Бетон при отрицательных температурах: Бетонирование при отрицательных температурах

Содержание

Бетонные работы при отрицательных температурах

Сайт строителя

Выдержки из СНиП имеющие отношение к бетонным работам в зимнее время: транспортировка, укладка бетонной смеси, как заливать бетон зимой при отрицательных температурах.

СНиП. ПРОИЗВОДСТВО БЕТОННЫХ РАБОТ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ ВОЗДУХА

2.53. Настоящие правила выполняются в период производства бетонных работ при ожидаемой среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С.

2.54. Приготовление бетонной смеси следует производить в обогреваемых бетоносмесительных установках, применяя подогретую воду, оттаянные или подогретые заполнители, обеспечивающие получение бетонной смеси с температурой не ниже требуемой по расчету. Допускается применение неотогретых сухих заполнителей, не содержащих наледи на зернах и смерзшихся комьев. При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.55. Способы и средства транспортирования должны обеспечивать предотвращение снижения температуры бетонной смеси ниже требуемой по расчету.

2.56. Состояние основания, на которое укладывается бетонная смесь, а также температура основания и способ укладки должны исключать возможность замерзания смеси в зоне контакта с основанием. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания.

При температуре воздуха ниже минус 10 °С бетонирование густоармированных конструкций с арматурой диаметром больше 24 мм, арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры или местным вибрированием смеси в приарматурной и опалубочной зонах, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45 °С). Продолжительность вибрирования бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями.

2.57. При бетонировании элементов каркасных и рамных конструкций в сооружениях с жестким сопряжением узлов (опор) необходимость устройства разрывов в пролетах в зависимости от температуры тепловой обработки, с учетом возникающих температурных напряжении, следует согласовывать с проектной организацией. Неопалубленные поверхности конструкций следует укрывать паро- и теплоизоляционными материалами непосредственно по окончании бетонирования.

Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

2.58. Перед укладкой бетонной (растворной) смеси поверхности полостей стыков сборных железобетонных элементов должны быть очищены от снега и наледи.

2.59. Бетонирование конструкций на вечномерзлых грунтах следует производить в соответствии со СНиП II-18-76.

Ускорение твердения бетона при бетонировании монолитных буронабивных свай и замоноличивании буроопускных следует достигать путем введения в бетонную смесь комплексных противоморозных добавок, не снижающих прочность смерзания бетона с вечномерзлым грунтом.

2.60. Выбор способа выдерживания бетона при зимнем бетонировании монолитных конструкций следует производить в соответствии с рекомендуемым приложением 9.

2.61. Контроль прочности бетона следует осуществлять, как правило, испытанием образцов, изготовленных у места укладки бетонной смеси. Образцы, хранящиеся на морозе, перед испытанием надлежит выдерживать 2-4 ч при температуре 15-20 °С.

Допускается контроль прочности производить по температуре бетона в процессе его выдерживания.

2.62. Требования к производству работ при отрицательных температурах воздуха установлены в таблице. 6

6. Требования к производству бетонных работ при отрицательных температурах.
ПараметрВеличина параметраКонтроль (метод, объем, вид регистрации)
Заливать бетон при отрицательных температурах.
1. Прочность бетона монолитных и сборно-монолитных конструкций к моменту замерзания:Измерительный по ГОСТ 18105-86, журнал работ
для бетона без противоморозных добавок:
конструкций, эксплуатирующихся внутри зданий, фундаментов под оборудование, не подвергающихся динамическим воздействиям, подземных конструкцийНе менее 5 МПа
конструкций, подвергающихся атмосферным воздействиям в процессе эксплуатации, для класса:Не менее, % проектной прочности:
В7,5-В1050
В12,5-В2540
В30 и выше30
конструкций, подвергающихся по окончании выдерживания переменному замораживанию и оттаиванию в водонасыщенном состоянии или расположенных в зоне сезонного оттаивания вечномерзлых грунтовпри условии введения в бетон воздухововлекающих или газообразующих ПАВ70
в преднапряженных конструкциях80
для бетона с противоморозными добавкамиК моменту охлаждения бетона до температуры, на которую рассчитано количество добавок, не менее 20 % проектной прочности
2. Загружение конструкций расчетной нагрузкой допускается после достижения бетоном прочностиНе менее 100 % проектной
3. Температура воды и бетонной смеси на выходе из смесителя, приготовленной:Измерительный, 2 раза в смену, журнал работ
на портландцементе, шлакопортландцементе, пуццолановом портландцементе марок ниже М600Воды не более 70 °С, смеси не более 35 °С
на быстротвердеющем портландцементе и портландцементе марки М600 и вышеВоды не более 60°С,смеси не более 30 °С
на глиноземистом портландцементеВоды не более 40 С, смеси не более 25 °С
Температура бетонной смеси, уложенной в опалубку, к началу выдерживания или термообработки:Измерительный, в местах, определенных ППР, журнал работ
при методе термосаУстанавливается расчетом, но не ниже 5°С
с противоморозными добавкамиНе менее чем на 5 С выше температуры замерзания раствора затворения
при тепловой обработкеНе ниже 0 °С
5. Температура в процессе выдерживания и тепловой обработки для бетона на:Определяется расчетом, но не выше, °С:При термообработке — через каждые 2 ч в период подъема температуры или в первые сутки. В последующие трое суток и без термообработки — не реже 2 раз в смену. В остальное время выдерживания — один раз в сутки
портландцементе80
шлакопортландцементе90
6. Скорость подъема температуры при тепловой обработке бетона:Измерительный, через каждые 2 ч, журнал работ
для конструкций с модулем поверхности:Не более, °С/ч:
до 45
от 5 до 1010
св. 1015
для стыков20
7. Скорость остывания бетона по окончании тепловой обработки для конструкций с модулем поверхности:Измерительный, журнал работ
до 4Определяется расчетом
от 5 до 10Не более 5°С/ч
св. 10Не более 10°С/ч
8. Разность температур наружных слоев бетона и воздуха при распалубке с коэффициентом армирования до 1 %, до 3 % и более 3 % должна быть соответственно для конструкций с модулем поверхности:То же
от 2 до 5Не более 20, 30, 40 °С
св. 5Не более 30, 40, 50 °С

Источник: СНиП 3.03.01-87

Температурный режим при заливке бетона

Чтобы готовое изделие из бетона, после заливки, набрало необходимую проектную прочность и прослужило долгие годы, необходимо соблюдать температурный режим во время твердения. Оптимальная температура для твердения бетона +20С, при которой бетон набирает прочность за 28 суток. Но что делать, если вы заливаете фундамент осенью, когда температура воздуха чуть выше нуля? Современные технологии позволяют справиться с этой проблемой. Более того, при соблюдении определённых мер, бетонные работы можно производить даже зимой.

Процесс набора прочности бетонных конструкций

Чтобы ответить на вопрос: «При какой температуре можно заливать бетон?», необходимо понять, что происходит с бетоном во время твердения. После приготовления бетонной смеси в ней начинает происходить химическая реакция между водой и цементом. Этот процесс называют гидратацией цемента, которая проходит две стадии:

  • схватывание
  • твердение

При схватывании в реакции участвуют алюминаты (С3А). В результате образуются иглообразные кристаллы, которые связываются между собой. Спустя 6 — 10 часов из этих кристаллов образуется подобие скелета.

С этого момента начинается твердение бетона. Здесь уже вступают в реакцию с водой клинкерные минералы (C3S и C2S) и начинает формироваться силикатная структура. В результате этой реакции образуются мелкие кристаллы, которые объединяются в мелкопористую структуру, что по сути и является бетоном.

Влияние отрицательной температуры на твердение бетона

Зимнее бетонирование

Скорость течения гидратации сильно зависит от температуры. Снижение температуры с +20С до +5С увеличивает время твердения бетона до 5 раз. Но особенно резко замедляется реакция при дальнейшем снижении до 0С. А при отрицательной температуре гидратация прекращается, т.к. вода замерзает. Как известно, вода при замерзании расширяется. Это приводит к увеличению давления внутри бетонной смеси и разрушению сформировавшихся связей кристаллов. Как следствие происходит разрушение структуры бетона. Также образовавшийся лёд обволакивает крупные элементы заполнителей смеси (щебень, арматуру), разрушая их связи между цементным тестом. Это приводит к ухудшению монолитности конструкции.

При оттаивании воды процесс твердения возобновляется, но уже при деформированной структуре бетона. Что может привести не только к отслоению арматуры и больших элементов заполнителя бетонной смеси, но и к трещинам. Естественно, прочность такой бетонной конструкции будет гораздо меньше расчетной.

Следует заметить, что чем раньше бетон подвергся замораживанию, тем меньше будет его прочность.

Бетонирование зимой

Строительство зимой

Так как низкая температура значительно снижает скорость твердения, а мороз губительно сказывается на конструкции в целом, значит бетон надо согреть. Причем необходимо обеспечить равномерный прогрев. Минимальная температура для заливки бетона должна быть выше +5С. Если температура внутри смеси будет больше температуры снаружи смеси, то это может привести к деформации конструкции и образованию трещин. Прогревают бетон до момента набора критической прочности. При отсутствии данных в проектной документации о значении критической прочности она должна быть не менее 70% от проектной прочности. Если установлены требования по показателям морозостойкости и водонепроницаемости, то критическая прочность должна быть не менее 85% от проектной.

