Паропроницаемость бетона: Паропроницаемость строительных материалов (таблица и понятие)
Теплоизоляционные материалы | ||
1 Плиты из пенополистирола | До 10 | 0,05 |
2 То же | 10 — 12 | 0,05 |
3 « | 12 — 14 | 0,05 |
4 « | 14-15 | 0,05 |
5 « | 15-17 | 0,05 |
6 « | 17-20 | 0,05 |
7 « | 20-25 | 0,05 |
8 « | 25-30 | 0,05 |
9 « | 30-35 | 0,05 |
10 « | 35-38 | 0,05 |
11 Плиты из пенополистирола с графитовыми добавками | 15-20 | 0,05 |
12 То же | 20-25 | 0,05 |
13 Экструдированный пенополистирол | 25-33 | 0,005 |
14 То же | 35-45 | 0,005 |
15 Пенополиуретан | 80 | 0,05 |
16 То же | 60 | 0,05 |
17 « | 40 | 0,05 |
18 Плиты из резольно-фенолформальдегидного пенопласта | 80 | 0,23 |
19 То же | 50 | 0,23 |
20 Перлитопластбетон | 200 | 0,008 |
21 То же | 100 | 0,008 |
22 Перлитофосфогелевые изделия | 300 | 0,2 |
23 То же | 200 | 0,23 |
24 Теплоизоляционные изделия из вспененного синтетического каучука | 60-95 | 0,003 |
25 Плиты минераловатные из каменного волокна | 180 | 0,3 |
26 То же | 40-175 | 0,31 |
27 « | 80-125 | 0,32 |
28 « | 40-60 | 0,35 |
29 « | 25-50 | 0,37 |
30 Плиты из стеклянного штапельного волокна | 85 | 0,5 |
31 То же | 75 | 0,5 |
32 « | 60 | 0,51 |
33 « | 45 | 0,51 |
34 « | 35 | 0,52 |
35 « | 30 | 0,52 |
36 « | 20 | 0,53 |
37 « | 17 | 0,54 |
38 « | 15 | 0,55 |
39 Плиты древесно-волокнистые и древесно-стружечные | 1000 | 0,12 |
40 То же | 800 | 0,12 |
41 « | 600 | 0,13 |
42 « | 400 | 0,19 |
43 Плиты древесно-волокнистые и древесно-стружечные | 200 | 0,24 |
44 Плиты фибролитовые и арболит на портландцементе | 500 | 0,11 |
45 То же | 450 | 0,11 |
46 « | 400 | 0,26 |
47 Плиты камышитовые | 300 | 0,45 |
48 То же | 200 | 0,49 |
49 Плиты торфяные теплоизоляционные | 300 | 0,19 |
50 То же | 200 | 0,49 |
51 Пакля | 150 | 0,49 |
52 Плиты из гипса | 1350 | 0,098 |
53 То же | 1100 | 0,11 |
54 Листы гипсовые обшивочные (сухая штукатурка) | 1050 | 0,075 |
55 То же | 800 | 0,075 |
56 Изделия из вспученного перлита на битумном связующем | 300 | 0,04 |
57 То же | 250 | 0,04 |
58 « | 225 | 0,04 |
59 « | 200 | 0,04 |
Засыпки | ||
60 Гравий керамзитовый | 600 | 0,23 |
61 То же | 500 | 0,23 |
62 « | 450 | 0,235 |
63 Гравий керамзитовый | 400 | 0,24 |
64 То же | 350 | 0,245 |
65 « | 300 | 0,25 |
66 « | 250 | 0,26 |
67 « | 200 | 0,27 |
68 Гравий шунгизитовый (ГОСТ 32496) | 700 | 0,21 |
69 То же | 600 | 0,22 |
70 « | 500 | 0,22 |
71 « | 450 | 0,22 |
72 « | 400 | 0,23 |
73 Щебень шлакопемзовый и аглопоритовый (ГОСТ 32496) | 800 | 0,22 |
74 То же | 700 | 0,23 |
75 « | 600 | 0,24 |
76 « | 500 | 0,25 |
77 « | 450 | 0,255 |
78 « | 400 | 0,26 |
79 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820) | 700 | 0,22 |
80 То же | 600 | 0,235 |
81 « | 500 | 0,24 |
82 « | 400 | 0,245 |
83 Щебень и песок из перлита вспученного (ГОСТ 10832) | 500 | 0,26 |
84 То же | 400 | 0,3 |
85 « | 350 | 0,3 |
86 « | 300 | 0,34 |
87 Вермикулит вспученный (ГОСТ 12865) | 200 | 0,23 |
88 То же | 150 | 0,26 |
89 « | 100 | 0,3 |
90 Песок для строительных работ (ГОСТ 8736) | 1600 | 0,17 |
Конструкционные и конструкционно-теплоизоляционные материалы | ||
Бетоны на заполнителях из пористых горных пород | ||
91 Туфобетон | 1800 | 0,09 |
92 То же | 1600 | 0,11 |
93 « | 1400 | 0,11 |
94 « | 1200 | 0,12 |
95 Бетон на литоидной пемзе | 1600 | 0,075 |
96 То же | 1400 | 0,083 |
97 « | 1200 | 0,098 |
98 « | 1000 | 0,11 |
99 « | 800 | 0,12 |
100 Бетон на вулканическом шлаке | 1600 | 0,075 |
101 То же | 1400 | 0,083 |
102 « | 1200 | 0,09 |
103 « | 1000 | 0,098 |
104 « | 800 | 0,11 |
Бетоны на искусственных пористых заполнителях | ||
105 Керамзитобетон на керамзитовом песке | 1800 | 0,09 |
106 То же | 1600 | 0,09 |
107 « | 1400 | 0,098 |
108 « | 1200 | 0,11 |
109 « | 1000 | 0,14 |
110 « | 800 | 0,19 |
111 « | 600 | 0,26 |
112 « | 500 | 0,3 |
113 Керамзитобетон на кварцевом песке с умеренной (до Vв=12%) поризацией) | 1200 | 0,075 |
114 То же | 1000 | 0,075 |
115 « | 800 | 0,075 |
116 Керамзитобетон на перлитовом песке | 1000 | 0,15 |
117 То же | 800 | 0,17 |
118 Керамзитобетон беспесчаный | 700 | 0,145 |
119 То же | 600 | 0,155 |
120 « | 500 | 0,165 |
121 « | 400 | 0,175 |
122 « | 300 | 0,195 |
123 Шунгизитобетон | 1400 | 0,098 |
124 То же | 1200 | 0,11 |
125 « | 1000 | 0,14 |
126 Перлитобетон | 1200 | 0,15 |
127 То же | 1000 | 0,19 |
128 « | 800 | 0,26 |
129 Перлитобетон | 600 | 0,3 |
130 Бетон на шлакопемзовом щебне | 1800 | 0,075 |
131 То же | 1600 | 0,09 |
132 « | 1400 | 0,098 |
133 « | 1200 | 0,11 |
134 « | 1000 | 0,11 |
135 Бетон на остеклованном шлаковом гравии | 1800 | 0,08 |
