке ниже 4,3 кгс/см2, это означает, что трубопроводная система и отопительные приборы забиты грязью.
Схема включения регулируемого элеватора водоструйного типа
Возможна и другая причина — при проведении капитального ремонта были изменены диаметры труб в меньшую сторону. То есть, подрядчик таким образом сэкономил.
Можно ли регулировать температуру теплоносителя? Можно, и для этого лучше использовать регулируемый элеватор водоструйного типа.
В конструкции такого прибора установлено сопло, диаметр которого можно изменять. Иногда диапазон регулировки, и это относится больше к зарубежным аналогам, достаточно большой, что не так уж и необходимо. Отечественные элеваторы имеют сдвиг диапазона меньше, но, как показала практика, этого достаточно на все случаи жизни.
Правда, регулируемые элеваторы редко устанавливают в жилых зданиях. Намного эффективнее их монтаж в общественных или производственных помещениях. С их помощью можно сэкономить расходы на отопление до 25% только за счет того, что они позволяют снижать температуру в ночное время, а также в выходные и праздничные дни.
что это такое, схема теплового элеваторного узла, принцип работы в системе, устройство
Содержание:
Рассуждать о необходимости отопительной системы бессмысленно – это неотъемлемая составляющая комфортного проживания в любом доме или квартире – а вот об особенностях и конструктивных составляющих отопительных систем можно сказать очень много. Например, в частных домах чаще всего используется автономное отопление, а вот многоквартирные здания отапливаются централизованной системой, которая в большинстве случаев оснащается элеваторным узлом. Владельцы квартир обычно не знают, что такое элеваторный узел отопления, зачем он нужен и по каким принципам работает. В данной статье будет рассмотрен данный элемент и его особенности.
Схема отопительной системы с элеваторным узлом
Элеваторный узел отопления представляет собой специальную конструкцию, которая выполняет функцию инжектора или струйного насоса – а необходимость в данном элементе возникает только в централизованных системах, где разогретый теплоноситель подается из котельной под давлением. Отопительная схема элеваторного узла предназначена для того, чтобы давление в системе было повышенным. Реализуется данная потребность за счет увеличения количества теплоносителя, т.е. работают обычные законы физики.
Когда температура воздуха на улице достигает высоких отрицательных значений, температура теплоносителя может превышать +150 градусов. Разумеется, такое явление противоречит законам физики – в центральном отоплении для передачи тепла используется обычная вода, которая при нагреве до указанной температуры переходит в парообразное состояние. Другое дело, что паром вода становится только в открытых емкостях и при отсутствии давления – а центральная отопительная система этим условиям не соответствует, поэтому образования пара не происходит.
Что это такое и зачем нужно
Чрезмерно разогретый теплоноситель несет в себе несколько опасностей, и его подача в квартиры должна ограничиваться из-за следующих факторов:
- В многоквартирных домах чаще всего устанавливаются чугунные радиаторы, которые характеризуются очень плохой устойчивостью к перепадам температур. При условии большой разницы температур разогретого и остывшего теплоносителя радиатор через некоторое время обязательно станет протекать, а в самом худшем варианте развития событий чугун попросту начнет крошиться.
- Разогрев отопительных приборов до высокой температуры может стать причиной ожогов и травм для жильцов, находящихся в квартире.
- Если разводка отопительной системы выполнялась с использованием пластиковых труб, то превышение температуры свыше +90 градусов с очень большой вероятностью приведет к полному расплавлению пластика, и весь контур придется отключать для трудоемкого ремонта.
Все эти проблемы достаточно серьезны, поэтому их нужно избегать, не позволяя чрезмерно разогретому теплоносителю попадать в систему. Именно для этого используется элеваторный узел, который на сегодняшний день устанавливается в любой системе централизованного отопления. Использование данного элемента позволяет обеспечить стабильную работу отопления в условиях постоянных температурных перепадов.
Вместо элеваторного узла может устанавливаться автоматизированная система управления отопительной системой. Она в полной мере заменяет элеватор, но имеет два существенных недостатка – во-первых, она обходится гораздо дороже, а во-вторых, для ее работы требуется электричество. В любом случае, сначала нужно разобраться, что это такое – элеваторный узел системы отопления, а уже потом думать, насколько он важен для отопительной системы.