При заливке бетона в минусовую температуру используют разные технологии прогрева бетона. Чаще всего применяют способы:

  • Термоса
  • Электронагрева
  • Паропрогрева

Метод термоса

Данный метод используется при массивных конструкциях. Он не требует дополнительного обогрева, но температура укладываемой смеси должна быть более +10С. Суть данного метода состоит в том, чтобы уложенная смесь, остывая, успела набрать критическую прочность. Химическая реакция твердения бетона является экзотермической, т.е. выделяется тепло. Поэтому, бетонная смесь подогревает сама себя. При отсутствии теплопотерь бетон может разогреться до температуры более 70С. Если опалубку и открытые поверхности защитить теплоизолирующим материалом, снизив таким образом теплопотери твердеющего бетона, вода не замерзнет и бетонная конструкция будет набирать прочность.

Для реализации метода термоса не требуется дополнительного оборудования, поэтому он является экономичным и простым.

Электронагрев бетонной смеси

Электропрогрев бетона зимой

 

Если в установленные сроки нельзя обеспечить набор критической прочности методом термоса, то прибегают к электронагреву. Разделяют три основных способа:

  • прогрев электродами
  • индукционный нагрев
  • использование электронагревательных приборов

Способ прогрева электродами заключается в следующем, в свежеуложенную смесь вводят электроды и подают на них ток. При протекании электрического тока электроды нагреваются и обогревают бетон. Следует отметить, что ток должен быть переменным, т.к. при постоянном токе происходит электролиз воды с выделением газа. Этот газ экранирует поверхность электродов, сопротивление тока возрастает и нагрев существенно снижается. Если в конструкции используется железная арматура, то её можно использовать в качестве одного из электродов. Важно обеспечить равномерность прогрева бетона, и осуществлять контроль температуры. Она не должна превышать 60С.

Расход электроэнергии при данном способе варьируется в пределах 80 – 100 кВт*ч на 1 м3 бетона.

Индукционный прогрев используется редко, в силу сложности реализации. Он основан на принципе бесконтактного нагрева электропроводящих материалов токами высокой частоты. Вокруг стальной арматуры обматывают изолированный провод и пропускают через него ток. В результате появляется индукция и происходит нагрев арматуры.

Расход энергии при индукционном прогреве составляет 120 – 150 кВт*ч на 1 м3 бетона.

Прогрев матами

Ещё один из способов электронагрева бетона – это применение электронагревательных приборов. Существуют греющие маты, которые раскладываются на поверхности бетона и включаются в сеть. Так же можно соорудить над бетоном подобие палатки и уже внутри поставить электронагревательные приборы, например тепловую пушку. Но в данном случае необходимо позаботиться об удержании влаги в бетоне, не допустить преждевременного высыхания.

При температуре окружающего воздуха -20С расход электроэнергии, при данном методе, будет составлять 100 — 120 кВт*ч на 1 м3 бетона.

Паропрогрев бетона

Прогрев бетона паром является весьма эффективным и рекомендуется для тонкостенных конструкций. С внутренней стороны опалубки создаются каналы, через которые пропускают пар. Можно сделать двойную опалубку и пропускать пар между её стенками. Так же можно проложить трубы внутри бетона, и пропускать пар по ним. Бетон этим способом нагревают до 50 – 80С. Такая температура и благоприятная влажность ускоряет твердение бетона в несколько раз. Например, за двое суток, при данном методе, бетон набирает такую же прочность как при недельном твердении в нормальных условиях.

Но у этого метода есть существенный недостаток. Требуются внушительные затраты на его организацию.

Использование присадок

Ещё одним способом зимнего бетонирования является использование химических ускорителей твердения и противоморозных добавок. К ним относятся хлористые соли, нитрит натрия, карбонат кальция и др. Эти добавки понижают температуру замерзания воды и ускоряют гидратацию цемента. Их использование позволяет обойтись без прогрева бетона. Некоторые добавки повышают морозостойкость бетона, тем самым гидратация происходит даже при -20С.

Использование присадок обладает рядом недостатков. Их наличие в смеси пагубно сказывается на арматуре, начинается процесс коррозии. Поэтому использовать их можно только в неармированной конструкции. Также, при использовании противоморозных добавок, в зимний период, бетон наберёт прочность не более 30%. При наступлении плюсовой температуры произойдет оттаивание и дальнейший процесс набора прочности. Поэтому в бетоне, работающем при динамических нагрузках (фундамент под вибростанки, молоты и т.д.), использовать добавки нельзя.

Бетонирование в условиях сухого жаркого климата

Бетон в жару

Наряду с холодом бетон боится жары. Если температура окружающего воздуха превышает 35С и влажность менее 50%, то это способствует повышенному испарению воды из бетонной смеси. В результате водноцементный баланс нарушается и процесс гидратации замедляется или вовсе прекращается. Поэтому необходимо применять определённые меры по защите смеси от потери влаги. Можно понизить температуру свежеприготовленной смеси, если использовать охлаждённую воду, либо разбавить воду льдом. Этот нехитрый способ позволит избежать значительной потери воды при укладке смеси. Но через некоторое время смесь нагреется, поэтому следует позаботиться о дальнейшей герметичности конструкции. Опалубка должна быть герметичной, чтобы избежать потерь влаги через трещины. Впитывающую поверхность опалубки необходимо обработать специальным составом, ограничивающим сцепку с бетоном и поглощение влаги из него.

Необходимо оградить твердеющий бетон от воздействия прямых солнечных лучей. Для этого поверхность бетона укрывают мешковиной или брезентом. Через каждые 3 — 4 часа необходимо производить смачивание поверхности. Причём период увлажнения может достигать 28 суток, т.е. до полного набора прочности.

Одним из способов защиты при дефиците воды является возведение над поверхностью бетонной конструкции воздухонепроницаемого колпака из плёнки ПВХ толщиной не менее 0,2 мм.

Заключение

При +20С бетон набирает прочность за 28 суток. Бетонная смесь, без использования методов нагрева или охлаждения, твердеет при температуре от +5С до +35С. Но время набора проектной прочности будет разным. Чем выше температура смеси, тем быстрее она твердеет. Для заливки бетона выходящего за рамки указанной температуры, необходимо использовать определённые методы.

При отрицательных температурах надо прибегать к методам нагрева на протяжении всего срока набора критической прочности. Необходимо чтобы нагрев смеси был равномерным, без больших перепадов температуры в центре и на периферии. Так же необходимо осуществлять постоянный контроль за температурой.

Если же температура выше +35С, то необходимо принимать меры по охлаждению смеси в момент приготовления, транспортировки и укладки. Это делается для предотвращения потери воды и, как следствие, нарушению водноцементного баланса, что негативно сказывается на прочности бетонной конструкции. После укладки необходимо либо увлажнять бетон, либо обеспечить герметичность конструкции.

варианты и их особенности, рекомендации специалистов

Строительные работы, особенно при сжатых сроках исполнения, зачастую проводятся в крайне неудобных погодных условиях. Заливка фундамента, его срочный ремонт или формирование бетонного пола – то есть любые действия, подразумевающие готовку и укладку бетонной массы, лимитированы довольно узким диапазоном температурных значений окружающей среды.

Точнее, низкие температуры оказывают немалое влияние на течение процессов структурного схватывания, отвердения и набора бетоном полноценной марочной прочности.

Чтобы разобраться в осуществимости заливки бетона при низких и минусовых температурах, рассмотрим разработанные технологии, призванные предупредить потенциально возможные неприятности.

Специфика бетонного раствора

Комплекс физико-химических свойств бетона обуславливает оптимальную температуру работы с ним. Диапазон составляет от +17,3 до +25,8 градуса. Подходящие условия гарантируют набор заявленной марочной прочности схватившегося и отвердевшего раствора приблизительно через 27–29 суток.

Скорость гидратационного процесса в цементе существенно замедлится при снижении температуры менее +17 С и практически полностью останавливается при +5,2 С. Дальнейшее падение до минусовых значений вызовет замерзание воды, содержащейся в растворе с формированием большего по суммарному объёму ледяного вещества. Появляющиеся силы распирающего (внутреннего) давления ведут к потере плотности и разрыхлению внутренней структуры бетона. Остающаяся монолитность поддерживается только за счёт прочно смёрзшейся влаги.

Когда температура возрастёт, вода начнёт оттаивать и реакция цементной гидратации возобновится с постепенным затвердеванием бетона. Но, последствия предыдущего нарушения структурных связей при заморозке негативно отразится на прочности созданного монолита.

После ряда экспериментальных исследований и специальных расчётов были выявлены критические точки, ограничивающие пределы в которых различные марки бетонных смесей без существенных последствий могли бы замораживаться. Критический уровень прочности, который необходимо набрать бетону для прекращения заметных воздействий на прочностные характеристики возводимой конструкции был зафиксирован на уровне в 50% от показателя марочной прочности.

Посмотрите видео о заливке бетона в зимнее время

В результате, работы по заливке бетонного раствора при низких (отрицательных) температурах сводятся к принятию эффективного комплекса мер, препятствующих замерзанию жидкой воды до времени полноценного набора внутренней критической прочности. Для этого применяются несколько эффективных методик:

— подогрев уложенной смеси;

— изготовление раствора из заранее подогретых компонентов;

— холодное бетонирование составом, содержащим дополнительные химические присадки, уменьшающие точку замерзания;

— утепление опалубки.

Каждый способ имеет своё рациональное применение, что определяется исполнением заявленных характеристик прочности, доступностью и наличием энергоресурсов, а также, объёмом возводимого строения. Однако, метеоусловия являются определяющим обстоятельством при выборе оптимального варианта заливки.

Принять к сведению! Все способы, упомянутые выше, можно применять отдельно (поодиночке) или в комплексе!