136 То же | 1600 | 0,085 |
137 « | 1400 | 0,09 |
138 « | 1200 | 0,10 |
139 « | 1000 | 0,11 |
140 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках | 1800 | 0,083 |
141 То же | 1600 | 0,09 |
142 « | 1400 | 0,098 |
143 « | 1200 | 0,11 |
144 Аглопоритобетон и бетоны на заполнителях из топливных шлаков | 1800 | 0,075 |
145 То же | 1600 | 0,083 |
146 « | 1400 | 0,09 |
147 « | 1200 | 0,11 |
148 « | 1000 | 0,14 |
149 Бетон на зольном обжиговом и безобжиговом гравии | 1400 | 0,09 |
150 То же | 1200 | 0,11 |
151 « | 1000 | 0,12 |
152 Вермикулитобетон | 800 | — |
153 То же | 600 | 0,15 |
154 « | 400 | 0,19 |
155 « | 300 | 0,23 |
Бетоны особо легкие на пористых заполнителях и ячеистые | ||
156 Полистиролбетон на портландцементе (ГОСТ 32929) | 600 | 0,068 |
157 То же | 500 | 0,075 |
158 « | 400 | 0,085 |
159 « | 350 | 0,09 |
160 « | 300 | 0,10 |
161 « | 250 | 0,11 |
162 « | 200 | 0,12 |
163 « | 150 | 0,135 |
164 Полистиролбетон модифицированный на шлакопортландцементе | 500 | 0,075 |
165 То же | 400 | 0,08 |
166 « | 300 | 0,10 |
167 « | 250 | 0,11 |
168 « | 200 | 0,12 |
169 Газо- и пенобетон на цементном вяжущем | 1000 | 0,11 |
170 То же | 800 | 0,14 |
171 « | 600 | 0,17 |
172 « | 400 | 0,23 |
173 Газо- и пенобетон на известняковом вяжущем | 1000 | 0,13 |
174 То же | 800 | 0,16 |
175 « | 600 | 0,18 |
176 « | 500 | 0,235 |
177 Газо- и пенозолобетон на цементном вяжущем | 1200 | 0,085 |
178 То же | 1000 | 0,098 |
179 « | 800 | 0,12 |
Кирпичная кладка из сплошного кирпича | ||
180 Глиняного обыкновенного на цементно-песчаном растворе | 1800 | 0,11 |
181 Глиняного обыкновенного на цементно-шлаковом растворе | 1700 | 0,12 |
182 Глиняного обыкновенного на цементно-перлитовом растворе | 1600 | 0,15 |
183 Силикатного на цементно-песчаном растворе | 1800 | 0,11 |
184 Трепельного на цементно-песчаном растворе | 1200 | 0,19 |
185 То же | 1000 | 0,23 |
186 Шлакового на цементно-песчаном растворе | 1500 | 0,11 |
Кирпичная кладка из пустотного кирпича | ||
187 Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе | 1600 | 0,14 |
188 Керамического пустотного плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе | 1400 | 0,16 |
189 Керамического пустотного плотностью 1000 кг/м3 (брутто) на цементно-песчаном растворе | 1200 | 0,17 |
190 Силикатного одиннадцатипустотного на цементно-песчаном растворе | 1500 | 0,13 |
191 Силикатного четырнадцатипустотного на цементно-песчаном растворе | 1400 | 0,14 |
Дерево и изделия из него | ||
192 Сосна и ель поперек волокон | 500 | 0,06 |
193 Сосна и ель вдоль волокон | 500 | 0,32 |
194 Дуб поперек волокон | 700 | 0,05 |
195 Дуб вдоль волокон | 700 | 0,3 |
196 Фанера клееная | 600 | 0,02 |
197 Картон облицовочный | 1000 | 0,06 |
198 Картон строительный многослойный | 650 | 0,083 |
Конструкционные материалы | ||
Бетоны | ||
199 Железобетон | 2500 | 0,03 |
200 Бетон на гравии или щебне из природного камня | 2400 | 0,03 |
201 Раствор цементно-песчаный | 1800 | 0,09 |
202 Раствор сложный (песок, известь, цемент) | 1700 | 0,098 |
203 Раствор известково-песчаный | 1600 | 0,12 |
Облицовка природным камнем | ||
204 Гранит, гнейс и базальт | 2800 | 0,008 |
205 Мрамор | 2800 | 0,008 |
206 Известняк | 2000 | 0,06 |
207 То же | 1800 | 0,075 |
208 « | 1600 | 0,09 |
209 « | 1400 | 0,11 |
210 Туф | 2000 | 0,075 |
211 То же | 1800 | 0,083 |
212 « | 1600 | 0,09 |
213 « | 1400 | 0,098 |
214 « | 1200 | 0,11 |
215 « | 1000 | 0,11 |
Материалы кровельные, гидроизоляционные, облицовочные и рулонные покрытия для полов | ||
216 Листы асбестоцементные плоские | 1800 | 0,03 |
217 То же | 1600 | 0,03 |
218 Битумы нефтяные строительные и кровельные | 1400 | 0,008 |
219 То же | 1200 | 0,008 |
220 « | 1000 | 0,008 |
221 Асфальтобетон | 2100 | 0,008 |
222 Рубероид, пергамин, толь | 600 | — |
223 Пенополиэтилен | 26 | 0,001 |
224 То же | 30 | 0,001 |
225 Линолеум поливинилхлоридный на теплоизолирующей подоснове | 1800 | 0,002 |
226 То же | 1600 | 0,002 |
227 Линолеум поливинилхлоридный на тканевой основе | 1800 | 0,002 |
228 То же | 1600 | 0,002 |
229 « | 1400 | 0,002 |
Металлы и стекло | ||
230 Сталь стержневая арматурная | 7850 | 0 |
231 Чугун | 7200 | 0 |
232 Алюминий | 2600 | 0 |
233 Медь | 8500 | 0 |
234 Стекло оконное | 2500 | 0 |
235 Плиты из пеностекла | 80-100 | 0,006 |
236 То же | 101-120 | 0,006 |
237 То же | 121- 140 | 0,005 |
238 То же | 141- 160 | 0,004 |
239 То же | 161- 200 | 0,004 |
Паропроницаемость бетона
Таблица паропроницаемости материалов
Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.
Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:
- древесина;
- керамзитовые плиты;
- пенобетон.
Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.
Источники пара внутри помещения
Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.
Что такое паропроницаемость
Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.
Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.
Конструкция стен с учетом паропроницаемости
Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.
Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.
Разрушительные действия пара
Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.
Использование проводящих качеств
Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.
С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.
Соблюдение основного принципа при возведении стен
Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.
Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.
При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.
Правила расположения пароизолирующих слоев
Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяе
Паропроницаемость стен и материалов
Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
Паропроницаемость бетона: изюминки свойств газобетона,
Довольно часто в строительных статьях видится выражение — паропроницаемость цементных стен. Свидетельствует она свойство материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет громадное значение, поскольку в жилом помещении неизменно образуются продукты жизнедеятельности, каковые нужно неизменно выводить наружу.
Неспециализированные сведения
Если не создать обычную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения смогут принести вред нашему здоровью.
Иначе — паропроницаемость воздействует на свойство материала накапливать в себе влагу.Это кроме этого нехороший показатель, поскольку чем больше он сможет ее в себе удерживать, тем выше возможность происхождения грибка, гнилостных проявлений, и разрушений при замерзании.
Паропроницаемость обозначают латинской буквой ? и измеряют в мг/(м*ч*Па). Величина показывает количество пара, которое может пройти через стеновой материал на площади 1 м2 и при его толщине 1 м за 1 час, и разнице наружного и внутреннего давления 1 Па.
Высокая свойство проведения водяных паров у:
- пенобетона;
- газобетона;
- перлитобетона;
- керамзитобетона.
Замыкает таблицу — тяжелый бетон.
Совет: в случае если вам нужно в фундаменте сделать технологический канал, вам окажет помощь алмазное бурение отверстий в бетоне.
Газобетон
- Применение материала в качестве ограждающей конструкции позволяет избежать скопления ненужной жидкости в стен и сохранить ее теплосберегающие свойства, что предотвратит вероятное разрушение.
- Любой газобетонный и пенобетонный блок имеет в своем составе ? 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стенки в этом случае смогут «дышать».
- Водяные парысвободно просачиваются через материал, но не конденсируются в нем.
Паропроницаемость газобетона, равно как и пенобетона, существенно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.
Паропроницаемость материалов таблица
Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.
Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.
Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.
Оборудование
Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.
Сегодня используется следующее оборудование:
- Весы с минимальной погрешностью – модель аналитического типа.
- Сосуды или чаши для проведения опытов.
- Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.
Разбираемся со свойством
Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.
На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.
Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.
На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.
Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:
Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.
Паропроницаемость в многослойной конструкции
Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.
Рисунок подробно демонстрирует действие давления и проникновение пара в материал.
Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.
Разбираемся с коэффициентом
Таблица становится понятна, если разобраться с коэффициентом.
Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».
Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.
Особенности
С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.
Сопротивления паропроницанию
Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.
Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.
Статья о паропроницаемости, теплопроводности, теплоустойчивости строительных материалов
На микроклимат помещения влияют физические свойства материалов из которого оно построено, а так же их последовательность внутри ограждающей конструкции. Основные физические свойства материалов: плотность, паропроницаемость, теплопроводность, теплоустойчивость и теплоусвоение.
Паропроницаемость. Многие слышали, что «дышащие» стены – это вроде бы хорошо. Но далеко не все знают, что это вообще такое. Так вот материал называют «дышащим», если он пропускает не только воздух, но и пар, то есть имеет паропроницаемость. Керамзит, дерево и пенобетон имеют хорошую паропроницаемостью. Некоторой паропроницаемостью облажает кирпич и бетон, но очень маленькой. Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной, пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится.
На самом деле это не совсем так. В современном доме, даже если стены в доме из «дышащего» материала, 96% пара, удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обоями, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветреную погоду из дома выдувает тепло. А ещё они менее долговечны. Чем выше паропроницаемость материала, тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Производители строительных материалов, таких как газоблок и пенобетон, хитрят, когда рассчитывают теплопроводность материала, они всегда считают, что материал идеально сухой. Теплопроводность отсыревшего газоблока увеличивается в 5 раз, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов вещь не только бесполезная, но и вредная.
В многослойной конструкции на паропроницаемость влияет последовательность слоев и расположение утеплителя. На рис 1 видно, что вероятность распределения температуры, давления насыщенного пара Рн и давления не насыщенного пара Рр предпочтительнее, если утеплитель находиться с фасадной стороны ограждающей конструкции. При расположении утеплителя внутри здания между ним и несущей конструкциеей образуется конденсат, который ухудшает микроклимат помещения и постепенно разрушает несущую сину.
Рис 1 — Расположение утеплителя внутри и снаружи ограждающей конструкции
Теплопроводность — один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. Если материал стен обладает высокой теплопроводностью, то жить в таком доме будет крайне не комфортно. Стены будут быстро проводить тепло или холод с улицы в помещение.
Теплоемкость – количество теплоты, которое нужно подвести к объему вещества, для изменения его температуры.
Теплоусвоение. Теплофизические свойства ограждающей конструкции выравнивать колебания температуры в помещении, за счет поглощения ее материалом стен. Это свойство особенно полезно в условиях теплого кубанского климата. Днем материал стен поглощает тепло и отдает прохладу, ночью поглощает прохладу, отдает тепло. Усвоение тепла материалом ограждающей конструкции определяется коэффициентом теплоусвоения и зависит от величины теплопроводности, теплоемкости и объемной массы стены. Чем выше эти параметры, тем сильнее материал будет сглаживать температуру. Из таблицы 1 видно, что наибольшим теплоусвоением обладают металлы, из каменных конструкций бетон и железобетон.