Конструкция и принцип работы элеваторного узла
Устройство теплового узла включает в себя три основных элемента:
- Струйный элеватор;
- Разжижающая камера;
- Сопло.
Чтобы тепловой элеваторный узел работал, помимо основных элементов необходимо также установить запорную арматуру, манометр и термометр. Для того, чтобы свести к минимуму контроль функционирования системы, используются приспособления с электрической регулировкой сопла, обеспечивающие автоматическую настройку расхода теплоносителя в отопительном контуре.
Принцип работы элеватора заключается в смешивании горячего и уже остывшего теплоносителя. В рабочей камере элеватора чрезмерно разогретая вода, проходящая по подающему контуру, соединяется с жидкостью, возвращающейся из обратного контура. В процессе работы элеватор не только смешивает теплоносители, подводя их к необходимой температуре, но и обеспечивает их принудительную циркуляцию.
В результате, несмотря на простоту конструкции элеватора, достигается высокая эффективность работы отопительной системы и обеспечивается ее безопасность. Элеваторный узел системы отопления обходится относительно недорого и не требует затрат в процессе эксплуатации, поскольку его не нужно подключать к электрической сети.
Элеваторные узлы имеют и несколько недостатков:
- Работа элеватора возможна только при условии того, что каждый его элемент будет предельно точно рассчитан и подобран;
- Для нормальной работы устройства разница давления в подающем и обратном контурах должна составлять не более 2 бар;
- Возможность настройки температуры на выходе из устройства отсутствует.
Недостатки не слишком значительны и без особых проблем нивелируются, поэтому элеваторные узлы используются в подавляющем большинстве многоквартирных домов для нейтрализации температурных и гидравлических изменений в системе.
Распространенные неполадки узла в системе отопления
Большая часть неисправностей элеваторного узла возникает по двум основным причинам – во-первых, из-за повреждений самого устройства, а во-вторых, из-за расширения внутреннего прохода сопла. Несколько реже причиной выхода элеватора из строя может быть засорение грязевика, повреждение элементов запорной арматуры или сбой настройки регулятора.
Чтобы диагностировать неисправность в элеваторном узле, необходимо измерить температуру теплоносителя на входе и выходе устройства. Если разница температур значительна, то проблема, скорее всего, возникла по причине засорения прибора или расширения сопла. В первом случае для ликвидации неполадки требуется очистка узла, а во втором – замена рабочего элемента. Впрочем, этой работой могут заниматься только специалисты соответствующего профиля – жильцам квартир обычно не требуется даже знать, что такое элеватор в системе отопления.
При увеличении внутреннего диаметра сопла из-за коррозии отопительная система станет несбалансированной – теплоотдача отопительных приборов на верхних этажах будет недостаточной, а на нижних – чрезмерной. Чтобы устранить это явление, нужно будет заменить сопло элеватора аналогичным.
Засоренные грязевики заявляют о себе не только изменением температурного режима, но и перепадами давления, которые отслеживаются по соответствующим датчикам. Для очистки обычно хватает простого сброса при помощи крана, установленного в нижней части грязевиков, но в некоторых случаях приходится выполнять очистку вручную.
Заключение
Элеваторный узел системы центрального отопления – это полезное и нужное устройство, повышающее надежность отопления и обеспечивающее его нормальную работу. Несмотря на существование более современных альтернатив, элеваторные узлы все еще остаются самыми популярными и достаточно эффективными устройствами, предназначенными для оптимизации работы отопительной системы в многоквартирных домах.
Элеваторные узлы системы отопления — что это такое, схема и расчет теплового узла с элеватором, детальное фото и видео
Содержание:
1. Принцип устройства элеваторного отопительного узла
2. Функциональные характеристики элеваторного узла отопления
3. Особенности конструкции элеваторных узлов
4. Альтернатива элеваторным узлам
Как известно, отопление – это незаменимая система для абсолютно любого жилого помещения. Однако далеко не все хозяева знают, что очень важными составляющими всех систем теплоснабжения являются такие механизмы, как элеваторные узлы системы отопления. Это оборудование играет важную роль в процессе нагрева теплоносителя, поэтому следует более подробно рассмотреть, что такое элеваторный узел отопления, а также некоторые его характеристики и свойства.
Принцип устройства элеваторного отопительного узла
Элеваторный узел отопления – это особый механизм, служащий для обеспечения всей отопительной системы теплоносителем и для его правильного распределения по всему помещению. Принцип его работы заключается в следующем: к конкретному помещению идет горячая вода в качестве источника отопления, а на отводе она выходит уже в меру охлажденной.
Чтобы оборудовать такой агрегат, необходимо, в первую очередь, иметь следующие элементы:
- система труб, отвечающая за подачу. На этом участке теплоноситель поступает в нужное помещение;
- трубы отвода. Здесь осуществляется вывод уже охлажденной воды, которая возвращается обратно в котельную.
Для нескольких домов принято создавать специальные камеры тепла, в которых не только происходит распределение горячей воды между постройками, но и монтируется особая арматура, отсекающая трубопроводы. Кроме того, такие камеры обычно оснащены специальными дренажными механизмами, призванными опустошать трубы, например, во время выполнения ремонтных работ. Все последующие мероприятия непосредственно зависят от того, какую температуру имеет теплоноситель (прочитайте: «Теплоноситель для системы отопления — параметры давления и скорости»).
В отечественных отопительных системах существует несколько главных режимов, в которых функционируют котельные:
- подача с параметром в 150° и отдача, равная 70°;
- те же характеристики с показателями 130° и 70° соответственно;
- еще один вариант – 95° и 70°.
То, в каком режиме функционирует котельная, зависит, в первую очередь, от климатических условий в конкретном регионе. Это значит, для менее холодных областей подойдет параметр 130°/70°, в то время как в регионах с более суровым климатом потребуется показатели 150°/70°.
Учитывать данные режимы следует для того, чтобы помещение не перегревалось слишком сильно и в нем можно было находиться, не испытывая никакого неудобства.
Нельзя не отметить и тот факт, что наибольшей эффективностью работы котельные агрегаты отличаются в том случае, если они функционируют на максимальной степени нагрузки. Теплоноситель, подводимый к тому или иному жилому помещению, впоследствии регулируется уже посредством такого механизма, как элеваторный тепловой узел.
Состоит этот элемент из следующих функциональных частей:
- температурный датчик, отображающий параметры наружного и внутреннего воздуха;
- сервопривод;
- исполнительная система, оборудованная клапаном.
Подобные устройства, как правило, оснащаются специальными приборами, учитывающими тепловую энергию в каждом конкретном помещении. Благодаря этому появляется возможность сэкономить значительную часть финансовых средств. Сравнивая элеватор в системе отопления и подобные усовершенствованные механизмы, стоит сказать, что последние отличаются большей надежностью и более долгим эксплуатационным сроком.
При этом в том случае, если температура носителя тепла не превышает параметр в 95°, то основной работой является правильное распределение тепловой энергии по всей системе. Приборы, служащие для этих целей – краны балансировки и коллекторы.
Если температура превышает вышеуказанный показатель, то ее следует снизить. Именно эту функцию и выполняет элеватор системы отопления, который подает к трубопроводу подачи охлажденную воду с трубопровода отдачи. Отрегулировать такой механизм совсем не сложно, но для этого очень важно выполнить грамотный расчет элеватора отопления.
Функциональные характеристики элеваторного узла отопления
Как уже упоминалось выше, схема теплового узла с элеватором предусматривает охлаждение горячего носителя тепла до заданного показателя, после чего эта вода поступает в отопительные радиаторы в жилых помещениях.
Две основные функции, которые выполняет этот механизм в системе отопления, являются следующими:
- функция смесителя;
- циркуляционная функция.
Кроме того, у данного оборудования существует несколько неоспоримых достоинств, среди которых:
- отсутствие проблем с установкой ввиду простоты конструкции;
- высокие показатели эффективности;
- отсутствие необходимости подключения к электрической сети.
Однако есть у таких механизмов и некоторые отрицательные стороны, среди которых принято выделять следующие:
Сегодня такие конструкции получили широкое распространение среди сетей хозяйственного типа ввиду того, что эти устройства хорошо переносят любые непредвиденные изменения режимов температуры и гидравлики. Более того, для их нормального функционирования не требуется постоянное присутствие человека.
Схема элеватора отопления не должна рассчитываться самостоятельно, гораздо правильнее будет доверить эту работу квалифицированным мастерам, поскольку любая ошибка в выполнении расчетов или при подключении может стать причиной неприятных и даже опасных последствий. При желании можно изучить различные фото- и видеоматериалы, подробно описывающие весь процесс монтажа, чтобы в дальнейшем лучше ориентироваться в принципе работы такого оборудования. Читайте также: «Что такое элеваторный узел системы отопления – принцип работы, преимущества и недостатки».
Особенности конструкции элеваторных узлов
В основу конструкции этих аппаратов входят следующие функциональные части:
- камера разрежения;
- сопло;
- струйный элеватор.
Многие специалисты часто упоминают такой термин, как обвязка элеваторного узла. Принцип этого процесса заключается в том, что в систему устанавливается специальная арматура, перекрывающая ее части, а также термометры и манометры, что в целом и представляет собой тепловой узел элеватора.
Предлагаем посмотреть видео об элеваторных узлах системы отопления:
Альтернатива элеваторным узлам
В связи с тем, что современные технологии безостановочно развиваются, отопительные системы постоянно оборудуются новыми механизмами, способными улучшить показатели теплофикации. Стоит отметить, что на сегодняшний день существуют приборы, способные обеспечить достойную конкуренцию стандартным отопительным узлам – это аппараты, оборудованные авторегулированием температуры.
Благодаря такому их свойству повышается экономичность потребления энергии, однако стоимость таких агрегатов является все же более высокой. Стоит отметить, что эти устройства не могут функционировать без электричества, при этом время от времени мощность должна быть очень большой.
О том, какие образцы лучше, пока сказать нельзя, так как эти механизмы являются инновационными и появились они на рынке совсем недавно, однако можно с уверенностью сказать, что они уже плотно вошли в современную систему теплоснабжения и все чаще применяются в постройках жилого типа.
Тепловая машина — Простая английская Википедия, бесплатная энциклопедия
В технике и термодинамике тепловой двигатель преобразует тепловую энергию в механическую работу, используя разницу температур между горячим «источником» и холодным «стоком». Тепло передается от источника через «рабочее тело» двигателя к «поглотителю», и в этом процессе часть тепла превращается в работу за счет использования свойств газа или жидкости внутри двигателя.
Есть много видов тепловых машин.У каждого есть термодинамический цикл. Тепловые двигатели часто называют в честь термодинамического цикла, который они используют, например, цикла Карно. Они часто выбирают повседневные названия, такие как бензин / бензин, турбина или паровые двигатели.
Двигатели внутреннего сгорания выделяют тепло внутри самого двигателя. Другие тепловые двигатели могут поглощать тепло от внешнего источника. Тепловые двигатели могут быть открытыми для воздуха или закрытыми и закрытыми снаружи (это называется открытым или закрытым циклом).
Рисунок 1: Схема теплового двигателя .T H является источником тепла, а T C — холодным отводом. Q H — это тепло, поступающее в двигатель. Q C — это отработанное тепло, попадающее в холодный сток. W — полезная работа двигателя.
Когда ученые изучают тепловые двигатели, они приходят к идеям двигателей, которые на самом деле невозможно построить. Их называют идеальными двигателями или циклами. Настоящие тепловые двигатели часто путают с идеальными двигателями или циклами, которые они пытаются имитировать.
Обычно при описании физического устройства используется термин «двигатель».При описании идеала используется термин «цикл».
Можно сказать, что термодинамический цикл — идеальный случай механического двигателя. В равной степени можно сказать, что модель не совсем идеально соответствует механическому двигателю. Однако большую пользу можно получить от упрощенных моделей и идеальных случаев, которые они могут представлять.
В целом, чем больше разница в температуре между горячим источником и холодным стоком, тем эффективнее цикл или двигатель. На Земле холодная сторона любого теплового двигателя ограничена температурой воздуха того места, где находится двигатель.
Большинство усилий по повышению эффективности тепловых двигателей направлено на повышение температуры источника тепла, но при очень высоких температурах металл двигателя начинает размягчаться.
Эффективность различных тепловых двигателей, предлагаемых или используемых сегодня, колеблется от 3 процентов (97 процентов отходящего тепла) для предложения OTEC по производству энергии океана через 25 процентов для большинства автомобильных двигателей, до 45 процентов для сверхкритических угольных станций и примерно до 60 процентов для газовая турбина комбинированного цикла с паровым охлаждением.Все эти процессы получают свою эффективность (или ее отсутствие) из-за перепада температуры на них.
Наименее эффективный, OTEC, использует разницу температур океанской воды на поверхности и океанской воды с глубины, небольшую разницу, возможно, в 25 градусов Цельсия, и поэтому эффективность должна быть низкой.
Самая эффективная газовая турбина с комбинированным циклом сжигает природный газ для нагрева воздуха почти до 1530 градусов по Цельсию, большая разница температур составляет 1500 градусов по Цельсию, и поэтому эффективность может быть очень большой при добавлении цикла парового охлаждения. [1]
Люди в основном используют тепловые двигатели, где тепло исходит от огня, который расширяет рабочую жидкость (обычно воду или воздух), а теплоотвод представляет собой либо водоем, либо атмосферу, как в градирне.
К знакомым моделям, использующим расширение нагретых газов, относятся: паровой двигатель, дизельный двигатель и бензиновый (бензиновый) двигатель в автомобиле.
Двигатель Стирлинга встречается гораздо реже, но он встречается в небольших моделях, которые могут работать от тепла руки.
Один из видов игрушечного теплового двигателя — это пьющая птица.
Биметаллическая полоса — это устройство, которое преобразует температуру в механическое движение и используется в термостатах для контроля температуры. Это тепловой двигатель, в котором не используется жидкость или газ.
- Kroemer, Herbert; Киттель, Чарльз (1980). Теплофизика (2-е изд.). W.H. Компания Freeman. ISBN 0-7167-1088-9 .
- Каллен, Герберт Б. (1985). Термодинамика и введение в термостатистику (2-е изд.). ISBN компании John Wiley & Sons, Inc. 0-471-86256-8 .
Что такое электрический ток »Электроника
Электрический ток возникает при движении электрических зарядов — это могут быть отрицательно заряженные электроны или положительные носители заряда — положительные ионы.
Учебное пособие по электрическому току Включает:
Что такое электрический ток
Единица измерения тока — Ампер
ПЕРЕМЕННЫЙ ТОК
Электрический ток — одно из самых основных понятий, существующих в электротехнике и электронике. Электрический ток лежит в основе науки об электричестве.
Будь то электрический нагреватель, большая электрическая сеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным для его работы.
Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно видеть, слышать и чувствовать все время, и в результате иногда трудно получить представление о том, что это такое на самом деле.
Удар молнии — это впечатляющее зрелище электрического тока.
Фотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия
Определение электрического тока
Определение электрического тока:
Электрический ток — это поток электрического заряда в цепи.Более конкретно, электрический ток — это скорость прохождения заряда через заданную точку в электрической цепи. Заряд может представлять собой отрицательно заряженные электроны или положительные носители заряда, включая протоны, положительные ионы или дырки.
Величина электрического тока измеряется в кулонах в секунду, обычно единицей измерения является ампер или ампер, обозначаемый буквой «А».
Ампер или усилитель широко используются в электрических и электронных технологиях вместе с умножителями, такими как миллиампер (0.001A), микроампер (0,000001A) и т. Д.
Ток в цепи обычно обозначается буквой «I», и эта буква используется в уравнениях, таких как закон Ома, где V = I⋅R.
Что такое электрический ток: основы
Основная концепция тока состоит в том, что это движение электронов внутри вещества. Электроны — это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны плотно удерживаются внутри молекул, а иногда они удерживаются свободно, и они могут относительно свободно перемещаться по структуре.
Одно очень важное замечание относительно электронов — это то, что они заряженные частицы — они несут отрицательный заряд. Если они перемещаются, то перемещается некоторое количество заряда, и это называется током.
Также стоит отметить, что количество электронов, которые могут двигаться, определяет способность определенного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.
Движение свободных электронов обычно очень случайное — оно случайное — столько электронов движется как в одном направлении, так и в другом, и в результате отсутствует общее движение заряда.
Случайное движение электронов в проводнике со свободными электронами
Если на электроны действует сила, перемещающая их в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и в некоторой степени случайным образом, но в целом движение происходит в одном направлении. Одно направление.
Сила, которая действует на электроны, называется электродвижущей силой или ЭДС, а ее величина — это напряжение, измеряемое в вольтах.
Электронный поток под действием приложенной электродвижущей силы
Чтобы лучше понять, что такое ток и как он действует в проводнике, его можно сравнить с потоком воды в трубе.У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией тока и протекания тока.
Ток можно рассматривать как воду, текущую по трубе. Когда давление оказывается на один конец, вода движется в одном направлении и течет по трубе. Расход воды пропорционален давлению на конце. Давление или силу, приложенную к концу, можно сравнить с электродвижущей силой.
Когда к трубе прикладывается давление или вода течет в результате открытия крана, вода течет практически мгновенно.То же самое и с электрическим током.
Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда миллиардов электронов в секунду для тока в один ампер.
Обычный ток и поток электронов
Часто существует множество недоразумений относительно обычного потока тока и потока электронов. Сначала это может немного сбивать с толку, но на самом деле все довольно просто.
Частицы, переносящие заряд по проводникам, являются свободными электронами.Направление электрического поля в цепи по определению является направлением проталкивания положительных испытательных зарядов. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.
Электронный и обычный ток
Это произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь называем положительными носителями заряда. Это означало, что тогда раннее соглашение о направлении электрического тока было установлено как направление, в котором будут двигаться положительные заряды.Это соглашение сохранилось и используется до сих пор.
Итого:
- Обычный ток: Обычный ток идет от положительного вывода к отрицательному и указывает направление, в котором будут протекать положительные заряды.
- Электронный поток: Электронный поток идет от отрицательного полюса к положительному. Электроны заряжены отрицательно и поэтому притягиваются к положительному полюсу так же, как притягиваются разные заряды.
Это соглашение, которое используется во всем мире по сей день, даже если оно может показаться немного странным и устаревшим.
Скорость движения электрона или заряда
Скорость передачи электрического тока сильно отличается от скорости реального движения электронов. Сам электрон отскакивает в проводнике и, возможно, движется вдоль проводника только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.
Возьмем другой пример. В почти полном вакууме внутри электронно-лучевой трубки электроны движутся почти по прямым линиям со скоростью примерно в одну десятую скорости света.
Влияние тока
Когда электрический ток течет по проводнику, есть несколько признаков, указывающих на то, что ток течет.
- Тепло рассеивается: Возможно, наиболее очевидным является то, что тепло выделяется. Если ток небольшой, то количество выделяемого тепла, вероятно, будет очень небольшим и его можно не заметить.Однако если ток больше, возможно, выделяется заметное количество тепла. Электрический огонь — яркий пример того, как ток вызывает выделение тепла. Фактическое количество тепла зависит не только от тока, но также от напряжения и сопротивления проводника.
- Магнитный эффект: Еще один эффект, который можно заметить, — это создание магнитного поля вокруг проводника. Если в проводнике течет ток, это можно обнаружить.Если поднести компас к проводу, по которому идет достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле слишком быстро меняется, и игла не может реагировать, а два провода (под напряжением и нейтраль), расположенные близко друг к другу в одном кабеле, нейтрализуют поле.
Магнитное поле, создаваемое током, находит хорошее применение во многих областях. Намотав провод в катушку, можно усилить эффект и создать электромагнит.Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать колебания в диафрагме, которые позволяют преобразовывать электронные токи в звуки.
Как измерить ток
Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является таким ключевым фактором в электрических и электронных схемах, очень важно знать, какой ток течет.
Есть много разных способов измерения тока. Один из самых простых — использовать мультиметр.
Как измерить ток с помощью цифрового мультиметра:
Используя цифровой мультиметр, цифровой мультиметр, можно легко измерить ток, поместив цифровой мультиметр в цепь, по которой проходит ток. Цифровой мультиметр даст точные показания тока, протекающего в цепи
.
Узнайте , как измерить ток с помощью цифрового мультиметра.
Хотя существуют и другие методы измерения тока, это наиболее распространенный.
Ток — один из самых важных и фундаментальных элементов в электрических и электронных технологиях. Ток, протекающий в цепи, можно использовать различными способами: от генерирования тепла до переключения схем или сохранения информации в интегральной схеме.
Дополнительные основные понятия:
Напряжение
ток
Сопротивление
Емкость
Сила
Трансформеры
RF шум
Децибел, дБ
Q, добротность
Вернуться в меню «Основные понятия».. .
11 функций мышечной системы: схемы, факты и структура
Поделиться на Pinterest На мышцы приходится около 40 процентов веса человека, при этом самая большая мышца в теле — большая ягодичная мышца ягодиц.
Мышечная система состоит из более 600 мышц, которые работают вместе, чтобы обеспечить полноценное функционирование тела.
В теле есть 3 типа мышц:
Скелетная мышца
Скелетные мышцы — единственные мышцы, которыми можно сознательно управлять.Они прикреплены к костям, и сокращение мышц вызывает движение этих костей.
Любое сознательное действие человека предполагает задействование скелетных мышц. Примеры таких действий включают бег, жевание и письмо.
Гладкая мышца
Гладкая мышца выстилает внутреннюю поверхность кровеносных сосудов и органов, таких как желудок, также известна как висцеральная мышца.
Это самый слабый тип мышц, но он играет важную роль в перемещении пищи по пищеварительному тракту и поддержании кровообращения по кровеносным сосудам.
Гладкие мышцы действуют непроизвольно и не могут контролироваться сознательно.
Сердечная мышца
Сердечная мышца, расположенная только в сердце, перекачивает кровь по всему телу. Сердечная мышца стимулирует собственные сокращения, которые формируют наше сердцебиение. Сигналы нервной системы контролируют скорость сокращения. Этот тип мышц сильный и действует непроизвольно.
Основные функции мышечной системы следующие:
1. Подвижность
Основная функция мышечной системы — обеспечивать движение.Когда мышцы сокращаются, они способствуют грубому и тонкому движению.
Грубое движение относится к большим, скоординированным движениям и включает:
Тонкое движение включает в себя более мелкие движения, например:
- письмо
- разговор
- выражение лица
За этот тип действий обычно отвечают меньшие скелетные мышцы .
Большая часть мышечных движений тела находится под сознательным контролем. Однако некоторые движения рефлексивны, например, отдергивание руки от источника тепла.
2. Стабильность
Мышечные сухожилия растягиваются над суставами и способствуют стабильности суставов. Мышечные сухожилия в коленном и плечевом суставах имеют решающее значение для стабилизации.
Основные мышцы — это мышцы живота, спины и таза, они также стабилизируют тело и помогают при выполнении таких задач, как поднятие тяжестей.
3. Осанка
Скелетные мышцы помогают удерживать тело в правильном положении, когда кто-то сидит или стоит. Это называется позой.
Хорошая осанка зависит от сильных гибких мышц. Жесткие, слабые или напряженные мышцы способствуют неправильной осанке и неправильному расположению тела.
Длительная неправильная осанка приводит к боли в суставах и мышцах плеч, спины, шеи и других мест.
4. Кровообращение
Сердце — это мышца, которая качает кровь по всему телу. Движение сердца находится вне сознательного контроля, и оно автоматически сокращается при стимуляции электрическими сигналами.
Гладкие мышцы артерий и вен играют дополнительную роль в кровообращении по всему телу.Эти мышцы поддерживают кровяное давление и кровообращение в случае кровопотери или обезвоживания.
Они расширяются, чтобы увеличить кровоток во время интенсивных упражнений, когда организму требуется больше кислорода.
5. Дыхание
Дыхание задействует диафрагму.
Диафрагма — это куполообразная мышца, расположенная ниже легких. Когда диафрагма сжимается, она толкается вниз, в результате чего грудная полость увеличивается. Затем легкие наполняются воздухом.Когда мышца диафрагмы расслабляется, она выталкивает воздух из легких.
Когда кто-то хочет дышать глубже, ему требуется помощь других мышц, включая мышцы живота, спины и шеи.
6. Пищеварение
Поделиться на PinterestМышечная система позволяет двигаться внутри тела, например, во время пищеварения или мочеиспускания.
Гладкие мышцы желудочно-кишечного тракта или желудочно-кишечного тракта контролируют пищеварение. Желудочно-кишечный тракт простирается ото рта до ануса.
Пища движется по пищеварительной системе волнообразным движением, которое называется перистальтикой.Мышцы в стенках полых органов сокращаются и расслабляются, вызывая это движение, которое продвигает пищу через пищевод в желудок.
Верхняя мышца желудка расслабляется, позволяя пище проникнуть, в то время как нижние мышцы смешивают частицы пищи с желудочной кислотой и ферментами.
Переваренная пища перемещается из желудка в кишечник по перистальтике. Отсюда сокращается больше мышц, чтобы вывести пищу из организма в виде стула.
7. Мочеиспускание
Мочевыделительная система включает гладкие и скелетные мышцы, в том числе:
- мочевой пузырь
- почки
- половой член или влагалище
- простата
- мочеточники
- уретра
мышцы и нервы должны работать вместе, чтобы удерживать и выводить мочу из мочевого пузыря.
Проблемы с мочеиспусканием, такие как плохой контроль мочевого пузыря или задержка мочи, вызваны повреждением нервов, передающих сигналы мышцам.
8. Роды
Гладкие мышцы матки расширяются и сокращаются во время родов. Эти движения проталкивают ребенка через влагалище. Кроме того, мышцы тазового дна помогают направлять голову ребенка по родовым путям.
9. Зрение
Шесть скелетных мышц вокруг глаза контролируют его движения. Эти мышцы работают быстро и точно и позволяют глазу:
- поддерживать стабильное изображение
- сканировать окружающую область
- отслеживать движущиеся объекты
Если кто-то испытывает повреждение глазных мышц, это может ухудшить его зрение.
10. Защита органов
Мышцы туловища защищают внутренние органы спереди, по бокам и сзади тела. Кости позвоночника и ребра обеспечивают дополнительную защиту.
Мышцы также защищают кости и органы, поглощая удары и уменьшая трение в суставах.
11. Регулировка температуры
Поддержание нормальной температуры тела — важная функция мышечной системы. Почти 85 процентов тепла, которое человек производит в своем теле, происходит от сокращения мышц.
Когда температура тела падает ниже оптимального уровня, скелетные мышцы увеличивают свою активность, выделяя тепло. Дрожь — один из примеров этого механизма. Мышцы кровеносных сосудов также сокращаются, чтобы поддерживать тепло тела.
Температуру тела можно вернуть в нормальный диапазон за счет расслабления гладких мышц в кровеносных сосудах. Это действие увеличивает кровоток и высвобождает избыточное тепло через кожу.
Датчики и выключатели для лифтов и лифтов
Лифты для передвижения людей подразделяются на коммерческие и жилые и имеют разные нормы и требования безопасности.Обычно лифты / лифты с приводом от электродвигателей представляют собой вертикальные транспортные средства, которые перемещают людей или товары между этажами здания. Датчики и переключатели Honeywell можно найти по всей шахте лифта и кабине.
- Компактный концевой выключатель серии NGC может использоваться для контроля движущихся компонентов, чтобы гарантировать, что они остаются в заданном диапазоне движения. Если концевой выключатель, отслеживающий движение, обнаруживает оборудование, его можно использовать для выключения машины.
- Honeywell Relialign ™ обеспечивают безопасную и безопасную работу многих жилых и коммерческих лифтов.В серии Relialign ™ используется блокирующий соленоид, чтобы дверь лифта не открывалась, когда ситуация потенциально опасна.
- 2450CM используются в блоке управления системой в качестве реле перегрева, чтобы предотвратить перегрев системы.
- модели 41 предназначены для определения веса груза на лифте, чтобы он не двигался в случае перегрузки.
- MICRO SWITCH GLS Глобальные концевые выключатели используются в коммерческих лифтах, помимо подъемников для инвалидных колясок, для определения положения лифта или этажа лифта.В коммерческих лифтах также используются концевые выключатели в буферной системе.
Дверные блокировочные выключатели серий RDI и CDI
Биметаллические датчики обнаружения тепла серии
Низкопрофильные весоизмерительные ячейки с тяговыми пластинами серии