Подогрев уложенной бетонной смеси

В создании хороших условий для нормального вызревания бетонной массы при внешних отрицательных температурах помогает электрический ток, подведённый непосредственно к электродам. Особые металлические пластины или стержни погружают в раствор или размещают на поверхности опалубки, подсоединив к различным полюсным контактам источника электротока. Бетон, содержащий достаточное количество воды, замыкает цепь. За счёт наличия собственного сопротивления он преобразует в тепло всю электроэнергию, нагреваясь при этом.

Такая методика существенно сокращает период вызревания бетона, который может приобретать до 78,4% критической прочности уже к 26-дневному возрасту.

Описываемая технология применяется только для малоармированных или вовсе неармированных конструкций. Это, наряду с экономически затратным расходом электричества, является весомым недостатком рассматриваемого способа обогрева раствора.

В частном строительстве, где фундаменты не отличаются объёмностью, будет лучше осуществить прокладку согревающих кабелей по внутренней поверхности опалубочных щитов или по арматурному остову. Одновременно нужно надёжно термоизолировать всю конструкцию, не оставляя возможности теплу «уходить» через стенки.

Внимание! Подогрев бетонной массы требует надлежащего круглосуточного контролирования. Измерения следует делать регулярно, каждые несколько часов. Нельзя допускать нагрева свыше 30 градусов!

Вторым, более современным способом внешнего теплового воздействия, используемым в зимнем строительстве, является применение специальных термоматов. В принципе, это электрогрелки больших размеров, состоящие из герметичной водонепроницаемой оболочки, теплоизоляции и нагревательного элемента.

Согревающие маты способствуют равномерному распространению температурного поля внутри бетона и на окружном расстоянии до 19,5 см. Такие термоматы можно использовать при внешней температуре до –20 градусов.

Бетонирование разогретым раствором (использование собственного тепла)

Такой способ эффективен в применении, если суточные температурные колебания едва опускаются ниже нулевой отметки, а также когда заморозки минимальны (до –4 С). Методика заключается в закладке нагретой бетонной смеси в предварительно подготовленную утеплённую опалубку.

Особенность! В данном случае очень важно грамотно подобрать марку порошкового цемента. Чем выше числовая маркировка, тем меньше времени требуется на схватывание и последующее затвердевание смеси. Будет больше выделяться тепловой энергии при гидратации!

Производить замес нужно на воде, разогретой до 85 градусов (это минимальное значение) и наполнителях, заблаговременно прогретых потоком горячего воздуха.

Здесь, порядок закладки смешиваемых компонентов отличается от обычной технологии:

— заливается вода в бетономешалку;

— добавляется щебень со строительным песком;

— порошковый цемент (комнатная температура) вводится в последнюю очередь, только после трёх (минимум) оборотов бака установки.

Важно! Недопустимо предварительное разогревание цемента, а также его засыпка в очень горячую воду!

В зимний сезон рекомендуется использовать автоматическую бетономешалку с электронагревом рабочего барабана. На выходе, температура приготовленного раствора должна быть 36–46 градусов.

Чтобы бетон нормально набрал критическую прочность, следует дольше сохранять необходимый тепловой режим. Нельзя допускать быстрой потери тепла и скорого остывания раствора. Удерживать тепло можно любыми доступными материалами – соломенные маты, брезент, полиэтиленовая плёнка и т. п.

Самым эффективным вариантом считается применение опалубки из экструзионного пенополистирола. Он обладает небольшим коэффициентом теплопроводности, позволяющим удлинить временной интервал постепенного остывания, что способствует более полноценному вызреванию бетона. Кроме того, пенополистирольная опалубка является несъёмной конструкцией и в дальнейшем будет обеспечивать дополнительную теплоизоляцию.

Холодное бетонирование раствором, содержащим специальные присадки

Противоморозные добавки широко используются для возможности достижения бетонной массой критической прочности при заливке в холодное время. Они помогают нормально протекать гидратационной реакции цемента, нормализуют процесс затвердевания бетона, предотвращая несвоевременное замерзание воды в смеси.

Присадки обладают такими положительными свойствами:

— увеличивают текучесть и подвижность бетонного раствора, облегчая рабочие манипуляции с ним;

— понижают кристаллизационную точку для воды, содержащейся в составе;

— защищают металлические вставки (арматуру) от коррозии;

— способствуют быстрому набору нужной критической прочности.

Существенно! Противоморозные присадки нужно применять лишь при отрицательном значении температуры, в строгой пропорциональности, обозначенной в прилагаемой рецептурной инструкции. Если их использовать в неправильном количестве, то высока вероятность ухудшения свойств бетонного раствора!

Наиболее часто применяемыми противоморозными присадками для бетонных смесей являются:

— нитрит натрия – нельзя добавлять в глиноземистые цементы (ГЦ40 – ГЦ60). Добавка позволяет работать с раствором при окружающей температуре не менее –14,5 градуса;

— поташ и другие составы с монокарбонкислотными солями – ускоряют процесс затвердевания бетона. Они не формируют на поверхности высолов и не потворствуют коррозии металлической арматуры. Допускают работу с раствором при тридцатиградусном морозе, прекрасно сохраняя его важнейшие качества;

— формиат натрия – применяется исключительно в комбинации с добавками-пластификаторами. При других сочетаниях может создавать дефектные пустоты в бетоне из-за образования солевых скоплений;

— хлористый натрий – активно применяется одновременно с портландцементами (сульфатостойкий, белый, с умеренной экзотермией, цветной и др.) Добавка пластифицирует раствор, препятствуя его ускоренному загустению. При этом вещество обладает важным недостатком – действует разрушающе на железную арматуру.

Методика холодного бетонирования обладает некоторыми отрицательными особенностями:

— бетон обладает сниженным показателем водопроницаемости и морозостойкости;

— уложенный в опалубку раствор имеет более высокую степень усадки;

— способ нельзя применять в предварительно напряжённых строительных конструкциях.

Утепление опалубки

Обеспечить благоприятные условия для полноценного набора критической прочности монолитным сооружением можно путём постройки временных тепляков.

Это наиболее надёжная методика, способствующая стабильному поддержанию плюсовой температуры в уложенном бетоне. Она подразумевает создание временной конструкции над залитым массивом.

Тепляк – это прочный каркас, обитый листовой фанерой или обтянутый толстой полиэтиленовой плёнкой (принцип огородной теплицы). Габариты такой времянки должны быть предельно минимальными, но достаточными для работы. Внутреннее пространство нагревается при помощи инфракрасных обогревателей, портативных газовых горелок или калориферов.

Важным моментом здесь является постоянный контроль и регуляция оптимального влажностного режима. Циркулирующие разогретые воздушные потоки усиленно забирают влагу из раствора, а она необходима для нормальной реакции цементной гидратации. Чтобы воспрепятствовать интенсивному испарению влаги, поверхность уложенного бетона нужно накрыть полиэтиленовой плёнкой и с определённой периодичностью увлажнять тёплой водой.

Общие рекомендации для качественной заливки бетона при минусовой температуре

Все работы, относящиеся к бетонной заливке, рациональнее проводить при благоприятствующих условиях.

Нужно помнить! Комплекс работ по заливке следует начинать при температурном значении более + 9,5 градуса без ожидаемого понижения в течение ближайших 27 суток!

Разумеется, нынешние технологии позволяют проводить бетонирование и при более низких температурных значениях, но это чревато серьёзными финансовыми затратами. К нему следует прибегать, когда нет возможности сдвинуть запланированные сроки работ.

В любом случае стоит учитывать актуальные рекомендации специалистов, помогающие достичь отличного качества при проведении заливки:

— опалубка заранее должна быть очищена от инея или наледи и надёжно утеплена;

— заливку бетоном необходимо проводить с непрерывной подачей раствора за одну «рабочую сессию»;

— такие наполнители как щебень и песок, использующиеся для приготовления смеси, обязательно прогреваются для полного исключения возможности попадания включений снега или льда в замес;

— максимальная температура заливаемой массы не должна превышать 39,5–42 градуса;

— арматуру и дно котлована нужно предварительно прогреть до достижения хотя бы минимальной положительной температуры;

— готовые сегменты бетонной конструкции закрываются теплоизолирующим покрытием во избежание «ухода» внутреннего тепла.

Весь временной промежуток формирования бетонной критической прочности нужно соблюдать оптимальный температурный режим. Однако, не нужно забывать о контролировании равномерного распространения тепла внутри конструкции. Применение греющих токопроводящих кабелей может быстро привести к иссушению отдельных сегментов бетонного строения.

Заключение

При минусовых температурах бетон заливается, как правило, при больших капитальных строительствах. Для всего этого требуется специальное оборудование, значительные финансовые средства и наличие дополнительных стройматериалов. Рациональность выполнения таких работ в частном порядке определяется наличием должных ресурсов и полным осознанием рискованности затеянного мероприятия.

        Поделиться:

подогрев, добавки, правила зимнего бетонирования

На большей части территорий нашей страны холодная или прохладная температура сохраняется на протяжении более половины года. Если учесть, что при бетонных работах «зима» начинается с понижения температуры до +5oC, то «окно» для проведения работ с бетоном очень небольшое. Однако его можно расширить, причем значительно, за счет использования различных средств. Это так называемые технологии зимней заливки бетона.

Содержание статьи

Что происходит в бетоне при замерзании

При нормальном течении процесса отвердевания бетона, влага служит «склеивающим» элементом для частиц цемента. При ее переходе в твердое состояние все процессы останавливаются.

Но это — не единственная проблема. Известно, что при замерзании объем воды увеличивается примерно на 9%. В результате внутри массы бетона образуется повышенное давление.  Если зерна цемента до этого момента еще не набрали некоторого уровня прочности, они под воздействием давления, разрушаются. После рамерзания они уже не обретут свои свойства в полной мере и бетон не будет достаточно крепким.