Теплоустойчивость. Свойство ограждающей конструкции сохранять при колебаниях потока тепла относительное постоянство температуры на поверхности, обращенной в помещение, называется теплоустойчивостью. От постоянства температуры на внутренней поверхности ограждающих конструкций зависит обеспечение условий комфорта для пребывающих в помещении людей.
Теплоустойчивость ограждающей конструкции обеспечивается преимущественно теплоемкостью слоя резких колебаний. В часы действия отопления тепло накапливается в этом слое, а при перерывах в работе отопительной системы поступает в помещение, согревая внутренний воздух и обеспечивая относительное постоянство его температуры.
Такая теплоемкость может быть названа активной. Если указанный слой будет выполнен из материала с большим теплоусвоением, то в значительной мере будет обеспечена теплоустойчивость всей ограждающей конструкции.
Таблица 1. Плотности, теплопроводности и паропроницаемости строительных материалов.
|
|
|
|
---|---|---|---|
Железобетон |
2500 |
1.69 |
0.03 |
Бетон |
2400 |
1.51 |
0.03 |
Керамзитобетон |
1800 |
0.66 |
0.09 |
Керамзитобетон |
500 |
0.14 |
0.30 |
Кирпич красный глиняный |
1800 |
0.56 |
0.11 |
Кирпич, силикатный |
1800 |
0.70 |
0.11 |
Кирпич керамический пустотелый (брутто1400) |
1600 |
0.41 |
0.14 |
Кирпич керамический пустотелый (брутто1000) |
1200 |
0.35 |
0.17 |
Пенобетон |
1000 |
0.29 |
0.11 |
Пенобетон |
300 |
0.08 |
0.26 |
Гранит |
2800 |
3.49 |
0.008 |
Мрамор |
2800 |
2.91 |
0.008 |
Сосна, ель поперек волокон |
500 |
0.09 |
0.06 |
Дуб поперек волокон |
700 |
0.10 |
0.05 |
Сосна, ель вдоль волокон |
500 |
0.18 |
0.32 |
Дуб вдоль волокон |
700 |
0.23 |
0.30 |
Фанера клееная |
600 |
0.12 |
0.02 |
ДСП, ОСП |
1000 |
0.15 |
0.12 |
ПАКЛЯ |
150 |
0.05 |
0.49 |
Гипсокартон |
800 |
0.15 |
0.075 |
Картон облицовочный |
1000 |
0.18 |
0.06 |
Минвата |
200 |
0.070 |
0.49 |
Минвата |
100 |
0.056 |
0.56 |
Минвата |
50 |
0.048 |
0.60 |
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ |
33 |
0.031 |
0.013 |
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ |
45 |
0.036 |
0.013 |
Пенополистирол |
150 |
0.05 |
0.05 |
Пенополистирол |
100 |
0.041 |
0.05 |
Пенополистирол |
25 |
0.038 |
0.05 |
Пенопласт ПВХ |
125 |
0.052 |
0.23 |
ПЕНОПОЛИУРЕТАН |
80 |
0.041 |
0.05 |
ПЕНОПОЛИУРЕТАН |
60 |
0.035 |
0.0 |
ПЕНОПОЛИУРЕТАН |
40 |
0.029 |
0.05 |
ПЕНОПОЛИУРЕТАН |
30 |
0.020 |
0.05 |
Керамзит |
800 |
0.18 |
0.21 |
Керамзит |
200 |
0.10 |
0.26 |
Песок |
1600 |
0.35 |
0.17 |
Пеностекло |
400 |
0.11 |
0.02 |
Пеностекло |
200 |
0.07 |
0.03 |
АЦП |
1800 |
0.35 |
0.03 |
Битум |
1400 |
0.27 |
0.008 |
ПОЛИУРЕТАНОВАЯМАСТИКА |
1400 |
0.25 |
0.00023 |
ПОЛИМОЧЕВИНА |
1100 |
0.21 |
0.00023 |
Рубероид, пергамин |
600 |
0.17 |
0.001 |
Полиэтилен |
1500 |
0.30 |
0.00002 |
Асфальтобетон |
2100 |
1.05 |
0.008 |
Линолеум |
1600 |
0.33 |
0.002 |
Сталь |
7850 |
58 |
0 |
Алюминий |
2600 |
221 |
0 |
Медь |
8500 |
407 |
0 |
Стекло |
2500 |
0.76 |
0 |
Подведем итог. Ограждающая конструкция дома (стена), должна обладать минимальной паропроницаемостью и теплопроводностью и в то же время быть теплоемкой и теплоустойчивой. Из таблицы видно, что такого эффекта нельзя добиться, используя для возведения стены один материал. Фасадная (наружная) часть стены должна сдерживать холод (минимальная теплопроводность) и не давать ему пройти к внутреннему теплоемкому материалу, который будет сглаживать температуру внутри дома. Для внутреннего материала идеально подходит армированный бетон, он обладает максимальной теплоемкостью и плотностью, также это один из самых прочных строительных материалов. Применение бетона для несущей стены позволит сгладить разницу дневной и ночной температуры в помещении (см. рис 2) и даст вам увеличение в полезной площади дома. (рис 3)
Рис. 2 — График колебания летних температур в краснодарском крае.
1 — колебания температуры на улице;
2 — коллебания температуры в помещении построенном из пено- или газоблока;
3 — температура в утепленном монолитном доме (система «ТЕХНОБЛОК»)
Как наружный утеплитель можно использовать пенополистирол, пенополиуретан или минвату, все три материала обладают небольшой теплопроводностью и давно используются в строительстве. Для защиты слоя утеплителя можно использовать штукатурку, мокрый фасад или облицовочные панели. Наша компания использует панели «ТЕХНОБЛОК», которые зарекомендовали себя как надежный материал, позволяют существенно сэкономить время и деньги.
Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка расы» так же расположена за пределами несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь. Все это предусмотрено в предложенной конструкции (рис 2).
Статья выполнена специалистами компании «ТЕХНОБЛОК».
Таблица паропроницаемости различных строительных материалов
В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2ч Па/мг) нормируется в главе 6 “Сопротивление паропроницанию ограждающих конструкций” СНиП II-3-79 (1998) “Строительная теплотехника”.
Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.
Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 “Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости”.
Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость “сухих” строительных материалов при влажности менее 70% и “влажных” строительных материалов при влажности более 70%. Помните, что при оставлении “пирогов” паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет “замокание” внутренних слоев строительных материалов и значительно увеличится их теплопроводность.
Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои.
По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ.
– м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.
Механизм паропроницаемости строительных материалов:
При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материаловв виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).
Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами(кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.
Показатели паропроницаемости “сухих” строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости “влажных” строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.
ТАБЛИЦА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
Таблицаплотности, теплопроводности ипаропроницаемости различных строительныхматериалов.Основные эффективные теплоизоляционные,гидроизоляционные и пароизоляционныематериалы выделены.
Приведенысредние значения для материалов различныхпроизводителей. Более точные данные потеплоизоляционным материалам см. тут.
Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость,Мг/(м*ч*Па) Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт) толщина, м Эквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м Железобетон 2500 1.69 0.03 7.10 0.048 Бетон 2400 1.51 0.03 6.34 0.048 Керамзитобетон 1800 0.66 0.09 2.77 0.144 Керамзитобетон 500 0.14 0.30 0.59 0.48 Кирпич красный глиняный 1800 0.56 0.11 2.35 0.176 Кирпич, силикатный 1800 0.70 0.11 2.94 0.176 Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1.72 0.224 Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17 1.47 0.272 Пенобетон 1000 0.29 0.11 1.22 0.176 Пенобетон 300 0.08 0.26 0.34 0.416 Гранит 2800 3.49 0.008 14.6 0.013 Мрамор 2800 2.91 0.008 12.2 0.013 Сосна, ель поперек волокон 500 0.09 0.06 0.38 0.096 Дуб поперек волокон 700 0.10 0.05 0.42 0.08 Сосна, ель вдоль волокон 500 0.18 0.32 0.75 0.512 Дуб вдоль волокон 700 0.23 0.30 0.96 0.48 Фанера клееная 600 0.12 0.02 0.50 0.032 ДСП, ОСП 1000 0.15 0.12 0.63 0.192 ПАКЛЯ 150 0.05 0.49 0.21 0.784 Гипсокартон 800 0.15 0.075 0.63 0.12 Картон облицовочный 1000 0.18 0.06 0.75 0.096 Минвата2000.0700.490.300.784Минвата1000.0560.560.230.896Минвата500.0480.600.200.96ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ330.0310.0130.130.021ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ450.0360.0130.130.021Пенополистирол1500.050.050.210.08Пенополистирол1000.0410.050.170.08Пенополистирол400.0380.050.160.08Пенопласт ПВХ 125 0.052 0.23 0.22 0.368 ПЕНОПОЛИУРЕТАН800.0410.050.170.08ПЕНОПОЛИУРЕТАН600.0350.00.150.08ПЕНОПОЛИУРЕТАН400.0290.050.120.08ПЕНОПОЛИУРЕТАН300.0200.050.090.08Керамзит 800 0.18 0.21 0.75 0.336 Керамзит 200 0.10 0.26 0.42 0.416 Песок 1600 0.35 0.17 1.47 0.272 Пеностекло 400 0.11 0.02 0.46 0.032 Пеностекло 200 0.07 0.03 0.30 0.048 АЦП 1800 0.35 0.03 1.47 0.048 Битум 1400 0.27 0.008 1.13 0.013 ПОЛИУРЕТАНОВАЯ МАСТИКА14000.250.000231.050.00036ПОЛИМОЧЕВИНА11000.210.000230.880.00054Рубероид, пергамин 600 0.17 0.001 0.71 0.0016 Полиэтилен 1500 0.30 0.00002 1.26 0.000032 Асфальтобетон 2100 1.05 0.008 4.41 0.0128 Линолеум 1600 0.33 0.002 1.38 0.0032 Сталь 7850 58 0 243 0 Алюминий 2600 221 0 928 0 Медь 8500 407 0 1709 0 Стекло 2500 0.76 0 3.19 0
1- сопротивление теплопередаче ограждающихконструкций жилых зданий в Московскомрегионе, строительство которых начинаетсяс 1 января 2000 года.2 – сопротивлениепаропроницанию внутреннего слоя стеныдвухслойной стены помещения с сухимили нормальным режимом, свыше которогоне требуется определять сопротивлениепаропроницанию ограждающей конструкции.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- Дата: 31-03-2015Просмотров: 189Комментариев: Рейтинг: 22
Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.
Диаграмма паропроницаемости наиболее распространенных строительных материалов.
Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1.
Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).
Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.
Рисунок 1. Таблица паропроницаемости стройматериаловПо этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании.
Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.Схема прибора для определения паропроницаемости.Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам.
Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:Американский тест с установленной вертикально чашей.Американский тест с перевернутой чашей.Японский тест с вертикальной чашей.Японский тест с перевернутой чашей и влагопоглотителем.Американский тест с вертикальной чашей.В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.Вернуться к оглавлениюНекоторые производители указывают на зависимость атмосферы легкости в доме от показателей паропроницаемости строительных материалов.
Однако если даже вы возьмете в расчет данные таблиц, в которых отражены уровни мю каждого материала, и выберете тот, который обладает наиболее высоким показателем, то через стены станет удаляться лишь 4% всего объема удаляемого из помещения пара, тогда как 96% станут устраняться посредством вытяжек и окон.А вот если помещение обклеено виниловыми или флизелиновыми обоями, то стены и вовсе не способны пропускать влагу.Если после строительства не был использован утеплительный материал, то в ветреную погоду или сильный мороз из комнат будет уходить тепло. Кроме того, долговечность стен, которые имеют высокую степень паропроницаемости и низкую плотность, гораздо ниже. Ведь при более высоком уровне паропроницаемости материал больше способен накапливать влагу, которая замерзает при морозах, уменьшая морозостойкость.Производители материалов по типу газобетона или пенобетона хитрят, когда указывают конечную теплопроводность, так как при расчетах используется материал в идеально сухом состоянии.
Если блок, выполненный из газобетона, наберет влагу, то его способности к теплоизоляции будут снижены в 5 раз, таким образом, стены в доме, которые выстроены из этого материала, будут отлично выпускать теплый воздух из помещений. Ситуация ухудшится, если температура снизится, это станет причиной смещения точки росы внутрь стены, конденсат, который образовался в стене, замерзнет.Жидкость, замерзая, увеличится в размерах и станет способствовать разрушению материала. Через некоторое количество циклов замерзания и оттаивания материал полностью придет в негодность.