Чтобы зимний бетон был крепким, необходимр создать условия или присадки для его вызреванияЧтобы зимний бетон был крепким, необходимр создать условия или присадки для его вызревания

В зимней заливке армируемых фундаментов есть еще один неблагоприятный момент. Сталь — отличный проводник тепла, и она способствует отводу тепла из толщи бетона. Обладая хорошими теплопроводными свойствами, прутки быстро остывают. Вокруг них вода замерзает в первую очередь. Лед оттесняет частицы бетона, на их место приходит пока не замерзшая вода из еще теплых слоев. Она тоже замерзает, еще дальше оттесняя бетон. В результате массив уже не является монолитом: каркас не связан с бетонным камнем. Прочность такого основания после размораживания и окончательного отвердения будет в разы ниже.

Их всех этих процессов следует, что чем меньше воды в несвязном состоянии будет находиться к моменту замерзания, тем меньше будут потери прочности. Путем различных экспериментов и расчетов были определены граничные значения прочности, при которых бетон можно замораживать. Называются  они точкой критической прочности. В зависимости от класса бетона и назначения здания, типа использования сооружения, требуется дождаться созревания некоторых составов на 20%, для других требуется все 100%.

Критическая прочность бетона в зависимости от его маркиКритическая прочность бетона в зависимости от его марки

Для железобетонов с ненапрягаемой арматурой (тип, который используется в частном домостроении)  она составляет 50%, для фундаментов, которые будут подвергаться попеременной разморозке/заморозке (бани и дачные домики без отопления) — 70%. После достижения этой точки фундамент можно заморозить. После оттаивания все процессы в нем возобновятся. Потери прочности при этом составляют не более 6%.

Способы бетонирования в зимних условиях

Скорость процесса твердения зависит от температуры раствора. При ее повышении активность воды значительно возрастает, скорость набора прочности повышается. Потому при проведении бетонных работ зимой или при температурах ниже +5oC, важно создать и поддержать требуемый уровень нагрева. Оптимальная температура вызревания раствора составляет от +20oC до +30oC. Для этого есть несколько способов:

  • раствор делать подогретым;
  • опалубку утеплить;
  • использовать присадки и добавки, которые ускоряют твердение и/или понижают точку заморозки воды;
  • подогревать уже залитую бетонную массу.

Все эти методы неплохо работают. Их используют по одиночке или в комплексе.

Заливка в зимнее время проводится подогретым растворомЗаливка в зимнее время проводится подогретым раствором

Прежде всего, необходимо правильно выбрать цемент для зимнего бетонирования фундамента. Известно, что во время твердения бетона происходят реакции, при которых теплота выделяется. Для зимы  — отличная особенность. При этом большее количество тепла выделяют быстротвердеющие портландцементы и составы высоких марок. Потому для замеса при низких или минусовых температурах имеет смысл купить именно их.

Только это позволит вам залить фундамент ленточный или плитный фундамент при плюсовых температурах днем, и незначительных заморозках по ночам. Но при этом, потребуется замес делать теплым (читайте ниже), а также после заливки фундамент нужно будет опалубку теплоизолировать: покрыть матами, соломой и т.д. Если у вас уже закуплен теплоизолятор, можно использовать его, только следить необходимо за его состоянием, прикрыть пленкой или другими влагоизолирующими материалами.

Повышение температуры в процессе замеса

Во время зимней заливки фундамента температуру раствора доводят до 35-40oC. Для этого разогревают воду и засыпку. Цемент греть ни в коем случае нельзя: он «заварится» и станет практически бесполезным.

Для замеса в зимнее время используют горячую воду и подогретую засыпку. Цемент греть нельзяДля замеса в зимнее время используют горячую воду и подогретую засыпку. Цемент греть нельзя

Хорошо, если есть возможность использовать бетономешалку с электроподогревом: ее включают в сеть и барабан разогревается. В другом случае, желательно прогреть его предварительно, прокрутив разогретую воду.

При замесе воду нагревают до 90 oC. Щебень и песок необходимо разогреть до 60 oC. Делают это обдувом горячим воздухом, прогревом в специальных печах. Печи — это для частного строителя из области фантастики, но можно устроить обдув горячим воздухом. Например, от печи или костра протянуть несколько труб-воздуховодов внутрь кучи щебня или песка.

Еще раз обращаем внимание: цемент не греть. Его можно занести в теплое помещение, чтобы он принял комнатную температуру, но подогревать нельзя.

При зимнем замесе раствора меняется порядок закладки составляющих: заливается вода, в нее засыпается щебень и песок. После нескольких оборотов добавляется цемент.

Ко всему необходимо еще и увеличить время замеса. Он должен быть длительнее на 20-50%: за счет лучшего перемешивания, активизируются реакции и повышается температура при твердении.

Утепление и подогрев раствора

Для продления времени остывания бетона требуется по максимуму сохранить тепло. Потому, используя все возможные средства и доступные материалы, проводят утепление стенок опалубки. Можно использовать брезент,  маты, старые какие-то теплые вещи, забить промежуток между стенками опалубки и грунтом, соломой. Да что угодно, лишь бы тепло не утекало в воздух.

Одна из задач - сохранить тепло раствораОдна из задач — сохранить тепло раствора

В этом случае пригодиться может опалубка из пенополистирола — он имеет плохую теплопроводность, что в данных условиях — несомненный плюс. Обычно такая опалубка несъемная, и после вызревания бетона вы получаете влаго- и теплоизолированный фундамент. Подробнее о типах опалубки читайте тут.

При строительстве в промышленных масштабах применяется также электрический подогрев при помощи разного рода электродов. Они располагаться могут на поверхности, закрепляться на опалубке или вводиться внутрь бетонного раствора.  Способ, эффективный, но реализуется в частном строительстве редко. Очень дорогое это удовольствие: расход электричества на подогрев кубометра бетона 60-80 кВт/час. При этом необходимо строго контролировать температуру: измерять каждые два часа (или чаще) и при достижении отметки в +30 oC отключать его. Потом через некоторое время снова включить. Контроль должен быть круглосуточным.

При заливке фундамента своими руками зимой, реально использовать только греющие кабели. Их прикрепляют с внутренней стороны к опалубке, и после ее снятия демонтируют. Есть второй вариант — «утопить» провод в бетоне. Оба способа действуют неплохо, но только при условии изолированных от холода стенок.

Греющие маты укладывают на поверхность бетона и включают в сетьГреющие маты укладывают на поверхность бетона и включают в сеть

Есть еще в продаже специальные греющие маты для подогрева бетона. Они раскладываются на поверхности, включаются в сеть. Его стоимость — 2,5 тыс руб/м2.

Для сохранения температуры стоят над объектом тепляки. Это конструкции, очень сильно напоминающие теплицы. И задача у них аналогична: сохранить тепло. Возводят каркас, его обтягивают пленкой или другими подобными материалами. Внутри ставят печку, тепловую пушку и т.д., с их помощью  поддерживают плюсовую температуру. Но при этом необходимо также не забывать об увлажнении, чтобы влага из раствора не испарялась.

Еще один метод подогрева бетона — с использованием инфракрасных излучателей. Этот метод хорош тем, что под воздействием волн греется непосредственно сам раствор. Излучатели закрывают алюминиевыми кожухами, создавая направленный поток. Однако для эффективного прогрева понадобится большое количество ламп.

Присадки и добавки

Еще один способ заливки бетона при отрицательных температурах — использование химических веществ. Некоторые из них ускоряют затвердевание на начальной стадии процесса. Массовая доля всех добавок — не больше 2% от массы цемента. Большие количества могут негативно повлиять на качество бетона, потому придерживайтесь рецептур.

Один из способов зимнего бетонирования - добавление в замес специальных противоморозных присадокОдин из способов зимнего бетонирования — добавление в замес специальных противоморозных присадок

Наиболее распространенная присадка, повышающая «морозоустойчивость» бетона и ускоряющая его твердение, — хлористый кальций. Еще используют поташ и нитрат натрия. Если добавить их при обычном замесе, температура замерзания снизится до -3oC.

Одно «НО». Хлориды использовать для армируемых бетонов нельзя — они провоцируют быстрое разрушение стали. Так что самый распространенный ускоритель твердения бетона — хлористый кальций — для заливки фундамента не подходит.

Заливка бетона при минусовой температуре возможна, если с теми же присадками раствор подогреть. В этом случае можно работать при -15oC. Но для нормального качества фундамента потребуется утепление заливки и соблюдение несложных, но обязательных правил.

Правила зимней заливки бетона

Раствор выливают в подготовленную опалубку. Подготовка состоит в удалении наледи и снега, разогреве арматуры и дна фундамента. Вот это — самый сложный этап. Соскоблить наледь — это полбеды, а прогреть арматуру и весь периметр фундамента — проблема. Температура не должна быть высокой, но необходимо добиться положительных ее значений.

Как вариант можно рассмотреть устройство переносных жаровен, которые опускают в котлован, и там разжигают. Возможно использование тепловых пушек, работающих от баллонов с газом. Использование других средств затруднено, из-за их большой стоимости.

Перед заливкой теплого раствора необходимо нагреть основание и арматуру до положительных температурПеред заливкой теплого раствора необходимо нагреть основание и арматуру до положительных температур

По этой причине бетонировать зимой плитные фундаменты проблематично: такие площади не разогреть. Для этого типа оснований «зима» ограничится легкими заморозками ночью и положительной дневной температурой. Заливку можно начинать после того, как арматура и дно будут иметь положительную температуру.