Поэтому не во всех случаях стоит выбирать тот материал, который имеет высокую степень паропроницаемости.Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).Битум 0,008Тяжелый бетон 0,03 Автоклавный газобетон 0,12Керамзитобетон 0,075 — 0,09Шлакобетон 0,075 — 0,14Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе) Известковый раствор 0,12 Гипсокартон, гипс 0,075Цементно-песчаная штукатурка 0,09 Известняк (в зависимости от плотности) 0,06 — 0,11Металлы 0ДСП 0,12 0,24Линолеум 0,002 Пенопласт 0,05-0,23Полиурентан твердый, полиуретановая пена0,05 Минеральная вата 0,3-0,6 Пеностекло 0,02 -0,03Вермикулит 0,23 — 0,3Керамзит 0,21-0,26Дерево поперек волокон 0,06 Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом.
Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т. е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).Воздух 1, 1 Битум 50 000, 50 000Пластики, резина, силикон — >5 000, >5 000Тяжелый бетон 130, 80Бетон средней плотности 100, 60Полистирол бетон 120, 60Автоклавный газобетон 10, 6Легкий бетон 15, 10 Искусственный камень 150, 120Керамзитобетон 6-8, 4Шлакобетон 30, 20Обожженная глина (кирпич) 16, 10Известковый раствор 20, 10Гипсокартон, гипс 10, 4Гипсовая штукатурка 10, 6Цементно-песчаная штукатурка 10, 6Глина, песок, гравий 50, 50Песчаник 40, 30Известняк (в зависимости от плотности) 30-250, 20-200Керамическая плитка ?, ?Металлы ?, ?OSB-2 (DIN 52612) 50, 30OSB-3 (DIN 52612) 107, 64OSB-4 (DIN 52612) 300, 135ДСП 50, 10-20Линолеум 1000, 800Подложка под ламинат пластик 10 000, 10 000Подложка под ламинат пробка 20, 10Пенопласт 60, 60ЭППС 150, 150Полиурентан твердый, полиуретановая пена 50, 50Минеральная вата 1, 1Пеностекло ?, ?Перлитовые панели 5, 5Перлит 2, 2Вермикулит 3, 2Эковата 2, 2Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату.
Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель.
Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
- Стены дома должны быть и теплосберегающими и не дорогими в … Технология утепления стен «Мокрый фасад» получила наибольшую популярность. Это самое …
Источники:
- dom.dacha-dom.ru
- studfiles.net
- ostroymaterialah.ru
- teplodom1.ru
Плюсы и минусы получения паров
Что такое пароизоляция из бетона?
Пароизоляция из бетона — это любой материал, предотвращающий попадание влаги в бетонную плиту. Пароизоляция используется, потому что, пока свежий бетон заливают влажным, он не должен оставаться таким. Он должен высохнуть, а затем оставаться сухим , чтобы избежать проблем с полом.
Если у вас когда-либо была проблема с цокольным полом (или любым бетонным полом), вы знаете, какой ущерб может причинить слишком много влаги.Влага проникает в бетон различными путями, в том числе через землю, через влажность воздуха и через негерметичный водопровод, проходящий через плиту. Конечно, есть еще и влага, которая была в исходной бетонной смеси.
Однако влага выходит из бетона только в одном направлении — через его поверхность. Если у вас бетонный пол, который постоянно контактирует с источником влаги, у вас будут проблемы. Вот почему необходима пароизоляция под бетоном.Пароизоляция — это способ предотвратить попадание влаги в бетон.
Примечание: пароизоляция — это не то же самое, что и подложка. Однако есть подложки, которые действуют как пароизоляция.
Пароизоляционная проницаемость выражается в проницаемости для пара.
Пароизоляция имеет разную степень проницаемости, выраженную в проницаемости. Чем выше число, тем более проницаемый материал. Непроницаемые пароизоляционные барьеры — это те, которые имеют рейтинг 0,1 или меньше, а замедлители образования пара класса II — это те, которые имеют рейтинг больше 0.1 зав. И менее 1,0 зав.
Вы услышите, как люди используют термины «пароизоляция» и «замедлитель образования пара» как синонимы. Однако, строго говоря, это не одно и то же. Пароизоляция менее проницаема, чем пароизоляция. В этой статье мы будем использовать термин «пароизоляция».
Какая приемлемая степень пароизоляционной проницаемости?
Допустимая степень пароизоляции зависит от области применения. В то время как паропроницаемость менее 0.Рекомендуется 3 химической завивки, более высокая проницаемость обычно считается приемлемой для использования в жилых помещениях. Однако пароизоляция под плитой должна иметь меньшую степень проницаемости, чем настил (или напольное покрытие) над плитой. Если этого не произойдет, дисбаланс влажности может в конечном итоге привести к поломке пола. ASTM International дает конкретные рекомендации в ASTM E1745-17 и ASTM E1643 по использованию, установке и проверке пароизоляции, используемой под бетонными плитами.
Почему в бетоне слишком много влаги?
Одно слово: клеи.Слишком много влаги в бетоне — проблема, потому что это может вызвать изменения pH, разрушающие клеи. Вот что происходит.
По мере того, как влага попадает на поверхность бетонной плиты, растворимые щелочи проникают в нее и повышают pH ее поверхности выше, чем у клеев для полов. Это приводит к разрушению клея, и в конечном итоге происходит разрушение напольного покрытия, такое как вздутие, вздутие или коробление.
Нужна пароизоляция под бетонную плиту?
Одним словом, да.Вот почему.
Почти всегда под строительной площадкой есть вода. Возможно, он не находится у поверхности, но это не значит, что его там нет. Эта вода может продвигаться вверх через почву и контактировать с нижней частью бетонного пола за счет капиллярного действия. Капиллярное действие можно остановить, установив так называемый разрыв капилляров — слой щебня, проходящий между земляным полотном и плитой.
Разрывы капилляров хорошо препятствуют попаданию воды в жидком состоянии на пластину.Однако они не могут предотвратить попадание воды в пар из на бетонную плиту. Поэтому под плитой должно быть что-то, что предотвращает попадание паровой влаги.