Ленточный фундамент можно заливать  и при морозах: подогреть такое основание и арматуру в ограниченном объеме реально. Непросто, но возможно.

Организовать все можно поэтапно. Разбить всю ленту на небольшие участки, начать прогрев одновременно или с некоторым временным промежутком на нескольких из них (два-три в зависимости от времени, необходимого на замес и подогрев котлована). Начать заливку одного участка, перенеся жаровни дальше. Пока будет заливаться первый разогретый участок, следующий наберет необходимую температуру. Залитый участко сразу закрывают теплоизолирующими материалами и переходят к следующему, так и продвигаясь по всему периметру.

Обязательно необходимо сбить наледь и нагреть арматуру - только так фундамент будет прочнымОбязательно необходимо сбить наледь и нагреть арматуру — только так фундамент будет прочным

Механизм понятен. Так можно заливать фундамент бетоном при -15oC (но с соответствующими добавками, «горячим» замесом и мерами по сохранению тепла).

Еще одно важное условие — работа должна вестись непрерывно. Зимой заливать фундамент частями нельзя. Это на 100% верно. Промежуток между заливками должен быть такой, чтобы на поверхности предыдущей части не успела образоваться пленка, а тем более, чтобы влага не замерзла. Работы должны вестись постоянно до окончания заливки.  Залитые части сразу нужно прикрывать теплооизолирующими матами. Как видите, для этой работы нужны несколько человек. Один со всеми задачами не справится.

Работы должны вестись непрерывноРаботы должны вестись непрерывно

Обратите внимание, что максимальная температура раствора должна быть 35-40oC. Ее превышение ведет к замедлению процессов отвержения. Ситуация будет, конечно лучше, чем при замерзании, но ненамного.

Итоги

Заливка фундамента зимой — нелегкая задача, но возможная даже своими руками. Понадобятся помощники и тщательная подготовка, но сделать нормальное основание можно и при минусовых температурах. При какой температуре можно заливать бетон? Зависит от его состава, но для частников реально, пусть и с большими затратами, добиться нормального качества при температурах не ниже -10- 5oC. Меньшими затратами обернется заливка при плюсовой температуре днем и заморозках ночами.

оптимальный диапазон в различное время года

Прочность фундамента строения определяется качеством раствора, соблюдением последовательности его укладки и погодными условиями в конкретной местности. Поэтому необходимо выяснить, при какой температуре можно заливать бетон в теплый и холодный сезон.

Особенности набора прочности бетонными конструкциями

Чтобы уточнить, при какой температуре воздуха можно заливать цементную смесь, нужно разобраться с процессом отвердевания. В готовом растворе происходит реакция между компонентами цемента и воды – гидратация. Процесс протекает в два этапа:

  • схватывание при участии алюминатов СЗА. Внутри бетона генерируются кристаллы-иголки, связывающиеся друг с другом. Через 6-10 часов образуется своеобразный скелет смеси;
  • твердение с участием клинкерных минералов C3S и C2S. Во время твердения бетона формируется силикатная мелкопористая масса из мелких кристаллов.

Интересно знать! При низких температурах вода в фундаменте становится льдом, что приводит к окончанию твердения и схватывания.

betonzimoj (1)

betonzimoj (1)

Опасность влияния минусовых температур на состояние смеси

Скорость реакций гидратации и набора прочности бетоном привязаны к температуре окружающей среды. При ее понижении с +20 до +5 градусов время твердения увеличивается в 5 раз. Процесс застывания проходит еще медленнее, если на улице похолодало до нуля.

Замерзание воды при отрицательной температуре приводит к ее расширению. Далее происходит повышение давления внутри смеси, которое становится причиной распада кристаллической решетки. Последствие реакции – разрушение фундамента и ухудшение свойств монолитности из-за обволакивания льдом заполнителей.

Важно! После оттаивания жидкости процесс отвердевания восстанавливается, но качество бетона будет хуже – арматура отслаивается, а монолит растрескивается.

Какая температура воздуха является приемлемой для раствора?

Специалисты выяснили, при какой оптимальной температуре воздуха следует и можно заливать готовый бетон. Работы по строительству фундамента лучше проводить в промежутке от +5 до +15°. Уличный температурный режим в пределах от +5 до минус 3° предусматривает, что свежеуложенный бетон марки М200 весом 240 г/м3 должен быть не ниже +5 градусов.

На заметку! При использовании меньшего количества цемента оптимальная внутренняя температура состава равняется  +10°.

betonzimoj (9)

betonzimoj (9)

Показатели морозостойкости различных марок бетона

Чтобы выяснить, до какой самой низкой минусовой температуры на улице можно строить фундамент и заливать бетон, необходимо разобраться в его морозостойкости. Данная характеристика влияет на количество циклов заморозки и оттаивания смеси без потери ею не более 5 % прочности.

ГОСТом 10060-2012 регламентированы 5 групп морозостойкости производимых марок бетона:

  • F50 – низкая устойчивость к замерзанию свойственна смесям М100 и М150, поэтому их применяют для внутренних работ;
  • F100 – марки бетона М200 и М250 отличаются нормальной устойчивостью, но подходят только для строительства домов в теплом или умеренном климате;
  • F150-300 – составы с маркировкой М300, М350 и М400 актуальны при постоянных низких температурах и на почвах с большой глубиной промерзания;
  • F300-500 – такой показатель морозустойчивости у марок М450, М500, М550 и М600, рекомендованных для работ в условиях северных областей.

Важно! Составы F500-1000 не используются для частного строительства, они подходят только для промышленных зданий, исследовательских и военных комплексов.

betonzimoj (10)

betonzimoj (10)

Технология и особенности заливки в осеннее время

При какой средней летней температуре начинать строительство? Теплое время года – от +15 до +30 градусов подходит для строительных работ. Заливка бетона летом допустима. Единственное условие – защита свежеуложенного монолита от дождя.

Выбор подходящего времени

В осеннее время погода отличается непредсказуемостью, поэтому важно знать, при какой температуре можно заливать бетон осенью.

Оптимальная температура воздуха составляет от +20 до +5°, поэтому начинать устройство основания рекомендуется в сентябре-октябре до заморозков. В процессе обустройства фундамента важно учитывать, до какой отметки на градуснике нужно выполнить работы перед похолоданием. Она должна равняться +10 градусов по Цельсию. Бетонная масса набирает прочность на протяжении 1 месяца. Перед заморозками рекомендуется сделать укрытие, а в первые двое суток – защитить смесь пленкой от дождя.

Совет! Перед тем, как заливать фундамент осенью, посмотрите прогноз погоды.

betonzimoj (5)

betonzimoj (5)

Факторы, влияющие на схватывание теста в осенний период

Заливка монолита будет качественной, если учесть несколько моментов:

  • температура воздуха. При каких показателях температуры можно заливать бетон осенью, чтобы начать строить дом? Нормальный показатель – плюс 16°. В этот период раствор затвердевает медленно, что обеспечивает качество постройки. Заморозки припадают на конец октября, поэтому лучше заняться строительством в середине сентября;
  • характеристики влажности. Сырая погода и влажный грунт способствуют процессу отвердевания. Свежеуложенный раствор не нужно регулярно сбрызгивать водой, а медленное высыхание обеспечивает повышение прочности;
  • наличие осадков. Если вы разобрались, при каких оптимальных температурах можно заливать основание, то нужно учесть и наличие дождя. Переувлажнение монолита приводит к вымыванию цементного молочка;
  • уровень грунтовых вод. На болотистых участках осенью меньше воды, что позволяет сделать свайное основание. Проверить, поднялась ли вода, можно путем выкапывания траншеи. Если в ней поднялась вода, фундамент заливать нельзя.

Важно! При несоответствии хотя бы одного фактора конструкция потеряет прочность.

Процесс работ в зимнее время

Основное условие, при котором получится уложить бетон зимой, – температура на улице до -3 градусов. В условиях ее понижения есть риски перемерзания цементного теста. Если вам интересно, при каких максимально низких наружных температурах допустимо заливать бетон с обогревом, то эта величина – от +5 градусов.

betonzimoj (2)

betonzimoj (2)

Строительная практика отмечает две технологии работ  – использование морозостойких составов и искусственное повышение устойчивости теста к холодам.

Правильный замес смеси

Цемент марки М400 в морозных условиях набирает более 30 % своей максимальной прочности.

Раствор готовится в стандартных пропорциях:

  • 1 часть цемента;
  • 2,5 части песка;
  • 8-10 частей воды.

При известковании количество компонентов изменяется:

  • 1 часть цемента;
  • 2,5-4 части песка;
  • 1,3:10 извести;
  • 8-10 частей воды.

Для приготовления марки бетона М400 также используют пластификаторы и антифризы.

betonzimoj (8)

betonzimoj (8)

Прогрев цементного теста

При какой минимальной температуре можно заливать бетон с подогревом монолита, вы уже разобрались. Строители рекомендуют в процессе замеса повышать и температуру раствора до 35-40 ° путем разогрева воды до 90 °,  щебня и песка – до 60 °. Сухой цемент не греют, а оставляют в помещении до набора комнатной температуры.

Вода прогревается в железной емкости, а добавки при помощи обдува воздухом. Для этого внутрь кучек стройматериалов от печи протягивается трубопровод. Укладку после нагрева осуществляют за один раз, подавая смесь непрерывно.

Совет! Если организуется доставка бетона на объект в зимнюю погоду, уточните, прогревает ли поставщик материал в специальной печи.

Можно ли искусственно повысить морозостойкость раствора?

Чтобы ускорить работы и предотвратить деструкцию фундамента допускается использовать антиморозные средства, выполнять прогрев бетона или его утепление.

Виды добавок

При соблюдении дозировок специальных продуктов легко предусмотреть, при какой предельной отрицательной температуре заканчивать стройку. Допустимо продолжать работы до -25 градусов. Средства классифицируются в зависимости от воздействия на смесь.

Присадки

Специальные жидкие продукты для гидратации раствора в условиях минусовой температуры. Используются вместе с подогревом для ускорения реакций отвердевания и схватывания.

betonzimoj (11)

betonzimoj (11)

Антифризы

Средства, повышающие активность цементного теста в любых условиях:

  • поташ или вещества на основе солей монокарбоновых кислот. Повышают температурный диапазон работы с бетонным составом до -30 градусов, ускоряют отвердевание состава. Армирующий каркас не подвергается коррозии, на поверхности монолита нет высолов;
  • хлорид натрия – используется для пластификации смеси из портландцемента, исключает загустение. Стальная арматура может ржаветь;
  • нитрит натрия – подходит для всех типов цементов, кроме глиноземных. После добавления продукта со смесью можно работать при низких температурах, но до -15 градусов;
  • формиат натрия – предусматривает использование пластификаторов. Без них в монолите из-за скопления солей появляются пустоты.

На заметку! Антифризы исключают нагревание конструкции.

betonzimoj (7)

betonzimoj (7)

Ускорители схватывания

Отличаются быстрым выделением теплоты, поэтому температура воды остается стабильной и монолит греется сам.

Важно! При несоблюдении дозировки веществ есть риски коррозии армирующего каркаса.

Способы подогрева

Прогрев бетона актуален, если требует залить фундамент малоэтажного здания. Если интересуетесь, до какой максимальной отметки можно повысить температуру, этот показатель составляет 15-20 градусов. Антифризовые смеси начинают вводить при температуре от -15 градусов. Сейчас мы кратко будем рассматривать варианты электрообогрева бетона:

  • по всей площади строения устанавливается каркас из деревянного бруса, на котором организуется пленочный шатер. Внутри конструкции устанавливаются пушки на газе или электричестве. После подъема температуры устройства поддерживают ее на протяжении цикла застывания бетона;
  • обмотка армирующего каркаса греющим кабелем до того, как вы начнете заливать фундамент. Электрика включается в сети после укладки смеси. Помимо кабеля можно использовать нихромовые спирали или ТЭНы.

Важно! В условиях сильных холодов и промерзания грунтов методика неэффективна.

betonzimoj (4)

betonzimoj (4)

Особенности укрытия и утепления

Используя этот способ, по достижению 3-х – 7-ми градусной уличной температуры можно заливать бетон.

Чтобы защитить свежеуложенный бетон в условиях заморозков, организуется специальное укрытие. Закрыть будущий фундамент утеплителем можно так:

  1. Заливка раствора в опалубку и его контроль до момента схватывания.
  2. Засыпка в ленту смоченных водой опилок слоем на 20 см.
  3. Закрытие материала отрезом пленки шириной 1,5 м.
  4. Укладка сухих опилок – слой 50 см.
  5. Фундаменты для столбов засыпают сухой листвой и накрывают полиэтиленом.

На заметку! Сухой материал защитит монолитное основание от холода, а влажный – исключит его перегревание.

betonzimoj (6)

betonzimoj (6)

Выполнение утепления опалубки

Укладка утеплителя актуальна, если прогревался свежеуложенный бетон. Технология теплоизоляции опалубки имеет несколько особенностей:

  • начало работ до заморозков;
  • укладка рулонного или пленочного теплоизолятора на поверхность опалубки;
  • выполнение электрического обогрева – возводится шатер и устанавливаются пушки;
  • прикрытие бетонной смеси после заливки опилками, соломой, пенополистиролом.

Совет! Прикрывайте все выступающие части монолитной конструкции.

Перед строительством монолитного основания нужно учитывать, при какой минимальной температуре без рисков можно заливать бетон осенью или зимой. В случаях ее понижения можно перенести сроки работ или осуществить подогрев конструкции. Использование антиморозных добавок, применение электрического оборудования или теплоизоляции допускается, когда нет возможности отсрочить заливку.

Рекомендуем посмотреть видео по теме

 

        Поделиться:

Влияние отрицательных температур на бетон

Бетон сильно подвержен влиянию температуры окружающей среды. Причем это относится не только к готовому изделию, но и к цементной смеси на этапе производства. При отклонении от нормативной температуры, которая составляет 200С, процесс твердения замедляется или вообще прекращается. Так, при понижении температуры с 20 до 5 0С схватывание замедляется почти в пять раз. Твердение бетона останавливается при температуре 0 0Си ниже. Причина этому – наличие воды в бетоне. Она превращается в лед и процесс заканчивается. Если температура окружающей среды ниже, то применяют специальные присадки, или меры по созданию нужной температуры воздуха.

Выделяют две стадии твердения бетона:

  • Схватывание.
  • Затвердевание.

Схватывание происходит довольно быстро, и если замораживание бетонной смеси начнется до наступления второй стадии, то разрушатся частицы цементного клея и процесс станет необратимым.

Стадия затвердевания, она же гидратация, длится несколько дней. Как понятно из названия при этой стадии необходима вода, которая взаимодействует с цементом. Поэтому понижение температуры в это время не смертельно, но твердение останавливается. Оно не возобновится, пока вода не растает и не активизирует процесс. Однако бесследно кристаллизация не проходит. Структура бетона меняется, уменьшается сцепление с арматурой и вследствие чего прочность изделия. Самое неудобное время для бетонирования поздняя осень, когда случаются неожиданные заморозки, а бетон используется безо всяких добавок. Максимальныйурон наносится верхней части изделия, и она может потрескаться. Ведь вода имеет меньшую плотность и поднимается вверх.

Постоянное замораживание и оттаивание во второй стадии твердения бетона также сильно снижает прочность. Именно поэтому разработаны специальные технологии бетонирования при отрицательных температурах. Бетонирование можно вести при температуре до -25 0С. Поддержание нормальных условий необходимо соблюсти хотя бы до достижения минимальной прочности, при которой можно сооружение выдержит требуемые нагрузки.

Замораживание и оттаивание также влияет и на готовую продукцию. Бетон – гигроскопичный материал (способный впитывать воду), поэтому увеличение частиц воды вызывает трещины и вследствие чего снижение прочности. Именно поэтому важно подобрать бетонную смесь с правильной маркой по морозостойкости (количество циклов замораживания/оттаивания, которое выдерживает бетон и теряет не более 5% прочности).

Температура застывания бетона: низкая, минимальная и оптимальная

От прочности фундамента будут зависеть качество и долговечность здания. При подготовке такого «нулевого» цикла работ требуется соблюдать многие факторы и тщательно ознакомиться с информацией о температуре застывания бетона. Если не учитывать условия погоды при заливке фундамента, качество и марку раствора, температурные режимы его застывания и виды добавок, то такая трудоёмкая работа может оказаться напрасной.

Подготовка к заливке фундамента

Иногда строительство капитальных сооружений, особенно частных, происходит без учёта времени года. Это может быть оправданным решением, но сложностей окажется немало уже на стадии подготовительных работ. Они состоят из нескольких этапов:

  1. Площадь, предназначенная под фундамент, должна быть очищена от верхнего слоя почвы и размечена в соответствии с проектом. При морозной погоде это будет довольно трудоёмкой задачей.
  2. Далее нужно произвести разметку ширины траншеи под фундамент. Глубина её определяется глубиной промерзания грунта, этажностью возводимого сооружения, материалом, который будет использоваться при строительстве. Землеройная техника не всегда применима, так как стенки траншеи должны быть узкими, глубокими и ровными.
  3. Для гидроизоляции и укрепления дно котлована трамбуется песком (слоем в 90—150 мм), затем щебнем. Обычно зимой этот строительный материал находится в подмёрзшем состоянии. Есть вероятность того, что с потеплением утрамбованный слой потеряет нужную плотность, а это может отразиться на прочности будущей постройки.
  4. Следующий этап работ — установка опалубки. Используются для этого доски или деревянные щиты, а для гидроизоляции — плотная полиэтиленовая плёнка. Сильный мороз влияет на эластичность плёнки. Она становится ломкой, на ней возможно появление прорех, что нарушает гидроизоляцию фундамента.
  5. Дальше изготавливается армированная конструкция, которую можно сварить или скрутить при помощи стальной проволоки. Толщина используемой арматуры составляет от 8 до 18 мм. Одно из свойств стали — сужаться или расширяться при перепадах температуры, поэтому сваренный арматурный каркас на сильном морозе при повышении температуры будет менять свои размеры, что отразится на прочности фундамента.

Преимущества зимних работ

Иногда возникают ситуации, когда изготовление фундамента в зимнее время будет лучшим вариантом. Для этого могут быть разные причины:

  1. Особенности почвы местности. Если грунт сыпучий, лучше возводить фундамент в мёрзлой почве для сохранения нужной формы котлована.
  2. Климатические условия региона в летнее время не позволяют проводить строительные работы.
  3. К стройке в зимнее время прибегают с целью экономии средств. В этот период цены на строительные материалы снижаются.
  4. Строительные фирмы снижают стоимость услуг, так как резко падает спрос на их деятельность в зимнее время.

После подготовительных работ можно приступать к расчёту состава бетонного раствора, обязательно учитывая то, при какой температуре будет происходить его заливка в опалубку.

Твердение бетонной массы зимой

В какое время года не проводилась бы заливка фундамента, раствор готовят из цемента и щебня средней величины с добавлением пластификаторов. С добавками бетон приобретает прочность, улучшаются его состояние и влагостойкость. Пластификаторы повышают устойчивость раствора к морозам, поэтому их часто применяют, изготавливая фундамент при низких температурах воздуха.