Вам также может понадобиться пароизоляция по причинам ответственности, потому что большинство производителей полов включают пароизоляцию или замедлители схватывания в свои инструкции по укладке.
Какой толщины должна быть пластиковая пароизоляция?
Согласно Руководству по конструкции бетонных перекрытий и перекрытий, опубликованному Американским институтом бетона, толщина пароизолятора не должна быть менее 10 мил.(Мил составляет одну тысячную дюйма.) Вам может потребоваться еще более толстый барьер, если вы покрываете материал под острыми углами.
Итог: пароизоляция должна быть достаточно прочной, чтобы ее не было легко проколоть. Если они это сделают, влага попадет внутрь, а это то, чего вы пытаетесь избежать.
Что можно использовать для пароизоляции под бетон?
Большинство пароизоляционных материалов создаются с использованием полиэтиленовых или полиолефиновых листов, которые достаточно прочны ( толщиной не менее 10 мил), чтобы выдерживать тяжелые строительные работы, которые происходят на бетонных основаниях.
Где установить пароизоляцию?
Какой тип гидроизоляции следует использовать и где его следует устанавливать, является предметом споров. Некоторые думают, что пароизоляция может вызвать скручивание плит, и достаточно просто заливки бетона прямо на гранулированное основание (гравий, щебень и т. Д.). Другие считают пароизоляционные барьеры необходимыми и утверждают, что они предотвращают разрушение адгезива, замедляют рост плесени и грибка и даже предотвращают попадание определенных ядовитых газов в здание.
Однако в настоящее время Американским институтом бетона рекомендуется применять непроницаемый пароизоляционный материал (или замедлитель схватывания) тяжелого сорта с минимально возможной проницаемостью для нанесения поверх слоя гранулированной засыпки (щебня, гравия и т. Д.). ). Затем поверх него заливается бетонная плита.
Примечание: Раньше для пароизоляции использовалось размещение «промокательного» слоя между пароизоляцией и бетонной плитой. В конечном итоге это вышло из употребления, потому что было трудно поддерживать слой «промокательной бумаги» сухим.
Как правило, вам следует использовать пароизоляцию с низкой проницаемостью, когда вам нужно защитить плиту, которая будет покрыта чувствительными к влаге материалами, такими как клеи и напольные покрытия.
Джейсон имеет более чем 20-летний опыт работы в сфере продаж и управления продажами в различных отраслях промышленности и успешно выпустил на рынок ряд продуктов, включая оригинальные испытания на влажность бетона Rapid RH®. В настоящее время он работает с Wagner Meters в качестве менеджера по продажам продукции Rapid RH®.
.
Паропроницаемость | DuPont ™ Tyvek®
Высококачественный атмосферный барьер с высокими эксплуатационными характеристиками выполняет четыре важных и важных функции: сопротивление воздуху, водонепроницаемость, долговечность во время строительства и необходимый уровень паропроницаемости.
Паропроницаемость, вероятно, является наиболее игнорируемой и наименее изученной из четырех. Тем не менее, это может иметь наибольшее влияние на работу стенной системы.
Почему важна паропроницаемость
Во время укладки или после подъема облицовки внутренняя часть стен намокает.А если система стен не высыхает, она становится уязвимой для влаги и плесени.
Вот почему паропроницаемость или воздухопроницаемость является ключевым преимуществом погодных барьеров DuPont ™ Tyvek®. Тайвек® сочетает в себе правильный баланс воздухо- и водонепроницаемости и паропроницаемости. Таким образом, когда вода все же попадает в стенную систему, Tyvek® WRB спроектирован так, чтобы она могла улетучиваться в виде водяного пара.
Понимание паропроницаемости
Часто называемая воздухопроницаемостью, паропроницаемость описывает способность материала пропускать водяной пар через него.В отличие от объемного удержания воды, которое относится к воде в ее жидкой форме, паропроницаемость касается воды в ее газовой форме.
Действующие строительные нормы и правила требуют, чтобы минимальная проницаемость составляла около 5 перм. Ученые-строители DuPont считают, что этот порог слишком низок для обеспечения стабильной работы, и рекомендуют атмосферостойкие барьеры от умеренной до высокой паропроницаемости, такие как Tyvek® WRB.
Измерение проницаемости
Измерение скорости пропускания паров влаги (MVTR) рассчитывается в соответствии с протоколом испытаний ASTM E96.Этот тест показывает, сколько влаги может пройти через барьер за 24 часа.
Поскольку на это измерение влияет давление пара, необходимо отрегулировать давление пара на образце для определения паропроницаемости (MVP). ASTM E96 используется для присвоения материалам относительной оценки, которая показывает, насколько каждый из них устойчив к пропусканию паров влаги.
Реальная производительность
Летом 2002 года компания DuPont провела полевой эксперимент в Северной Каролине во время самой сильной засухи за последние десятилетия.К одной и той же стеновой конструкции случайным образом были применены две разные обертки здания. Один с паропроницаемостью 58 перм., Другой 6,7.
Стену оклеивали 3-4 недели, и за это время оставили в каркасной стадии строительства. По прошествии 3-4 недель, где бы ни была установлена пленка с низкой паропроницаемостью, можно было четко увидеть накопление влаги и повышенный уровень влажности. Многие области достигли или превысили уровни насыщения для обшивки, и невооруженным глазом было видно нарушение влажности.
Напротив, везде, где была установлена обертка с высокой проницаемостью, было обнаружено, что оболочка оставалась неизменно чистой и сухой, независимо от местоположения или ориентации.
Моделирование влажности
Чтобы лучше понять наблюдения в лаборатории и в полевых условиях, DuPont выполнила моделирование влажности, используя всемирно признанную модель WUFI Pro. DuPont смогла смоделировать полевые условия, чтобы оценить реакцию системы стен на образование конденсата, похожего на росу.
Результаты показали, что во всех климатических условиях значительно более низкое содержание влаги наблюдалось при использовании обертки с паропроницаемостью от умеренной до высокой. Эти результаты являются дополнительным признаком того, что проницаемость от умеренной до высокой позволяет сушить, в то время как низкая проницаемость препятствует сушке и увеличивает вероятность проблем, связанных с влажностью.
Тайвек® уникален
Погодные барьеры DuPont ™ Tyvek® имеют уникальную структуру с миллионами очень мелких пор, которые сопротивляются проникновению воды и воздуха, но позволяют водяному пару проходить сквозь здание и выходить из него.
На протяжении более 30 лет опыт DuPont в области материаловедения и строительства привносит на строительный рынок такие инновации, как погодные барьеры Tyvek®.
Узнайте больше о тестировании паропроницаемости и характеристиках Tyvek®.
Бюллетень строительной науки — правда о паропроницаемости
.
Бетонные пароизоляции для перекрытий
Последнее, что вы хотите, чтобы ваши клиенты представляли себе, когда думают о бетонном полу, — это влажная холодная плита подвала. Одна из причин, по которой эти старые подвальные этажи были такими, заключалась в том, что под ними не было пароизоляции, что оставляло легкий путь для водяного пара из почвы, чтобы мигрировать в плиту, гарантируя, что ощущение холода, липкой влажности никогда не исчезнет.
И сырость — это только часть проблемы, водяной пар, проходящий через бетонный пол, может:
Но так быть не должно.На новых внутренних плитах влажность можно легко контролировать и почти полностью исключить. Вот информация, которая поможет вам понять, как влага перемещается в плите и как использование пароизоляции может помочь решить проблему.
Узнайте больше о влаге, проникающей через бетон, в том числе о том, как проверить пропускание водяного пара.
Что такое пароизоляция?
Все проблемы, связанные с движением паров влаги в бетонной плите, исчезнут со временем по мере высыхания плиты, если в плите нет источника дополнительной воды.Поскольку наиболее распространенным источником является влага в земле под плитой, решение состоит в том, чтобы полностью исключить грунт из уравнения, закрыв нижнюю часть плиты.
Узнайте, где можно купить пароизоляцию и другие продукты для решения проблем.
Лучше всего этого добиться с помощью пароизоляции под плитой. Замедлители образования пара используются с 1950-х годов. Однако недавние исследования показали, что старый традиционный слой 6-миллиметровой пленки Visqueen (полиэтиленового пластика) под плитой редко бывает эффективным по двум основным причинам:
- Хотя этот материал может показаться водонепроницаемым, он пропускает много водяного пара.
- Пластик толщиной 6 мил часто повреждается при укладке арматуры и бетона, образуя отверстия, через которые в плиту может попадать значительное количество водяного пара.
Настоящая пароизоляция пропускает небольшое количество водяного пара. W. R. MEADOWS
Такой тонкий пластик часто называют замедлителем образования пара — это означает, что он замедляет образование пара, но не останавливает его. Намного лучший подход — это настоящий пароизоляционный слой с характеристиками, которые соответствуют требованиям ASTM E-1745, «Стандартные технические условия для замедлителей парообразования, используемых при контакте с почвой или гранулированным заполнителем под бетонными плитами.«В этой спецификации есть три класса замедлителей образования пара (или барьеров — эти термины все еще часто используются взаимозаменяемо): класс A, B и C.
Для всех трех классов замедлителей образования пара проницаемость (мера того, сколько пара может пройти) должна быть менее 0,3 доп. Большинство экспертов сегодня не думают, что это достаточно мало, и недавно стало доступно несколько материалов со значениями проницаемости менее 0,03 проницаемости, а некоторые — всего 0,01. Эти низкие
.
Проблемы с влажностью бетона — Бетонная сеть
Чрезмерная влажность, проникающая через бетон, может вызвать множество проблем. Читайте объяснение проблемы и возможные решения.
Почему в бетоне присутствует водяной пар?
Этот очень влажный бетон долго не высыхает.
Большинство людей, даже многие люди в бетонном бизнесе, думают, что бетон водонепроницаем. Ведь мы делаем резервуары для воды и плотины из бетона. Но правда в том, что, хотя бетон хорошо удерживает жидкую воду — по крайней мере, когда нет трещин — пар воды легко проходит через бетон со скоростью, которая зависит от пористости и проницаемости бетона.
Узнайте, где можно купить пароизоляцию и другие продукты для решения проблем.
Вначале весь бетон мокрый. Если бы в смеси не было воды, ее нельзя было бы разместить, и она никогда не набирала бы силу. При водоцементном соотношении 0,50 на кубический ярд приходится около 300 фунтов воды и 600 фунтов цемента. Когда бетон начинает схватываться, часть этой воды (примерно половина) соединяется с портландцементом (путем гидратации), а часть поднимается на поверхность в виде стекающей воды, где она испаряется.Остальное в порах бетона.
Бетон начинает сохнуть только после отделки и отверждения.
После периода отверждения плита начинает сохнуть. На данный момент в порах бетона много жидкой воды — фактически плита насыщена. Эта жидкая вода начинает испаряться с поверхности, и если в бетон не попадет дополнительная вода, в течение примерно 90 дней для бетона нормального веса 0,5 в / ц плита будет достаточно сухой, так что большинство напольных покрытий не расслоится.
Водяной пар покидает поверхность бетонной плиты со скоростью, которая называется скоростью выделения паров влаги (MVER). Когда вы читаете в листе данных герметика, что MVER должен составлять 3 фунта или 5 фунтов, это означает количество фунтов водяного пара на 1000 квадратных футов за 24 часа. Представьте себе бетонную секцию размером 31,6 на 31,6 фута (1000 квадратных футов) и представьте 3 фунта воды, испаряющейся с поверхности каждый день. Три фунта воды — это примерно три пинты («пинта — фунт для всего мира»), так что это немного.
А если плиту поставить на землю без пароизоляции? Подумайте, что происходит, когда вы выкопаете яму во влажной земле. Задолго до того, как вы доберетесь до уровня грунтовых вод (жидкая вода), вы столкнетесь с влажной почвой. Вот так почва под вашими плитами выглядит влажной. Земля под почти всеми бетонными плитами влажная — почти всегда с относительной влажностью 100%. Это означает, что это постоянный источник водяного пара в плите, и плита никогда не высохнет, особенно если вы нанесете на поверхность покрытие, ограничивающее движение водяного пара.ACI 302.2R-06, Руководство для бетонных полов, которые используют влагочувствительные половые материалы , утверждает, что «Бетонная плита на земле без пароизолятора / барьера непосредственно под ней может иметь окончательный профиль относительной влажности, который не дает преимуществ. от любого начального высыхания «.
Рекомендуемые товары
.