Минимальная температура застывания бетона составляет не ниже +5 °C. Это крайний показатель для качественного созревания. Но и жаркая погода не особо подходит для строительных работ. Оптимальный температурный режим — от +15 до +20 °C. Соблюдая такие условия, можно создать без дополнительных затрат и технологий прочное основание под возведение здания.

Необходимо знать, при какой температуре застывает бетон. Нормальной температурой воздуха для его затвердения специалисты считают от +15 до +20 °C. Период застывания фундамента длится около 30 дней. Если температура ниже нормы, твердение бетона происходит медленнее — он достигнет нужной прочности примерно через 60 дней. Когда температура ниже 0 °C, процесс приостанавливается. При минусовой температуре залитый в опалубку раствор замораживается. Если фундамент уже успел набрать необходимую прочность, то весной после оттаивания продолжится процесс его твердения до полноценного конечного результата.

В случае недостаточной прочности перед замораживанием качество монолита будет неудовлетворительным. Вода в бетонном растворе при замерзании превратится в лёд и увеличится в объёме, что приведёт к пористости и трещинам в бетоне. В итоге сократятся эксплуатационные сроки строения.

Существуют методы, с помощью которых твердение бетона при низких температурах можно довести до состояния критической прочности к моменту его замерзания. По действию они делятся на три вида:

  • обеспечивается внешний уход за залитым в опалубку раствором до степени критической прочности;
  • с помощью электроподогрева повышается температура бетонной массы до момента максимального твердения;
  • введение в раствор модификаторов, ускоряющих процесс застывания.

Возможность зимнего бетонирования зависит от многих факторов: наличия на строительной площадке источников питания, погодных условий на момент твердения, возможности доставки разогретого бетона. Самым простым и эконом

Бетонирование для холодной погоды

Перейти к основному содержанию

  • Около

    • Лидерство

    • Члены

    • Ассоциированные члены

    • Награды

      • Победители премии в области энергетики и окружающей среды 2020 г.

      • Лауреаты премии за инновации в области безопасности 2019 года

      • Лауреаты премии председателя Совета директоров в области безопасности полетов 2019 г.

      • Лауреаты премии председателя правления за эффективность производства в 2019 году

      • Награды Глисона

        • Победители премии Глисона

    • Встречи и мероприятия

      • Серия веб-семинаров по инфраструктуре PCA

    • Профессиональный персонал

    • Карьера

      • Разработчик контента

  • Экономика

    • COVID-19: экономический прогноз

    • Прогнозы

.

Свойства бетона при повышенных температурах

Огнестойкость бетонных конструктивных элементов зависит от тепловых, механических и деформационных свойств бетона. Эти свойства значительно зависят от температуры, а также от состава и характеристик бетонной смеси, а также скорости нагрева и других условий окружающей среды. В этой главе описаны основные характеристики бетона. Обсуждаются различные свойства, которые влияют на характеристики огнестойкости, а также роль этих свойств в огнестойкости.Представлено изменение термических, механических, деформационных и откольных свойств в зависимости от температуры для различных типов бетона.

1. Введение

Бетон широко используется в качестве основного конструкционного материала в строительстве благодаря многочисленным преимуществам, таким как прочность, долговечность, простота изготовления и негорючие свойства, которыми он обладает по сравнению с другими строительными материалами. Бетонные конструктивные элементы при использовании в зданиях должны удовлетворять соответствующим требованиям пожарной безопасности, указанным в строительных нормах [1–4].Это связано с тем, что пожар представляет собой одно из самых тяжелых условий окружающей среды, которым могут подвергаться конструкции; поэтому обеспечение соответствующих мер противопожарной безопасности для элементов конструкции является важным аспектом проектирования здания.

Меры пожарной безопасности конструктивных элементов измеряются с точки зрения огнестойкости, которая представляет собой продолжительность, в течение которой конструктивный элемент проявляет сопротивление в отношении структурной целостности, устойчивости и передачи температуры [5, 6]. Бетон обычно обеспечивает лучшую огнестойкость из всех строительных материалов [7].Такая превосходная огнестойкость обусловлена ​​материалами, составляющими бетон (например, цемент и заполнители), которые при химическом соединении образуют материал, который является по существу инертным, имеет низкую теплопроводность, высокую теплоемкость и более медленное ухудшение прочности с температурой. Именно эта низкая скорость теплопередачи и потери прочности позволяют бетону действовать как эффективный противопожарный щит не только между соседними помещениями, но и защищать себя от повреждений от огня.

Поведение бетонного конструктивного элемента, подверженного воздействию огня, частично зависит от термических, механических и деформационных свойств бетона, из которого он состоит.Подобно другим материалам, теплофизические, механические и деформационные свойства бетона существенно меняются в диапазоне температур, связанных с пожарами в зданиях. Эти свойства меняются в зависимости от температуры и зависят от состава и характеристик бетона. Прочность бетона существенно влияет на его свойства как при комнатной, так и при высоких температурах. Свойства высокопрочного бетона (HSC) изменяются в зависимости от температуры иначе, чем у бетона нормальной прочности (NSC).Это изменение более выражено для механических свойств, на которые влияют прочность, влажность, плотность, скорость нагрева, количество микрокремнезема и пористость.

На практике огнестойкость элементов конструкций оценивалась в основном с помощью стандартных огнестойких испытаний [8]. Однако в последние годы использование численных методов для расчета огнестойкости конструктивных элементов получает все большее распространение, поскольку эти методы расчета гораздо менее затратны и требуют много времени [9].Когда элемент конструкции подвергается определенному температурно-временному воздействию во время пожара, это воздействие вызовет предсказуемое распределение температуры в элементе. Повышенные температуры вызывают деформации и изменение свойств материалов, из которых изготовлен элемент конструкции. Зная о деформациях и изменениях свойств, можно применять обычные методы строительной механики для прогнозирования характеристик огнестойкости конструктивного элемента. Наличие свойств материала при повышенной температуре позволяет использовать математический подход для прогнозирования огнестойкости элементов конструкции [10, 11].

Очевидно, общая информация о свойствах бетона при комнатной температуре редко применима для расчета огнестойкости [12]. Поэтому совершенно необходимо, чтобы практикующий специалист по пожарной безопасности знал, как расширить, исходя из априорных соображений, полезность скудных данных о свойствах, которые можно собрать из технической литературы. Кроме того, знание уникальных характеристик, таких как растрескивание бетона в результате пожара, имеет решающее значение для определения огнестойкости бетонных элементов конструкции.

2. Свойства, влияющие на огнестойкость
2.1. Общие

На огнестойкость железобетонных элементов (RC) влияют характеристики составляющих материалов, а именно, бетона и арматурной стали. К ним относятся (а) термические свойства, (б) механические свойства, (в) деформационные свойства и (г) специфические характеристики материала, такие как растрескивание бетона. Тепловые свойства определяют степень передачи тепла конструктивному элементу, тогда как механические свойства составляющих материалов определяют степень потери прочности и ухудшения жесткости элемента.Деформационные свойства вместе с механическими свойствами определяют степень деформаций и деформаций в элементе конструкции. Кроме того, растрескивание бетона в результате пожара может сыграть значительную роль в пожарных характеристиках элементов RC [13]. Все эти свойства изменяются в зависимости от температуры и зависят от состава и характеристик бетона, а также арматурной стали [12]. Изменение свойств бетона, вызванное температурой, намного сложнее, чем изменение свойств арматурной стали, из-за миграции влаги, а также значительного различия ингредиентов в различных типах бетона.Таким образом, основное внимание в этой главе уделяется влиянию температуры на свойства бетона. Влияние температуры на свойства стальной арматуры можно найти в [4, 12].

Бетон доступен в различных формах, и его часто группируют по разным категориям в зависимости от веса (как обычный и легкий бетон), прочности (как бетон нормальной прочности, высокопрочного и сверхвысокопрочного бетона), наличия волокон (как простой бетон). и бетон, армированный фиброй), и эксплуатационные характеристики (как обычный бетон, так и бетон с высокими эксплуатационными характеристиками).Специалисты по пожарной безопасности также подразделяют бетон с нормальным весом на силикатный (кремнистый) и карбонатный (известняк) бетон с заполнителем, в зависимости от состава основного заполнителя. Также при добавлении небольшого количества прерывистых волокон (стальных или полипропиленовых) к

.

Влияние температуры на механические свойства и определение повреждений бетонной конструкции

На практике температурное воздействие влияет на статические и динамические механические свойства бетона. Следовательно, необходимо исследовать соответствующий закон и механизм влияния. В данной статье показано изменение механических свойств бетона при температурах от –20 ° C до 60 ° C. Проведено и обсуждено влияние температуры на прочность куба на сжатие, прочность на разрыв при расщеплении, прочность на сжатие призмы, модуль упругости и частоту.Результаты показывают, что статические механические свойства, такие как прочность на сжатие (куб и призма), предел прочности при расщеплении и модуль упругости, имеют строго линейную отрицательную корреляцию с температурой; этот закон также применяется к частоте первого порядка бетонной плиты. Влияние температуры и повреждения на скорость изменения частоты показывает, что влияние температуры нельзя игнорировать при идентификации повреждений конструкции. Анализ механизма показывает, что изменение модуля упругости бетона, вызванное температурой, является основной причиной изменения частоты.

1. Введение

Поскольку бетон широко используется в строительных конструкциях, свойства бетона напрямую связаны с безопасностью конструкции. Стандартные образцы бетона обычно отверждаются и испытываются в идеальных условиях в соответствии со спецификациями. Однако при эксплуатации бетонные конструкции подвергаются воздействию внешней среды; механические (статические и динамические) свойства бетона усложняются, поскольку на них влияют такие условия окружающей среды, как температура и влажность [1, 2].

Было проведено множество исследований для изучения взаимосвязи между конкретными характеристиками и условиями окружающей среды. Peng et al. [3] представляют экологические исследования для определения взаимосвязи между возникновением взрывного растрескивания и остаточными механическими свойствами высококачественного бетона и высокой температуры в диапазоне от 200 до 800 ° C. Цюлфик и Озтуран [4] исследовали влияние температуры на механические свойства как нормального, так и высокопрочного бетона.Остаточная прочность на сжатие и раскалывание, а также статический модуль упругости образцов были получены при повышенных температурах (50, 100, 150, 200 и 250 ° C). Остаточные механические свойства стали снижаться при 100 ° C для бетона нормальной прочности, а бетон высокой прочности показал лучшие характеристики при различных температурных циклах. Fares et al. [5] провели экспериментальное исследование характеристик самоуплотняющегося бетона при воздействии высоких температур. Механические свойства, такие как прочность на сжатие и прочность на изгиб, проверяются при различных температурах (150, 300, 450 и 600 ° C).Характеристики бетона в переходных температурных условиях были всесторонне исследованы, особенно при таких воздействиях, как высокие температуры от огня. Однако на практике большинство бетонных конструкций подвергаются воздействию внешней температуры от -20 ° C до 60 ° C; относительно свойств бетона при этих условиях имеется относительно мало литературы. Shoukry et al. [6] исследовали статические механические свойства бетона при температуре от –20 ° C до 50 ° C и относительной влажности от 40% до 60%.Результаты показали, что прочность бетона на сжатие, растяжение и соответствующий модуль упругости уменьшаются с увеличением температуры. Однако динамические свойства бетонной конструкции не исследованы.

Динамические методы широко применяются для мониторинга состояния и выявления повреждений конструкций [7–9], поскольку динамические свойства (частота, форма колебаний и демпфирование) тесно связаны с такими параметрами конструкции, как жесткость и масса [10 –12].В настоящее время большинство исследований сосредоточено на влиянии повреждений на динамические свойства без учета температурного воздействия [13]. Однако, если последствия не будут рационально учтены и устранены, результаты идентификации повреждений не могут быть надежными. Farrar et al. [14] представляют результаты мониторинга моста через каньон Аламоса. Они обнаружили, что первая собственная частота структуры изменяется примерно на 5% за 24-часовой период времени. Аскегор и Моссинг [15] обнаружили, что изменение частоты для трехпролетного пешеходного моста в течение года составляло 10%.Вахаб и де Рок [16] наблюдали изменение на 4% ~ 5% собственных частот предварительно напряженного бетонного моста весной и зимой по результатам динамических испытаний. Мозер и Моавени [17] продемонстрировали, что значительная изменчивость собственных частот была выявлена ​​с помощью системы непрерывного мониторинга, установленной на пешеходном мосту Даулинг-Холл, и эти изменения собственных частот сильно коррелированы с температурой. Результаты обширных исследований показывают, что температура приводит к частотным изменениям структуры, но явное исследование влияния температуры экспериментально не проводится.

В этой статье статические механические свойства, такие как прочность на сжатие куба, прочность на разрыв при раздельном растяжении, прочность на сжатие призмы и модуль упругости бетона, измеряются при различных температурах от -20 ° C до 60 ° C. Определены отношения между свойствами и температурами. Между тем, также наблюдается влияние температуры на собственную частоту первого порядка бетонной плиты и обсуждается соответствующий механизм воздействия.

2. Детали эксперимента
2.1. Материалы и смеси В данном исследовании используется портландцемент типа

PO 42.5, подтверждающий требования GB175-2007 [18]. Щебень диаметром от 5 до 20 мм и природный песок с модулем крупности 2,7 приняты как крупнозернистые и мелкие заполнители соответственно. Пропорции бетона приведены в таблице 1. Эти ингредиенты перемешиваются в течение примерно 4 мин. Результаты испытаний бетона на оседание составляют 38 мм, что указывает на то, что смесь обладает хорошей когезионной способностью и соответствует требованиям GB / T 50081-2002 [19] и GB 50164-2011 [20].


Материалы Номинальные пропорции

Цемент (кг / м 3 ) 336
Крупный заполнитель (кг / м 3 ) 1221
Мелкий заполнитель (кг / м 3 ) 658
Вода (кг / м 3 ) 185
Соотношение вода / цемент 0.55

2.2. Образцы

Бетонные образцы представляют собой кубы 150 мм (изготовленные для испытания прочности на сжатие куба и прочности на разрыв) и призмы 150 мм × 150 мм × 300 мм (изготовленные для испытания прочности на сжатие призмы и модуля упругости), отлитых горизонтально в стальные формы и уплотняется вибрационной машиной. Все образцы извлекаются из форм через 24 часа после отливки и выдерживаются в камере выдержки (° C и относительная влажность 95%) в течение 28 дней (GB / T 50082-2009) [21].

Плиты длиной 60 см, шириной 15 см и высотой 5 см также являются заводскими, и они также отверждаются в камере выдержки (° C и относительная влажность 95%) в течение 28 дней.

2.3. Испытательные машины

Для определения статических свойств бетона используются две разные машины для испытания на сжатие. Прочность на сжатие куба и призмы и модуль упругости испытываются на машине 1 (показанной на рисунке 1) с максимальной нагрузкой 2000 кН. Прочность на разрыв при раскалывании измеряется машиной 2 (показанной на рисунке 2) с максимальной нагрузкой 1000 кН, которая может осуществлять динамический мониторинг силы и выводить кривые сила-смещение.


Температуру контролируют одновременно холодильник и духовка. Первый используется для температуры –50–0 ° C, а второй — для 20–300 ° C.

Пьезоэлектрический датчик ускорения применяется для измерения сигналов реакции на ускорение для плит, а система измерения динамических сигналов типа DH 5920 используется для получения собственной частоты из измеренных сигналов.

Что касается повреждения плиты, то это достигается отрезным станком (показан на рисунке 3).

2.4. Процедуры испытаний

Прочность на сжатие куба, прочность на растяжение при раскалывании, прочность на сжатие призмы, модуль упругости и частота бетонных конструкций испытываются при температурах -20 ° C, 0 ° C, 20 ° C, 40 ° C и 60 ° С. Чтобы исключить влияние влаги, образцы бетона оборачивают консервирующей пленкой для сохранения стабильности влажности. Перед испытанием каждый образец помещают в аппарат для контроля температуры на 4 часа, чтобы внутренняя температура бетона соответствовала температуре окружающей среды.

2.4.1. Предел прочности на сжатие куба

Для расчета прочности на сжатие куба испытывают всего пятнадцать образцов размером 150 мм × 150 мм × 150 мм (т. Е. Три образца при каждой температуре). В процессе испытания куба на сжатие машина 1 прикладывает нагрузки со скоростью 0,5–0,8 МПа / с [19]. Нагрузки записываются до разрушения образцов. Прочность на сжатие куба каждого образца может быть рассчитана следующим образом:

где — кубическая прочность на сжатие -го образца бетона, — соответствующая разрушающая нагрузка при сжатии, — площадь опоры образцов, а в данной статье.

Конечная прочность бетона на сжатие куба может быть определена по следующим правилам [19]. (1) Среднее значение прочности на сжатие куба для трех образцов рассматривается как конечная прочность на сжатие. (2) Если одно из максимального и минимального значения прочности на сжатие куба для трех образцов превышает среднее значение прочности на сжатие на 15%, среднее значение прочности на сжатие куба используется в качестве конечной прочности на сжатие куба. (3) Если все максимальные и минимальные значения прочности на сжатие куба для трех образцов превышают среднее один на 15%, результаты считаются недействительными, а другая группа образцов подлежит повторному исследованию.

2.4.2. Прочность на растяжение при раскалывании

Еще пятнадцать образцов размером 150 мм × 150 мм × 150 мм измеряют для расчета прочности на растяжение при раскалывании (т. Е. Три образца при каждой температуре). В процессе испытания прочности на разрыв машина 2 прикладывала нагрузки со скоростью 0,05–0,08 МПа / с [19] до разрушения образцов. Прочность бетона на разрыв при расщеплении может быть получена следующим образом:

где — предел прочности при раскалывании образца бетона, — соответствующая разрушающая нагрузка при раскалывании, — площадь раскола образцов.

Окончательную прочность на разрыв при раскалывании можно рассчитать по тем же правилам получения.

2.4.3. Предел прочности на сжатие призмы

Всего было испытано пятнадцать призм размером 150 мм × 150 мм × 300 мм для измерения прочности бетона на сжатие призмы. В процессе испытания призмы на сжатие машина 1 прикладывает нагрузки со скоростью 0,5–0,8 МПа / с [19]. Нагрузки записываются до разрушения образцов. Прочность на сжатие призмы каждого образца можно рассчитать следующим образом:

.

Таблица 7 | Исследование ударопрочности резинобетона при низких температурах (-30 ° C)

Мы стремимся как можно быстрее поделиться результатами, касающимися COVID-19. Мы предоставим неограниченное освобождение от платы за публикацию принятых научных статей, а также отчетов о случаях и сериях случаев, связанных с COVID-19. Обзорные статьи исключены из этой политики отказа. Зарегистрируйтесь здесь как рецензент, чтобы ускорить рассмотрение новых заявок.

.

Want to say something? Post a comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *