Фото армирование ленточного фундамента: расчет и схема вязки арматуры, как правильно вязать

Содержание

расчет и схема вязки арматуры, как правильно вязать

Любое здание не может обойтись без надежного и крепкого основания. Строительство фундамента является наиболее важным и трудоемким этапом. Но в этом случае должны быть соблюдены все правила и требования по укреплению фундамента. Для этой цели возводят ленточный фундамент, который способен сделать основу сооружения крепкой и надежной. Стоит рассмотреть подробнее особенности ленточного фундамента, а также технологию выполнения армирования конструкции.

Особенности

Ленточный фундамент представляет собой монолитную бетонную полоску без разрывов на дверные проемы, становящуюся основой под строительство всех стенок и перегородок конструкции. Основой ленточной конструкции является бетонированный раствор, который изготавливается из цемента марки М250, воды, песочной смеси. Для его упрочнения применяют арматурный каркас, выполненный из металлических прутьев разных диаметров. Лента углубляется на определенное расстояние в почву, одновременно выступая над поверхностью. Но ленточный фундамент подвергается серьезным нагрузкам (движение грунтовых вод, массивная конструкция).

В любой ситуации нужно быть готовым к тому, что различные негативные влияния на сооружения могут сказываться на состоянии основы. Поэтому, если армирование выполнено неправильно, при первой малейшей угрозе фундамент может разрушиться, что приведет к разрушению всей постройки.

Армирование имеет следующие преимущества:

  • препятствует проседанию грунта под зданием;
  • утвердительно сказывается на шумоизоляционных качествах фундамента;
  • повышает устойчивость фундамента к резким перепадам температурных режимов.

Требования

Расчеты арматурных материалов и схемы армирования выполняются в соответствии с правилами функционирующего СНиПА 52-01-2003. Сертификат имеет конкретные правила и требования, которые необходимо выполнять при армировании ленточного фундамента. Главнейшими показателями прочности бетонных сооружений являются коэффициенты сопротивляемости на сжатие, растяжение и поперечный излом. В зависимости от установленных стандартизированных показателей бетона подбирается определенная марка и группа. Выполняя армирование ленточного фундамента, определяется тип и контролируемые показатели качества арматурного материала. По ГОСТу допускается использование горячекатаной строительной арматуры повторяющегося профиля. Группа арматуры выбирается в зависимости от предела текучести при предельных нагрузках, она должна обладать пластичностью, стойкостью к ржавчине и низким температурным показателям.

Виды

Для армирования ленточного фундамента употребляется два вида прутьев. Для осевых, которые несут ключевую нагрузку, необходим класс АII или III. При этом профиль должен быть ребристый, ведь он обладает лучшей адгезией с бетонным раствором, а также в соответствии с нормой передает нагрузку. Для суперконструкционных перемычек используют более дешевую арматуру: гладкую класса АI, толщина которой может быть 6–8 миллиметров. За последнее время большой востребованностью стала пользоваться стеклопластиковая арматура, ведь она обладает лучшими прочностными показателями и длительными эксплуатационными сроками.

Большинство проектировщиков не рекомендуют ее употреблять для фундаментов жилых помещений. По правилам это должны быть железобетонные конструкции. Особенности таких стройматериалов давно известны. Разработаны специализированные арматурные профили, которые способствуют тому, что бетон и металл объединяются в целостную конструкцию. Каким образом будет вести себя бетон со стеклопластиком, как надежно будет данная арматура соединяться с бетонной смесью, а также успешно ли эта пара будет справляться с различными нагрузками – все это малоизвестно и практически не испробовано. Если есть желание поэкспериментировать, можно применить стекловолоконную либо железобетонную арматуру.

Расчет

Расход арматуры нужно выполнять на этапе планирования чертежей фундамента, чтобы в дальнейшем с точностью знать, какое количество стройматериала потребуется. Стоит ознакомиться с тем, как рассчитать количество арматуры для мелкозаглубленного основания высотой 70 см и шириной 40 см. Для начала необходимо установить внешний вид металлокаркаса. Он будет изготовлен из верхнего и нижнего армопояса, в каждом по 3 арматурных прутьев. Промежуток между прутками будет равняться 10 см, а также нужно добавить еще 10 см для защитного бетонированного слоя. Присоединение будет выполняться провариваемыми отрезками из арматуры идентичных параметров с шагом 30 см. Диаметр арматурного изделия равен 12 мм, группа А3.

Расчет необходимого количества арматуры выполняется следующим образом:

  • чтобы определить расходование прутков на осевой пояс, нужно сделать расчет периметра фундамента. Следует взять символическое помещение с периметром 50 м. Так как в двух армопоясах находится по 3 прутка (в сумме 6 штук), то потребление составит: 50х6=300 метров;
  • теперь следует рассчитать, какое количество соединений потребуется для стыкования поясов. Для этого необходимо разделить общий периметр на шаг между перемычками: 50: 0,3=167 штук;
  • соблюдая определенную толщину ограждающего бетонного слоя (около 5 см), величина перпендикулярной перемычки будет составлять 60 см, а осевой – 30 см. Численность отдельного типа перемычек на одно соединение составляет 2 штуки;
  • нужно высчитать расходование прутков на осевые перемычки: 167х0,6х2=200,4 м;
  • расход изделий для перпендикулярных перемычек: 167х0,3х2=100,2 м.

В итоге расчет арматурных материалов показал, что общее количество для расходования составит 600,6 м. Но это число неокончательно, необходимо приобретать изделия с запасом (10–15%), поскольку придется выполнять усиление фундамента в угловых областях.

Схема

Постоянное движение грунтов оказывает серьезнейшее давление на ленточный фундамент. Чтобы он крепко противостоял таким нагрузкам, а также на этапе планировки ликвидировал источники образования трещин, специалисты рекомендуют позаботиться о правильно выбранной схеме армирования. Схема армирования фундамента – это конкретное расположение осевых и перпендикулярных прутков, которые собраны в единую конструкцию.

В СНиПе №52-01-2003 четко рассматривается каким образом выполняют укладку арматурных материалов в фундамент, с каким шагом в различных направлениях.

Стоит рассмотреть следующие правила из данного документа:

  • шаг укладывания прутьев зависит от диаметра арматурного изделия, габаритов гранул щебенки, метода укладки бетонного раствора и его уплотнение;
  • шаг рабочего упрочнения – это дистанция, которая равна двум высотам сечения упрочняющей ленты, но не больше 40 см;
  • поперечное упрочнение – это расстояние между прутьями составляет половину ширины самого сечения (не больше 30 см).

Определяясь со схемой армирования, необходимо учитывать тот факт, что в опалубку монтируется собранный в одно целое каркас, а внутри будут обвязываться только угловые участки. Число осевых армированных слоев должно быть не менее 3 по всему контуру фундамента, ведь заранее невозможно определить области с наиболее сильными нагрузками. Наиболее востребованными являются схемы, у которых соединение арматуры выполняется таким образом, чтобы образовывались ячейки геометрических фигур. В данном случае гарантируется крепкое и надежное фундаментальное основание.

Технология работ

Армирование ленточного фундамента проводится с учетом следующих правил:

  • для функционирующей арматуры применяют прутья группы А400, но не ниже;
  • специалисты не советуют употреблять в качестве соединения сварку, поскольку она притупляет сечение;
  • на углах арматура в обязательном порядке связывается, но не сваривается;
  • для хомутов не разрешено использовать безрезьбовую арматуру;
  • необходимо строго выполнять защитный бетонированный слой (4–5 см), ведь он является защитой металлических изделий от коррозии;
  • при выполнении каркасов прутья в осевом направлении соединяются с нахлестом, который должен составлять не меньше 20 диаметров прутьев и не меньше 25 см;
  • при частом размещении металлических изделий необходимо соблюдать крупность заполнителя в бетонном растворе, он не должен застревать промеж прутков.

Подготовительные работы

Прежде чем приступать к работе, необходимо очистить рабочий участок от различного мусора и мешающих предметов. По предварительно подготовленной разметке выкапывается траншея, которую можно сделать вручную либо с помощью специализированной техники. Чтобы стены были в идеально ровном состоянии, рекомендуется монтировать опалубку. В основном каркас помещают в траншею вместе с опалубкой. После чего выполняют заливку бетоном, а также в обязательном порядке проводится гидроизоляция конструкции посредством рубероидных листов.

Способы вязки арматуры

Схема упрочнения ленточного фундамента допускает соединение прутьев методом связки. Связанный металлокаркас обладает повышенной крепостью сравнительно со сварочным вариантом. Это объясняется тем, что увеличивается риск прожига металлических изделий. Но это не относится к заводским изделиям. Допускается для ускорения работ выполнять армирование на прямолинейных участках методом сваривания. Но армировку углов производят только с применением вязальной проволоки.

Перед тем как вязать арматуру нужно приготовить необходимые инструменты и стройматериалы.

Существует такие два способа связывания металлических изделий:

  • специализированный крючок;
  • вязальная машинка.

Первый способ подходит для небольших объемов. Кладка арматуры в данном случае займет слишком много времени и сил. В качестве соединяющего материала применяют отожженную проволоку, диаметр которой составляет 0,8–1,4 мм. Употребление иных стройматериалов запрещено. Арматуру можно связать отдельно, а после опустить в траншею. Либо выполнять связывание арматуры внутри котлована. Оба способа рациональные, но имеются некоторые различия. Если изготавливать на поверхности земли, то можно справиться самостоятельно, а в траншее понадобится помощник.

Как правильно вязать арматуру в углах ленточного фундамента?

Для угловых стен используется несколько методов связывания.

  • Лапкой. Для осуществления работ на конце каждого прута делают лапку под углом 90 градусов. В данном случае стержень напоминает кочергу. Величина лапки должна составлять не меньше 35 диаметров. Загнутый участок стержня подсоединяют к соответствующему вертикальному участку. В результате чего получается, что наружные прутья каркаса одной стены присоединены с наружными другой стены, а внутренние присоединяются к внешним.
  • С использованием Г-образных хомутов. Принцип выполнения схож с предшествующей вариацией. Но здесь не нужно изготавливать лапку, а берут спецэлемент Г-образной формы, величина которого составляет не меньше 50 диаметров. Одну часть привязывают к металлокаркасу одной стеновой поверхности, а вторую – к вертикальному металлокаркасу. При этом внутренние и наружные хомуты соединяются. Шаг хомутов должен формироваться ¾ от высоты стены подвального помещения.
  • С использование П-образных хомутов. На угол понадобится 2 хомута, величина которых составляет 50 диаметров. Каждый из хомутов приваривают к 2 параллельным прутьям и 1 перпендикулярному стержню.

Как правильно нужно армировать углы ленточного фундамента, смотрите в следующем видео.

Как выполнить армировку на тупых углах?

Для этого наружный пруток гнут до определенной градусной величины и крепят к нему дополнительно стержень для качественного усиления прочности. Внутренние спецэлементы соединяются с наружным.

Как вязать упрочнительную конструкцию своими руками?

Стоит рассмотреть подробнее, как выполняется вязание арматуры на поверхности земли. Сначала изготавливаются только прямые участки сетки, после чего конструкция устанавливается в траншею, где выполняется армировка углов. Подготавливаются отрезки арматуры. Стандартизированная величина прутьев составлять 6 метров, по возможности лучше их не трогать. Если нет уверенности в собственных силах, что можно справиться с такими прутьями, их можно разрезать пополам.

Специалисты рекомендуют начинать вязать арматурные прутья для самого короткого участка ленточного фундамента, что дает возможность приобрести определенный опыт и навык, в дальнейшем будет легче справиться с длинными конструкциями. Резать их нежелательно, ведь это приведет к увеличению расхода металла и снижает крепость фундамента. Параметры заготовок следует рассмотреть на примере фундамента, высота которого составляет 120 см, а ширина – 40 см. Арматурные изделия должны быть залиты со всех сторон бетонной смесью (толщина около 5 см), что является первоначальным условием. Учитывая эти данные, чистые параметры упрочнительного металлокаркаса должны составлять по высоте не больше 110 см, по ширине 30 см. Для вязки необходимо добавить по 2 сантиметра с каждой грани, это нужно для нахлеста. Поэтому заготовки для горизонтальных перемычек должны иметь величину 34 сантиметра, заготовки для осевых перемычек – 144 сантиметра.

После расчетов вязание упрочнительной конструкции происходит следующим образом:

  • следует выбрать ровный участок земли, положить два длинных прутьев, концы которых нужно подровнять;
  • на дистанции 20 см от концов привязываются по крайним граням горизонтальные распорки. Для связывания потребуется проволока величиной 20 см. Ее складывают вдвое, протягивают под участком связывания и затягивают посредством вязального крючка. Но затягивать необходимо с осторожностью, чтобы проволока не обломалась;
  • на дистанции около 50 см выполняется поочередное привязывание оставшихся горизонтальных распорок. Когда все будет готово, конструкцию убирают на свободное место и осуществляют связывание еще одного каркаса идентичным способом. В итоге получатся верхняя и нижняя части, которые нужно между собой соединить;
  • следом необходимо установить упоры для двух частей сетки, упереть их можно к различным предметам. Главное – это соблюдать, чтобы связанные конструкции имели надежное профильное расположение, дистанция между ними должна приравниваться к высоте связанной арматуры;
  • по концам привязываются по две осевые распорки, параметры которых уже известны. Когда каркасное изделие будет напоминать готовое приспособление, можно приступать к привязыванию остальных кусков арматуры. Все процедуры выполняются с проверкой размеров конструкции, хоть заготовки и выполнены одинаковых габаритов, лишняя проверка не повредит;
  • по аналогичному методу осуществляется связывание всех остальных прямых участков каркаса;
  • на дно траншеи укладывается прокладка, высота которой составляет не меньше 5 см, на ней будет уложена нижняя часть сетки. Устанавливаются боковые подпорки, монтируется сетка в правильном положении;
  • снимаются параметры непровязанных стыковочных мест и углов, подготавливаются отрезки арматурного изделия для подсоединения металлокаркаса в общую систему. Стоит обратить внимание, что нахлест концов арматуры должен составлять не меньше 50 диаметров прутка;
  • привязывается нижний поворот, после перпендикулярные стойки и к ним выполняется привязывание верхнего поворота. Осуществляется проверка дистанции армировки ко всем граням опалубки. Упрочнение конструкции на этом заканчивается, теперь можно переходить к заливанию фундамента бетонной смесью.

Вязание арматуры посредством специализированного приспособления

Чтобы изготовить такой механизм, потребуется несколько досок толщиной 20 миллиметров.

Сам процесс выглядит следующим образом:

  • отрезаются 4 доски по величине арматурного изделия, их соединяют по 2 штуки на дистанции, равной шагу вертикальных стоек. В итоге должны получиться две доски идентичного шаблона. Необходимо следить за тем, чтобы разметка дистанции между рейками была одинаковой, иначе не получится осевого расположения соединительных спецэлементов;
  • изготавливаются 2 вертикальные подпорки, высота которых должна приравниваться к высоте арматурной сетки. Подборки должны иметь профильные угловые опоры, которые не позволят им перевернуться. Проверяется готовая конструкция на прочность;
  • ножки опоры устанавливаются на 2 сколоченные доски, а две наружные доски укладываются на верхнюю полку опоров. Выполняется фиксирование любым удобным методом.

В итоге должна образоваться модель арматурной сетки, теперь работу можно осуществлять без сторонней помощи. На запланированные участки устанавливаются вертикальные раскосы арматурного изделия, заранее посредством обычных гвоздей на определенное время выполняется фиксирование их положения. На каждую горизонтальную перемычку из металла устанавливается прут арматуры. Данную процедуру выполняют по всем сторонам каркаса. Если все выполнено правильно, можно приступать к вязанию посредством проволоки и крючка. Конструкцию необходимо делать, если в наличие есть одинаковые участки сетки из арматурного изделия.

Вязание армированной сетки в траншеи

Выполнять работы в траншеи довольно сложно из-за тесноты.

Необходимо хорошенько обдумать схему вязания каждого спецэлемента.

  • На дно траншеи укладываются камни или кирпичи высотой не больше 5 см, они поднимут металлические изделия от поверхности земли и позволят бетону закрыть арматурные изделия со всех граней. Дистанция промеж кирпичей должна быть равной ширине сетки.
  • Поверх камней кладутся продольные прутья. Горизонтальные и вертикальные стержни должны быть порезаны по необходимым параметрам.
  • Приступают к формированию основы каркаса с одной стороны фундамента. Работу выполнить будет легче, если заранее привязать к лежащим стержням горизонтальные распорки. Помощник должен поддерживать торцы прутьев до тех пор, пока они не монтируются в нужном положении.
  • Выполняется поочередное вязание арматуры, дистанция между распорными элементами должна быть не меньше 50 см. Аналогичным образом связывается арматура на всех прямых участках фундаментальной ленты.
  • Проверяются параметры и пространственное местоположение каркаса, при необходимости необходимо исправить положение, а также исключить прикосновение металлических изделий к опалубке.

Советы

Следует ознакомиться с многократными ошибками, которые допускают неопытные мастера при выполнении армирования без соблюдения определенных правил.

  • Первоначально необходимо разработать план, по которому в дальнейшем будут выполняться вычисления по определению нагрузки на фундамент.
  • Во время изготовления опалубки не должно образовываться никаких щелей, в противном случае через эти отверстия будет вытекать бетонная смесь и снизится прочность конструкции.
  • На почву обязательно нужно выполнить гидроизоляцию, при ее отсутствии снизится качество плиты.
  • Запрещается, чтобы арматурные прутья контактировали с почвой, такой контакт приведет к появлению ржавчины.
  • Если решено выполнять армирование каркаса методом сварки, то лучше употребить прутья с индексом С. Это специализированные материалы, которые предназначены для сварки, поэтому под влиянием температурных режимов не теряю свои технические характеристики.
  • Не рекомендуется применять гладкие прутья для армирования. Бетонному раствору не за что будет закрепиться, а сами стержни будут в нем скользить. При движении грунтов такая конструкция растрескается.
  • Устраивать углы посредством прямого пересечения не рекомендуется, арматурные изделия гнутся очень тяжело. Иногда при армировании углов приходят к хитростям: раскаляют металлическое изделие до податливого состояния либо при помощи болгарки подпиливают конструкции. Оба варианта запрещены, ведь при данных процедурах материал теряет свою прочность, что в дальнейшем приведет к негативным последствиям.

Качественно выполненное упрочнение фундамента является залогом длительного эксплуатационного срока здания (20–40 лет), поэтому данной процедуре должно быть уделено особое внимание. Но опытные мастера советуют проводить ремонтно-профилактические работы каждые 10 лет.

расчет и схема вязки арматуры, как правильно вязать

Любое здание не может обойтись без надежного и крепкого основания. Строительство фундамента является наиболее важным и трудоемким этапом. Но в этом случае должны быть соблюдены все правила и требования по укреплению фундамента. Для этой цели возводят ленточный фундамент, который способен сделать основу сооружения крепкой и надежной. Стоит рассмотреть подробнее особенности ленточного фундамента, а также технологию выполнения армирования конструкции.

Особенности

Ленточный фундамент представляет собой монолитную бетонную полоску без разрывов на дверные проемы, становящуюся основой под строительство всех стенок и перегородок конструкции. Основой ленточной конструкции является бетонированный раствор, который изготавливается из цемента марки М250, воды, песочной смеси. Для его упрочнения применяют арматурный каркас, выполненный из металлических прутьев разных диаметров. Лента углубляется на определенное расстояние в почву, одновременно выступая над поверхностью. Но ленточный фундамент подвергается серьезным нагрузкам (движение грунтовых вод, массивная конструкция).

В любой ситуации нужно быть готовым к тому, что различные негативные влияния на сооружения могут сказываться на состоянии основы. Поэтому, если армирование выполнено неправильно, при первой малейшей угрозе фундамент может разрушиться, что приведет к разрушению всей постройки.

Армирование имеет следующие преимущества:

  • препятствует проседанию грунта под зданием;
  • утвердительно сказывается на шумоизоляционных качествах фундамента;
  • повышает устойчивость фундамента к резким перепадам температурных режимов.

Требования

Расчеты арматурных материалов и схемы армирования выполняются в соответствии с правилами функционирующего СНиПА 52-01-2003. Сертификат имеет конкретные правила и требования, которые необходимо выполнять при армировании ленточного фундамента. Главнейшими показателями прочности бетонных сооружений являются коэффициенты сопротивляемости на сжатие, растяжение и поперечный излом. В зависимости от установленных стандартизированных показателей бетона подбирается определенная марка и группа. Выполняя армирование ленточного фундамента, определяется тип и контролируемые показатели качества арматурного материала. По ГОСТу допускается использование горячекатаной строительной арматуры повторяющегося профиля. Группа арматуры выбирается в зависимости от предела текучести при предельных нагрузках, она должна обладать пластичностью, стойкостью к ржавчине и низким температурным показателям.

Виды

Для армирования ленточного фундамента употребляется два вида прутьев. Для осевых, которые несут ключевую нагрузку, необходим класс АII или III. При этом профиль должен быть ребристый, ведь он обладает лучшей адгезией с бетонным раствором, а также в соответствии с нормой передает нагрузку. Для суперконструкционных перемычек используют более дешевую арматуру: гладкую класса АI, толщина которой может быть 6–8 миллиметров. За последнее время большой востребованностью стала пользоваться стеклопластиковая арматура, ведь она обладает лучшими прочностными показателями и длительными эксплуатационными сроками.

Большинство проектировщиков не рекомендуют ее употреблять для фундаментов жилых помещений. По правилам это должны быть железобетонные конструкции. Особенности таких стройматериалов давно известны. Разработаны специализированные арматурные профили, которые способствуют тому, что бетон и металл объединяются в целостную конструкцию. Каким образом будет вести себя бетон со стеклопластиком, как надежно будет данная арматура соединяться с бетонной смесью, а также успешно ли эта пара будет справляться с различными нагрузками – все это малоизвестно и практически не испробовано. Если есть желание поэкспериментировать, можно применить стекловолоконную либо железобетонную арматуру.

Расчет

Расход арматуры нужно выполнять на этапе планирования чертежей фундамента, чтобы в дальнейшем с точностью знать, какое количество стройматериала потребуется. Стоит ознакомиться с тем, как рассчитать количество арматуры для мелкозаглубленного основания высотой 70 см и шириной 40 см. Для начала необходимо установить внешний вид металлокаркаса. Он будет изготовлен из верхнего и нижнего армопояса, в каждом по 3 арматурных прутьев. Промежуток между прутками будет равняться 10 см, а также нужно добавить еще 10 см для защитного бетонированного слоя. Присоединение будет выполняться провариваемыми отрезками из арматуры идентичных параметров с шагом 30 см. Диаметр арматурного изделия равен 12 мм, группа А3.

Расчет необходимого количества арматуры выполняется следующим образом:

  • чтобы определить расходование прутков на осевой пояс, нужно сделать расчет периметра фундамента. Следует взять символическое помещение с периметром 50 м. Так как в двух армопоясах находится по 3 прутка (в сумме 6 штук), то потребление составит: 50х6=300 метров;
  • теперь следует рассчитать, какое количество соединений потребуется для стыкования поясов. Для этого необходимо разделить общий периметр на шаг между перемычками: 50: 0,3=167 штук;
  • соблюдая определенную толщину ограждающего бетонного слоя (около 5 см), величина перпендикулярной перемычки будет составлять 60 см, а осевой – 30 см. Численность отдельного типа перемычек на одно соединение составляет 2 штуки;
  • нужно высчитать расходование прутков на осевые перемычки: 167х0,6х2=200,4 м;
  • расход изделий для перпендикулярных перемычек: 167х0,3х2=100,2 м.

В итоге расчет арматурных материалов показал, что общее количество для расходования составит 600,6 м. Но это число неокончательно, необходимо приобретать изделия с запасом (10–15%), поскольку придется выполнять усиление фундамента в угловых областях.

Схема

Постоянное движение грунтов оказывает серьезнейшее давление на ленточный фундамент. Чтобы он крепко противостоял таким нагрузкам, а также на этапе планировки ликвидировал источники образования трещин, специалисты рекомендуют позаботиться о правильно выбранной схеме армирования. Схема армирования фундамента – это конкретное расположение осевых и перпендикулярных прутков, которые собраны в единую конструкцию.

В СНиПе №52-01-2003 четко рассматривается каким образом выполняют укладку арматурных материалов в фундамент, с каким шагом в различных направлениях.

Стоит рассмотреть следующие правила из данного документа:

  • шаг укладывания прутьев зависит от диаметра арматурного изделия, габаритов гранул щебенки, метода укладки бетонного раствора и его уплотнение;
  • шаг рабочего упрочнения – это дистанция, которая равна двум высотам сечения упрочняющей ленты, но не больше 40 см;
  • поперечное упрочнение – это расстояние между прутьями составляет половину ширины самого сечения (не больше 30 см).

Определяясь со схемой армирования, необходимо учитывать тот факт, что в опалубку монтируется собранный в одно целое каркас, а внутри будут обвязываться только угловые участки. Число осевых армированных слоев должно быть не менее 3 по всему контуру фундамента, ведь заранее невозможно определить области с наиболее сильными нагрузками. Наиболее востребованными являются схемы, у которых соединение арматуры выполняется таким образом, чтобы образовывались ячейки геометрических фигур. В данном случае гарантируется крепкое и надежное фундаментальное основание.

Технология работ

Армирование ленточного фундамента проводится с учетом следующих правил:

  • для функционирующей арматуры применяют прутья группы А400, но не ниже;
  • специалисты не советуют употреблять в качестве соединения сварку, поскольку она притупляет сечение;
  • на углах арматура в обязательном порядке связывается, но не сваривается;
  • для хомутов не разрешено использовать безрезьбовую арматуру;
  • необходимо строго выполнять защитный бетонированный слой (4–5 см), ведь он является защитой металлических изделий от коррозии;
  • при выполнении каркасов прутья в осевом направлении соединяются с нахлестом, который должен составлять не меньше 20 диаметров прутьев и не меньше 25 см;
  • при частом размещении металлических изделий необходимо соблюдать крупность заполнителя в бетонном растворе, он не должен застревать промеж прутков.

Подготовительные работы

Прежде чем приступать к работе, необходимо очистить рабочий участок от различного мусора и мешающих предметов. По предварительно подготовленной разметке выкапывается траншея, которую можно сделать вручную либо с помощью специализированной техники. Чтобы стены были в идеально ровном состоянии, рекомендуется монтировать опалубку. В основном каркас помещают в траншею вместе с опалубкой. После чего выполняют заливку бетоном, а также в обязательном порядке проводится гидроизоляция конструкции посредством рубероидных листов.

Способы вязки арматуры

Схема упрочнения ленточного фундамента допускает соединение прутьев методом связки. Связанный металлокаркас обладает повышенной крепостью сравнительно со сварочным вариантом. Это объясняется тем, что увеличивается риск прожига металлических изделий. Но это не относится к заводским изделиям. Допускается для ускорения работ выполнять армирование на прямолинейных участках методом сваривания. Но армировку углов производят только с применением вязальной проволоки.

Перед тем как вязать арматуру нужно приготовить необходимые инструменты и стройматериалы.

Существует такие два способа связывания металлических изделий:

  • специализированный крючок;
  • вязальная машинка.

Первый способ подходит для небольших объемов. Кладка арматуры в данном случае займет слишком много времени и сил. В качестве соединяющего материала применяют отожженную проволоку, диаметр которой составляет 0,8–1,4 мм. Употребление иных стройматериалов запрещено. Арматуру можно связать отдельно, а после опустить в траншею. Либо выполнять связывание арматуры внутри котлована. Оба способа рациональные, но имеются некоторые различия. Если изготавливать на поверхности земли, то можно справиться самостоятельно, а в траншее понадобится помощник.

Как правильно вязать арматуру в углах ленточного фундамента?

Для угловых стен используется несколько методов связывания.

  • Лапкой. Для осуществления работ на конце каждого прута делают лапку под углом 90 градусов. В данном случае стержень напоминает кочергу. Величина лапки должна составлять не меньше 35 диаметров. Загнутый участок стержня подсоединяют к соответствующему вертикальному участку. В результате чего получается, что наружные прутья каркаса одной стены присоединены с наружными другой стены, а внутренние присоединяются к внешним.
  • С использованием Г-образных хомутов. Принцип выполнения схож с предшествующей вариацией. Но здесь не нужно изготавливать лапку, а берут спецэлемент Г-образной формы, величина которого составляет не меньше 50 диаметров. Одну часть привязывают к металлокаркасу одной стеновой поверхности, а вторую – к вертикальному металлокаркасу. При этом внутренние и наружные хомуты соединяются. Шаг хомутов должен формироваться ¾ от высоты стены подвального помещения.
  • С использование П-образных хомутов. На угол понадобится 2 хомута, величина которых составляет 50 диаметров. Каждый из хомутов приваривают к 2 параллельным прутьям и 1 перпендикулярному стержню.

Как правильно нужно армировать углы ленточного фундамента, смотрите в следующем видео.

Как выполнить армировку на тупых углах?

Для этого наружный пруток гнут до определенной градусной величины и крепят к нему дополнительно стержень для качественного усиления прочности. Внутренние спецэлементы соединяются с наружным.

Как вязать упрочнительную конструкцию своими руками?

Стоит рассмотреть подробнее, как выполняется вязание арматуры на поверхности земли. Сначала изготавливаются только прямые участки сетки, после чего конструкция устанавливается в траншею, где выполняется армировка углов. Подготавливаются отрезки арматуры. Стандартизированная величина прутьев составлять 6 метров, по возможности лучше их не трогать. Если нет уверенности в собственных силах, что можно справиться с такими прутьями, их можно разрезать пополам.

Специалисты рекомендуют начинать вязать арматурные прутья для самого короткого участка ленточного фундамента, что дает возможность приобрести определенный опыт и навык, в дальнейшем будет легче справиться с длинными конструкциями. Резать их нежелательно, ведь это приведет к увеличению расхода металла и снижает крепость фундамента. Параметры заготовок следует рассмотреть на примере фундамента, высота которого составляет 120 см, а ширина – 40 см. Арматурные изделия должны быть залиты со всех сторон бетонной смесью (толщина около 5 см), что является первоначальным условием. Учитывая эти данные, чистые параметры упрочнительного металлокаркаса должны составлять по высоте не больше 110 см, по ширине 30 см. Для вязки необходимо добавить по 2 сантиметра с каждой грани, это нужно для нахлеста. Поэтому заготовки для горизонтальных перемычек должны иметь величину 34 сантиметра, заготовки для осевых перемычек – 144 сантиметра.

После расчетов вязание упрочнительной конструкции происходит следующим образом:

  • следует выбрать ровный участок земли, положить два длинных прутьев, концы которых нужно подровнять;
  • на дистанции 20 см от концов привязываются по крайним граням горизонтальные распорки. Для связывания потребуется проволока величиной 20 см. Ее складывают вдвое, протягивают под участком связывания и затягивают посредством вязального крючка. Но затягивать необходимо с осторожностью, чтобы проволока не обломалась;
  • на дистанции около 50 см выполняется поочередное привязывание оставшихся горизонтальных распорок. Когда все будет готово, конструкцию убирают на свободное место и осуществляют связывание еще одного каркаса идентичным способом. В итоге получатся верхняя и нижняя части, которые нужно между собой соединить;
  • следом необходимо установить упоры для двух частей сетки, упереть их можно к различным предметам. Главное – это соблюдать, чтобы связанные конструкции имели надежное профильное расположение, дистанция между ними должна приравниваться к высоте связанной арматуры;
  • по концам привязываются по две осевые распорки, параметры которых уже известны. Когда каркасное изделие будет напоминать готовое приспособление, можно приступать к привязыванию остальных кусков арматуры. Все процедуры выполняются с проверкой размеров конструкции, хоть заготовки и выполнены одинаковых габаритов, лишняя проверка не повредит;
  • по аналогичному методу осуществляется связывание всех остальных прямых участков каркаса;
  • на дно траншеи укладывается прокладка, высота которой составляет не меньше 5 см, на ней будет уложена нижняя часть сетки. Устанавливаются боковые подпорки, монтируется сетка в правильном положении;
  • снимаются параметры непровязанных стыковочных мест и углов, подготавливаются отрезки арматурного изделия для подсоединения металлокаркаса в общую систему. Стоит обратить внимание, что нахлест концов арматуры должен составлять не меньше 50 диаметров прутка;
  • привязывается нижний поворот, после перпендикулярные стойки и к ним выполняется привязывание верхнего поворота. Осуществляется проверка дистанции армировки ко всем граням опалубки. Упрочнение конструкции на этом заканчивается, теперь можно переходить к заливанию фундамента бетонной смесью.

Вязание арматуры посредством специализированного приспособления

Чтобы изготовить такой механизм, потребуется несколько досок толщиной 20 миллиметров.

Сам процесс выглядит следующим образом:

  • отрезаются 4 доски по величине арматурного изделия, их соединяют по 2 штуки на дистанции, равной шагу вертикальных стоек. В итоге должны получиться две доски идентичного шаблона. Необходимо следить за тем, чтобы разметка дистанции между рейками была одинаковой, иначе не получится осевого расположения соединительных спецэлементов;
  • изготавливаются 2 вертикальные подпорки, высота которых должна приравниваться к высоте арматурной сетки. Подборки должны иметь профильные угловые опоры, которые не позволят им перевернуться. Проверяется готовая конструкция на прочность;
  • ножки опоры устанавливаются на 2 сколоченные доски, а две наружные доски укладываются на верхнюю полку опоров. Выполняется фиксирование любым удобным методом.

В итоге должна образоваться модель арматурной сетки, теперь работу можно осуществлять без сторонней помощи. На запланированные участки устанавливаются вертикальные раскосы арматурного изделия, заранее посредством обычных гвоздей на определенное время выполняется фиксирование их положения. На каждую горизонтальную перемычку из металла устанавливается прут арматуры. Данную процедуру выполняют по всем сторонам каркаса. Если все выполнено правильно, можно приступать к вязанию посредством проволоки и крючка. Конструкцию необходимо делать, если в наличие есть одинаковые участки сетки из арматурного изделия.

Вязание армированной сетки в траншеи

Выполнять работы в траншеи довольно сложно из-за тесноты.

Необходимо хорошенько обдумать схему вязания каждого спецэлемента.

  • На дно траншеи укладываются камни или кирпичи высотой не больше 5 см, они поднимут металлические изделия от поверхности земли и позволят бетону закрыть арматурные изделия со всех граней. Дистанция промеж кирпичей должна быть равной ширине сетки.
  • Поверх камней кладутся продольные прутья. Горизонтальные и вертикальные стержни должны быть порезаны по необходимым параметрам.
  • Приступают к формированию основы каркаса с одной стороны фундамента. Работу выполнить будет легче, если заранее привязать к лежащим стержням горизонтальные распорки. Помощник должен поддерживать торцы прутьев до тех пор, пока они не монтируются в нужном положении.
  • Выполняется поочередное вязание арматуры, дистанция между распорными элементами должна быть не меньше 50 см. Аналогичным образом связывается арматура на всех прямых участках фундаментальной ленты.
  • Проверяются параметры и пространственное местоположение каркаса, при необходимости необходимо исправить положение, а также исключить прикосновение металлических изделий к опалубке.

Советы

Следует ознакомиться с многократными ошибками, которые допускают неопытные мастера при выполнении армирования без соблюдения определенных правил.

  • Первоначально необходимо разработать план, по которому в дальнейшем будут выполняться вычисления по определению нагрузки на фундамент.
  • Во время изготовления опалубки не должно образовываться никаких щелей, в противном случае через эти отверстия будет вытекать бетонная смесь и снизится прочность конструкции.
  • На почву обязательно нужно выполнить гидроизоляцию, при ее отсутствии снизится качество плиты.
  • Запрещается, чтобы арматурные прутья контактировали с почвой, такой контакт приведет к появлению ржавчины.
  • Если решено выполнять армирование каркаса методом сварки, то лучше употребить прутья с индексом С. Это специализированные материалы, которые предназначены для сварки, поэтому под влиянием температурных режимов не теряю свои технические характеристики.
  • Не рекомендуется применять гладкие прутья для армирования. Бетонному раствору не за что будет закрепиться, а сами стержни будут в нем скользить. При движении грунтов такая конструкция растрескается.
  • Устраивать углы посредством прямого пересечения не рекомендуется, арматурные изделия гнутся очень тяжело. Иногда при армировании углов приходят к хитростям: раскаляют металлическое изделие до податливого состояния либо при помощи болгарки подпиливают конструкции. Оба варианта запрещены, ведь при данных процедурах материал теряет свою прочность, что в дальнейшем приведет к негативным последствиям.

Качественно выполненное упрочнение фундамента является залогом длительного эксплуатационного срока здания (20–40 лет), поэтому данной процедуре должно быть уделено особое внимание. Но опытные мастера советуют проводить ремонтно-профилактические работы каждые 10 лет.

схемы, расчет арматуры укладка и вязка, фото

Специфика индивидуального строительства определяется воздействием огромного количества факторов, от наличия дорог и электричества, до пруда или холма по соседству. Все эти факторы влияют на выбор фундамента и способ его монтажа. Какой должна быть опалубка, какие применить бетонные смеси, как армировать фундамент – это первые вопросы на старте строительства надёжного и прочного дома.

Армирование это обязательный элемент надежного фундаментаИсточник newspasky.ru

Чтобы избежать проблем

При устройстве фундамента частного дома трудно предвидеть, каким нагрузкам он подвергнется в будущем. Возможно, хозяину понадобится установить массивный токарный станок или устроить танцзал в доме, произойдёт прорыв водопровода, по соседству будет воздвигнуто мощное строение, вызвавшее подъём грунтовых вод или новое подземное течение. Нагрузки изменятся, фундамент, не рассчитанный на кардинальные изменения нагрузок, лопнет и просядет, следом разрушится здание.

Если наиболее целесообразным вариантом застройщик посчитал устройство ленточного фундамента, то для его гарантированной надёжности армирование необходимо. И как должно проходить армирование фундамента, расчет арматуры, укладка и вязка следует знать хотя бы примерно, даже если строить ваш дом будут другие люди.

Ленточный фундамент в разрезеИсточник ar. aviarydecor.com

Расчёт с запасом

Армирование фундамента – это устройство в его массиве каркаса из металла, призванного создать из бетона единую трудноразрушимую конструкцию.

Произвести точный инженерный расчёт фундамента небольшого индивидуального здания сложно и дорого, требует геологических изысканий, сопоставлений с перспективными проектами застройки местности в целом, характеристик грунта и подземных вод и решения ещё длинного списка вопросов.

Исходя из этого, частные застройщики руководствуются двумя основными правилами возведения фундаментов:

  1. Основание фундамента должно залегать ниже глубины промерзания почвы по максимальным показателям региона застройки.
  2. Армирование ленточного фундамента обязательно и выполняется в соответствии с общими рекомендациями стандартов с запасом прочности.

Основные правила выполнения армированияИсточник sevparitet.ru


Обустройство каркаса фундамента

Монолитный фундамент армируется в виде цельного единого каркаса на всю высоту. Расстояние между отдельными арматурными прутьями должно обеспечивать свободное прохождение бетонной смеси между ними. Иначе говоря, если в бетоне используется щебень фракции 20-40, то промежуток между прутьями каркаса должен быть не менее 4 см.

Применение бутового камня намного дешевле обычной бетонной смеси, но для создания единой конструкции необходима перевязка фундамента по всему периметру. Арматурный каркас несовместим с камнем больших размеров, в таких случаях технологическим решением становится устройство армопояса снизу и сверху фундамента.

Через каркас должны свободно проходить даже самые крупные фракции бетонаИсточник earny.ru

Этапы работ по обустройству арматурного каркаса

Основание под фундамент выполняется из слоя песка не менее 10 см, песок накрывается слоем щебня фракции 2-5, затем песчано-щебёночное основание трамбуется, и только потом следует приступать к укладке и вязке арматурного каркаса.

  1. Арматурные пруты, обрезанные по длине фундаментной ленты одной стороны, раскладываются на расстоянии 20-30 см между собой по дну фундамента. По углам они прикручиваются мягкой вязальной проволокой к вертикальным стержням, а также между собой при образовании нахлёста.
  2. Для создания вертикальных угловых опор каркаса горизонтальные нижние пруты каркаса изгибаются под углом 90 градусов. Удлиняются соединением внахлёст и креплением проволокой.
  3. Для облегчения производства работ по армированию углов фундамента допускается устройство анкеров, работы аналогичны устройству ростверков или армопоясов. По всем углам фундамента в грунт вбиваются по 4 металлических прута, снизу покрытые битумной смолой для гидроизоляции. Они выполняют роль анкеров для крепления каркаса. В сечении вбитые штыри-анкера должны образовать квадрат со сторонами, параллельными фундаментной ленте.

Вбитые в землю анкера, на которые крепится каркасИсточник sjthemes. com

  1. К анкерам прикручиваются или прихватываются для фиксации вертикальные арматурные прутья , равные высоте фундамента.Все вертикальные пруты связываются или привариваются между собой по периметру, образуя конструкцию столба.
  2. Для того, чтобы избежать соприкосновения металла и песчано-щебёночного основания, по всей длине прута под него с интервалом в 1 м подкладывают половинки кирпича.
  3. Нарезаются пруты для поперечной укладки арматуры. Их длина должна быть меньше ширины монолитной ленты на 10 см, то есть поперечины должны быть полностью укрыты заливаемым бетоном с расстоянием от наружной стенки фундамента 5 см.
  4. Шаг армирования фундамента поперечными стержнями 50 см по всей длине продольной арматуры.
  5. Все соединения арматуры скручиваются вязальной проволокой.
  6. В зависимости от длины стороны фундамента расстояние между вертикальными стержнями колеблется от 30 до 80 см.
  7. Продольных рядов может быть достаточно лишь двух:верхнего и нижнего.
  8. Каждый горизонтальный ряд параллелен нижнему и аналогичен ему.

Каркас вполне допустимо собрать вблизи от фундамента, а затем просто опустить его в траншею или опалубки.

Каркас не обязательно собирать внутри подготовленной для фундамента ямы – монтаж можно сделать и снаружи, а потом опустить всю конструкцию внизИсточник newspasky.ru

Конечно, такой способ возможен только при наличии ровного участка для сборки, иначе трудно добиться точного выполнения работы.

Фундамент для дома: виды и особенности

Крепление вязальной проволокой

Распространены два способа соединения арматуры в конструкции каркаса, сварка и вязание, причём вязание считается более надёжным. При заполнении фундамента бетонной смесью сварные соединения часто не выдерживают веса бетона.

Нарезанная по 40-50 см вязальная проволока слаживается вдвое , заводится снизу на пересечение стержней, скручивается плоскогубцами.

Вариант с закручиванием с помощью крючка проще и быстрее: проволока свободно с зазором наматывается вокруг места соединения арматуры, её концы скручиваются вручную на один-два оборота, в зазор между арматурой и проволокой вставляется крючок, поворотом которого производится стягивание проволоки.

Крючки продаются в строительных магазинах, но вполне достаточно для этой цели изогнуть очищенный сварочный электрод.

Для больших объёмов крепления арматуры проволокой существует специальный вязальный пистолет. Очень эффективен в местах легкодоступных, но где доступ затруднён, а это обычно угловые соединения, там опять полезнее простой крючок.

Использование вязального пистолета значительно ускоряет процесс связывания арматуры для фундаментаИсточник dvamolotka.ru

Часто вместо проволоки используются пластиковые хомуты. Это значительно убыстряет и облегчает рабочий процесс, но при отрицательных температурах такие крепления теряют эластичность и прочность.

Как работает арматура

Арматурой в строительстве принято называть стержни различных диаметров и форм для противодействия сжимающим и растягивающим нагрузкам, внутренним и наружным. Деление на виды, классы и группы зависит от заданных арматуре свойств и характеристик.

Разделение на группы арматуры зависит от характеристик:

  • материал изготовления;
  • форма профиля;
  • способ использования;
  • техника монтажа;
  • назначение.

В устройстве фундаментов важно пространственное расположение арматуры. Продольно ориентированные арматурные элементы работают на минимизацию образования трещин, перераспределяя на себя нагрузку на поверхность продольно направленных конструкций.

Поперечная арматура связывает бетон в зоне сжатия с арматурой продольной, перераспределяя и снижая нагрузки.

Зачем нужна арматура: сверху просто бетонная балка, а снизу – армированнаяИсточник rmnt. mirtesen.ru

При изучении маркировки арматурной стали практическое значение для частного застройщика имеют обозначения С и К после числового значения предела текучести

Индекс С говорит о возможности сварки арматуры, отсутствие этого индекса означает нежелательность сварки из-за хрупкости соединения. Обозначение К указывает на повышенную стойкость арматуры к коррозии.

Свайно-ростверковый фундамент: классификация, преимущества и недостатки, требования и нормативы

Схема и подсчёт металла

Потребность в металле и предположительные затраты легко подсчитать, если нарисовать схему армирования ленточного фундамента со всеми продольными, поперечными и вертикальными прутьями. Арматура продаётся на вес, поэтому при подсчёте следует учитывать диаметр арматуры, возможно комплектование каркаса металлом разных диаметров и видов рифления.

Для армирования фундаментов применяется арматура различных марок и диаметров, в основном распространены арматурные стержни диаметром 10 -14 мм, гладкие и ребристые. Для укладки поперечных соединений допустимо использовать круглую гладкую арматуру меньшего диаметра.

Самый распространённые виды арматуры для фундаментов изготовлены из стали марок М35ГС и М25ГС, длина стержней до 12 м, диаметр от 10 до 40 мм.

Правильный подбор сечения арматуры – залог прочности фундаментаИсточник armsetka16.ru

Альтернативная арматура

Сложность транспортировки стальной арматуры из-за её длины, многие проблемы в работе с металлом заставили застройщиков обратить внимание на альтернативные решения.

Одним из них вполне могла бы стать арматура из стекловолокна.

У неё много достоинств, но чтобы их оценить, стоит вспомнить о изначальном назначении армирования фундаментов. По сути, арматурный каркас должен предохранить бетонный фундамент от растяжений. Модуль упругости металлических стержней значительно ниже аналогичных пластиковых. Это значит, что низкий порог упругости пластиковых стержней гораздо быстрее приведёт к деформации, а значит и разрушению фундамента, нежели металлический. И смысл замены металла пластиковым композитом исчезает.

Второй очень неприятный недостаток касается именно индивидуальных застройщиков, не имеющих специальных условий для выравнивания свёрнутой в бухты пластиковой арматуры.

Недостатки современной пластиковой арматуры касаются только нежелательности использования её в монолитных ленточных фундаментах. Сфер применения, где эта разновидность арматуры покажет себя лучше стальной, много, – но не в фундаментах.

Опалубка для фундамента: разновидности, материалы, этапы монтажа, фото и видео

Заключение

Арматура не дает бетону разрушаться при возникновении в нем напряжений сдвига или кручения, поэтому армирование это обязательный этап возведения бетонного фундамента. Правила армирования достаточно просты, но требуют неукоснительного соблюдения – в этом случае ваш дом получит надежную основу.

Армирование ленточного фундамента — схема монтажа

Фундамент – это основа любой постройки. Именно от хорошего фундамента будет зависеть качество эксплуатации дома и его долговечность. Фундамент, как правило, состоит из затвердевшей бетонной смеси. Для придания жесткости бетонной основе, ее необходимо армировать специальными стальными прутьями по определенным правилам.

Существует схема армирования ленточного фундамента, следуя которой строитель заложит крепкую и долговечную основу для дома.

Что такое ленточный фундамент и зачем его армировать

Ленточный фундамент – это один из самых распространенных бетонных оснований. Он представляет собой ленточную конструкцию, выполненную по периметру и дома, а также в местах перегородок.

Ленточный фундамент имеет такие преимущества:

  • выдерживает большие нагрузки различных строений, выполненных из кирпича, камня, блоков;
  • предусматривает обустройство подвального помещения;
  • подходит для неоднородных грунтов, где существует риск проседания и вспучивания.

Таким образом, фундамент испытывает двойную нагрузку: сверху давят тяжелые стены, а снизу действует растяжение грунта. Последний факт особенно актуален для любой постройки. Ведь в результате зимнего промерзания, влажный грунт увеличивается в объеме. Если фундамент не достаточно жесткий, то его целостность может нарушиться, что приведет к появлению трещин на стенах и риску разрушения дома.

Но бетон сам по себе хорошо справляется с этими нагрузками. Так зачем надо еще дополнительно закладывать стальные прутья?

Это связано с тем, что нагрузка в разных точках фундамента – разная. Ведь состояние грунта неодинаково в различных местах, как и давление дома, то и нагрузка на фундамент будет отличаться.

Чтобы уравнять этот физический показатель, в бетонное основание закладывают стальные прутья, которые обеспечивают равномерное распределение нагрузки по всей площади фундамента.

к содержанию ↑

Тип и количество арматуры для укрепления фундамента

Армирующие прутья бывают 2 видов: стальные и композитные. Металлическая арматура применяется чаще, так как ее эффективность проверена годами.

Применение стеклопластика используется для тех строений, где повышены требования к ограничению радиопомех, магнитного поля, химического воздействия.

Металлическая арматура бывает стержневая и проволочная. Для ленточного фундамента берут стержневую арматуру периодического профиля класса А-3 или по ГОСТу А400. Этот стройматериал имеет хорошую адгезию с бетоном и из него вяжут нижнюю и верхнюю часть каркаса.

Из гладких прутьев, сечением до 1 см изготавливают вертикальную и поперечную часть каркаса. Гладкие прутья называют монтажными. Поперечную арматуру следует выбирать класса А-1 или по ГОСТу А240.

Чтобы рассчитать количество необходимых материалов, необходимо знать геометрические параметры фундамента и требования к каркасу.

Обычно каркас-сетку выполняют в 2-3 ряда. Шаг между вертикальными прутьями: 40-70 см, а горизонтальными – 30-60 см. Если заглубленный фундамент имеет высоту менее 1 м, то для него понадобиться 2-3 продольных уровня.

Для примера рассмотрим фундамент высотой 60 см, а шириной – 30 см. Данная основа заложена под строение, длина и ширина которого по 5 м.

В этом случае выполняют двухъярусную сетку с шагом 0,5 м. Для 4 продольных линий по 20 м, потребуется 80 погонных метров рабочей арматуры. Расчет монтажных вертикальных прутьев берут с учетом отступов от поверхности в 5 см. Если количество пересечений = 51, то получаем общую длину прутьев: 1,4 м * 51 = 71,4 м. Рекомендуется покупать материал с запасом в 10%.

Таким образом, путем сложения чисел, получаем общее количество необходимой арматуры: 80 + 71,4 + 10% ~ 170 погонных метров.

Видео о том как правильно армировать пространственный каркас мелкозаглубленного ленточного фундамента:

к содержанию ↑

Правила закладки стальных прутьев в бетонную основу

Перед выполнением металлического каркаса, железные прутья следует очистить и проверить их качество.

Технология армирования ленточной основы выполняют по такому алгоритму:

  1. В вырытую траншею засыпают песчано-щебневую подушку, толщиной 5 см. Это надо для предупреждения коррозии железных прутков.
  2. Выполняют опалубку и заливают тонкий бетонный слой.
  3. Сверху укладывают поперечные прутья с шагом 80 см.
  4. Формируя каркас, укладывают продольные прутки, перпендикулярно предыдущим стержням, в 2 ряда. Места пересечений связывают. Нижний уровень каркаса готов.
  5. В местах стыков устанавливают вертикальные гладкие прутки. Важно соблюдать при этом перпендикулярность.
  6. К вертикальным прутьям крепят верхний ярус каркаса. Он представляет собой рамку, прутья в которой закреплены с интервалом 20 см.
  7. Верхний ярус комплектуют продольными прутками, которые скрепляются с остальными прутьями хомутами или проволокой.
  8. Арматурный скелет жестко закрепляют к опалубке. Зазор между железной конструкцией и опалубкой должен составлять 3-5 см.
  9. Контролируют качество креплений и убирают лишний мусор.

Самое важное при выполнении каркаса – это надежно закрепить прутья между собой, особенно в углах фундамента. Здесь важно соблюдать ровные углы и перпендикулярность. Существует 2 способа объединения стержней: сварка и вязание проволокой.

Сварка в частном строительстве нежелательна, так как данный метод не обеспечивает должного качества перпендикулярной конструкции. Строители часто пренебрегают требованиями норм и варят вручную контактной сваркой, а не дуговой.

Предпочтительным методом соединения стержней является вязание проволокой, диаметром 0,8-3 мм. Это осуществляется с помощью вязального крючка. Качество такого соединения гораздо выше, чем в предыдущем варианте. Недостатками метода являются: большая трудоемкость процесса и малая жесткость по сравнению со сварной конструкцией.

к содержанию ↑

Схема армирования ленточного фундамента

На рисунке 1 изображена схема усиления фундамента под одноэтажный дом, размером 10х6 м.

Рисунок 1. Схема армирования ленточного фундамента

В качестве продольных прутков берут стержни класса А-3, диаметром 12 мм; поперечными прутками выступает арматура, диаметром 8 мм, класса А-1.

Шаг перекрытий составляет 0,6 м, а в области углов – 0,2 м. Углы и Т-образные пересечения усиливают вутами – арматурой класса А-3, диаметром 12 мм. В области примыканий вуты кладут внахлест, который равен: 50*d, где d – диаметр прутка.

Армирование углов и Т-образных стыков можно выполнить с использованием специальных лапок. Они представляют собой своеобразные уголки, с длиной полочек, равных: 50*d, где d — диаметр арматуры. Например, если диаметра арматура 10 мм, то загиб лапок равен 500 мм. Пример такого крепления показан на рисунке 2.

Рисунок 2. Схема армирования угла лапками

Подведя итог, можно выделить основные правила армирования фундамента:

  1. Диаметр рабочих прутков должен быть не менее 12 мм.
  2. Продольные (рабочие) прутья в совокупности с поперечной арматурой образуют каркас, элементы которого сваривают или связывают.
  3. Для средней величины фундамента, необходимо 3-4 продольных прутка.
  4. Диаметр поперечных стержней равен 6-8 см, которые укладывают с шагом 200-600 мм.
  5. Толщина ленточной основы принимают не менее 300 мм.
  6. Углы и Т-образные пересечения усиливают специальными вутами или лапками. Диаметр этих креплений должен быть равен диаметру рабочих прутков.

Металлический каркас в конструкции фундамента – залог крепкого дома и комфортного проживания в нем.

Как французы делают ленточный фундамент:

Как правильно армировать ленточный фундамент? Схема и построение каркаса

Фундамент служит основой любого строительства и самой важной частью здания. На него идет нагрузка всего деревянного дома, которая передается на грунт. Есть некоторые виды фундаментов, однако мы расскажем про армирование ленточного фундамента.

Сначала разберемся в том, что такое ленточный фундамент и как происходит его армирование. Подобный тип называют ленточным из-за того, что он залегает в грунте железобетонной полоски, которая идет по периметру всего сруба дома, которое строится. Многие считают, что технология армирования подобного фундамента очень простая. Для строительства дома из бруса.

  1. Технология армирование
  2. Схема армирования
  3. Арматурный каркас
  4. Видео

Содержание статьи:

Что же даст армирование такого ленточного фундамента?

Рассмотрим армирование с точки зрения целесообразности его применения для домов из бруса или бревна. Фундамент будет прочным в том случае, если металл в железобетонных конструкциях, будет прочным. Благодаря своей технологии, ленточные фундаменты являются очень прочными и допускают даже строительство монолитных домов очень сложной конфигурации.

Имея бетонный вибратор, вы сможете получить очень крепкий фундамент. Независимо от толщины стены дома, вам необходимо ориентироваться на ширину фундамента.

Рассмотрим технологию армирования.

Одними из распространенных материалов для армирования служат арматура. Подготовительные работы заключаются в расчистке территории под строительство. Необходимо вырыть траншею по периметру фундамента. Такую работу можно сделать вручную либо с помощью специальной техники. Для того, чтобы стены были ровными, устанавливают опалубку. Каркасную арматуру монтируют вместе с опалубкой. После заливают бетон слоями, проводят гидроизоляцию при помощи битумных мастик и рубероида.

Можно армировать фундамент и самостоятельно, своими руками. Но не стоит забывать о том, что после того, как будет сделана гидроизоляция фундамента, необходимо пазухи фундамента засыпать песком. Для климатических зон, в которых холодно, желательно утеплить ленточный фундамент. Его можно просто обклеить пенополистиролом. При правильном армировании, подобный фундамент простоит много лет! Про сборные фундаменты такого не скажешь, их максимальный срок службы составляет 75 лет, а ремонт нужно проводить каждые 10 лет.

Важные моменты

Необходимо отметить несколько важных моментов армирования ленточного фундамента. Случается, что нет самого проекта постройки. При такой ситуации в основе находится опыт самой строительной бригады.
В любой ситуации металлический каркас, состоящий из арматуры, должен состоять как минимум из двух рядов вертикальных прутьев, а горизонтальные либо поперечные полосы, нужно определять, исходя из того, насколько глубоко залегает сам фундамент. Стоит отметить, что могут быть фундаменты, мелко заглубленные и такие, которые являются достаточно глубокими по сравнению с первым типом, или их называют глубоко заглубленными.

Для финансового расчета затрат на то, чтобы возвести фундамент, потребуется определенная схема. Большинство расчетов связано с двумя факторами: стоимости самих материалов и работы по строительству фундамента. Тут нужно подготовить грунт, вырыть траншеи, сделать опалубку, арматуру, произвести работу для подготовки бетонной заливки, обработать готовый фундамент. Также, не стоит забывать включить в расчет засыпку песка в саму траншею, который станет подушкой для дна.

Одна из самых распространенных схем армирования

Лучше, если армирование монолитного фундамента для деревянных домов упрощенных форм будет проводиться по каким-либо простым геометрическим фигурам: квадрату или прямоугольнику. В таком случае оси станут правильными, ну а основание будет крепким. Чтобы армировать монолитный ленточный фундамент, нужно соблюсти толщину подушки прямо в траншее. Операция гидроизоляции должна быть сделана достаточно аккуратно и очень тщательно, так как, засыпая траншею песком, гидроизоляционные свойства самого пенополистирола могут быть повреждены. Тут нужно обратиться за помощью к профессионалу, а если вы решили сделать ленточный фундамент собственными руками, то прочтите данные рекомендации, чтобы весь процесс строительства и находился под контролем и вы без труда выполните его самостоятельно.

Из тех видов фундаментов, которые существуют для строительства дома или дачи, именно постройка ленточного фундамента очень популярна, особенно для частного домостроения. Тут все зависит от очень разумных затрат на опалубку, на саму арматуру, на строительство бетонного фундамента для дачного дома или бани. Нужно просто выполнить расчет самого армирования фундамента и его строительства. Конечно же, построить ленточный фундамент для вашего дачного дома, правильно и надежно его армировать, залить можно собственными руками.

Арматурный каркас для ленточного фундамента

[ads1]Как известно, бетон не относится к пластичным материалам, и очень просто растрескивается при растягивающем действии. Когда на него действуют силы морозного пучения с грунта либо деформируется фундамент самого здания, с одной стороны появляется зона сжатия, а с противоположной появляется зона растяжения. В зоне растяжения появляются обычно трещины. Для их предотвращения необходимо тщательное армирование фундамента.

Армирование фундамента в углах

Оно состоит в том, что в бетонной конструкции есть каркас, состоящий из стальной арматуры. А все знают, что сталь намного устойчивей к растяжению способна принимать нагрузку на себя.

Армирование нужно делать там, где могут возникнуть зоны растяжения. Обычно это появляется на самой поверхности фундамента, и армирование необходимо делать прямо около поверхности. Для предотвращения коррозии арматурного каркаса, нужно защитить его слоем бетона. Поэтому, оптимальным расстоянием заложенной арматуры будет 3-5 см.

Арматурный каркас следует расположить в 5 см от самой поверхности. Ведь потом на фундамент будет крепиться брус или первый венец сруба бревна

Так как сложно предугадать направления деформации, Поэтому зоны растяжения следует ожидать как в верхней, так и в нижней части фундамента. Армирование фундамента следует проводить большой арматурой сверху и снизу, и она должна быть с ребристой поверхностью, для обеспечения хорошего контакта с бетоном. Оставшаяся часть каркаса может быть меньшего диаметра и с гладкой поверхностью.

Создание каркаса

Занимаясь армированием ленточного фундамента, возможно использование четырех прутков арматуры, которые соединяются между собой в определенный каркас с диаметром 6-8 мм. Между толстыми прутьями должно быть расстояние 30 см. Подобный фундамент достаточно длинный и не очень широкий, и в нем возможны продольные растяжения, и полное отсутствие поперечных. Поэтому горизонтальные прутья скорее понадобятся для того, чтобы создать каркас, а не потому, что нужно принятие какой-то нагрузки. Именно поэтому возможно использование тонких и гладких прутьев.

Видео:


Особенно важным является армированию самих углов фундамента, того места, где может появиться деформация. Его обязательно необходимо армировать арматурой, чтобы её согнутый конец заходил в стенку фундамента, а остальной конец — в противоположную (см. рисунок выше)

Часто строительство ленточного фундамента могут совместить со свайным, это также правильный вариант строительства фундамента. Такой, комбинированный вид бетонного фундамента для дома или бани также можно сделать собственными руками. А как это сделать, мы уже рассказали выше.

Схема армирования ленточного фундамента — Всё про бетон

Армирование – это строительный процесс, который используется с целью усиления стойкости конструкции и повышения периода ее эксплуатации. Он представляет собой формирование сборного скелета, выступающего как защитный компонент, который противостоит воздействию почвы на стенки конструкции.

Чтобы добиться максимального результата следует четко рассчитать, сколько необходимо арматуры, а также точно провести армирование фундамента здания.

Правильное армирование ленточного фундамента своими руками

В основании фундамента первостепенным компонентом выступает бетонная смесь, сформированная из цемента, просеянного песка и чистой воды. Поскольку этот раствор не обладает достаточными физическими характеристиками, способными предоставить гарантию на отсутствие разнотипных деформаций в фундаменте конструкции, дополнительно используют металл.

Он позволяет увеличить степень противостояния сдвигам основания, резким изменениям температур и иным отрицательно воздействующим факторам. Сам по себе металл пластичен, но он способен обеспечить достойную фиксацию, поэтому армирование – важный и необходимый процесс во всем комплексе строительства.

Армирование следует проводить лишь в местах, где существует большая степень уязвимости к растяжениям. Чаще всего оно встречается на поверхности, поэтому следует в обязательном порядке армировать верхний уровень основания. В целях избежания коррозии материала, следует его защитить слоем бетонного раствора.

Допустимый показатель расстояния арматурного пояса от поверхности должен составлять около 5 см.

Зоны возможной деформации:

  • нижняя часть, когда наблюдается прогибание его середины вниз;
  • верхняя часть – выгибание каркаса вверх.

Для среднего уровня основания армирование проводить необязательно, поскольку в этой зоне практически не существует растягивания.

Учитывая возможные варианты деформации, следует обязательно выполнить армирование низа и верха, используя арматуру с ребристой поверхностью и диаметром в пределах 10–12 мм. В подобном варианте наблюдается наиболее тесный контакт с бетонным раствором. Иные элементы скелета могут быть небольшого диаметра и иметь сглаженную поверхность.

Если проводится армирование фундамента с шириной до 40 см, используются 4 прута арматуры диаметром 10–16 мм, которые соединены в каркас с диаметром 8 мм.

Ленточный тип основания большой длины имеет сравнительно незначительную ширину, из-за чего в нем могут присутствовать только продольные растяжения без поперечных. Поэтому в данной ситуации лучше всего использовать гладкие и тонкие прутья для формирования каркаса, а не для принятия на основание больших нагрузок.

Больше всего следует уделять внимание при армировании углов, поскольку во многих случаях деформации происходят именно в этой части конструкции. Армирование углов конструкции необходимо проводить так, чтобы один из концов согнутого металла уходил в одну стену, а другой – в иную. Поскольку не каждый материал арматуры поддается сварке, скреплять элементы между собой лучше, используя проволоку.

Правила верного армирования фундамента ленточного типа:

  1. Работа начинается с установления опалубки, которая с внутренней стороны обкладывается пергаментом. Данная процедура в дальнейшем позволяет быстрее разобрать созданную конструкцию.
  2. Затем следует вбить арматурные прутья в грунт траншеи на расстоянии 5 см от опалубки и с шагом в 40–60 см. Длина прутьев должна быть равной глубине фундамента.
  3. На дно траншеи укладывается подставка размером в 8–10 см, а поверх нее формируется 2 или 3 нитки ряда арматуры. Как подставку можно применить обыкновенный кирпич, уложенный на ребро.
  4. Верхний и нижний пояс из арматуры с поперечными соединениями прикрепляется к вертикальным стержням.
  5. В местах, где происходит пересечение элементов, необходимо проводить крепление проволокой или сваркой.

Обязательно соблюдайте расстояние до будущей поверхности фундамента, для этого можно использовать кирпичи.

  1. Установив арматуру, следует сделать вентиляционные отверстия и провести заливку бетона.

Наличие вентиляционных дыр и отверстий увеличивает амортизационные показатели и предотвращает возникновение гнили.

Идеальным вариантом считается использование схемы для ленточного фундамента, состоящей из примитивных геометрических фигур, таких как квадрат или прямоугольник, тогда каркас проще смонтировать правильно, а фундамент в результате получается более надежным и крепким.

Основные ошибки армирования ленточного фундамента

Самые известные и часто допускаемые ошибки:

  1. Углы. Главная проблема и ошибка уложить стержни угла крест-накрест. Из-за подобной укладки в фундаменте очень часто возникают трещины. 
  2. Гидроизоляционный материал. Очень часто при создании опалубки забывают об использовании гидроизоляции, вследствие чего вода вымывает цемент и делает бетон менее устойчивым и прочным. Также это способствует возникновению усадочных трещин. Слой гидроизоляции следует очень хорошо и тщательно прикрепить к опалубке, чтобы устранить формирование нежелательных складок и впадин в фундаменте.
  3. Заливка бетона. Заполнение ленточного фундамента бетонной смесью по высоте очень часто не доходит до краев, а долив, проводят лишь через пару дней. Технология подобного типа уже не являет собой конструкцию из монолита, она похожа на две обыкновенные балки с однослойным армированием, которые объединяет между собой скрепление слоев бетонной смеси и поперечной арматуры. Заливка бетона при создании фундамента должна быть беспрерывной, а максимально допустимый интервал для перерыва должен быть не более двух часов.
  4. Вентиляция. Огромную ошибку совершают при установке и в процессе эксплуатации продухов необходимых для вентиляции холодного подполья. Они выполняются из труб диаметром 10 см. Самая минимальная площадь, требуемая для продуха, должна быть около 0,05 м2 (приблизительно 20х25 см).

Запрещается закрывать продухи на зиму, поскольку это приводит к отсутствию вентиляции и загниванию конструкции.

Зачем нужна арматура в ленточном фундаменте?

Со временем у любого дома возникает просадка, поскольку грунт, находящийся под подошвой основания, поддается давлению сверху и уплотняется. Чем больше давления на него оказывают, тем сильнее и быстрее он уплотняется. Если возникающий напор распределен равномерно по всей площади ленточного фундамента, то в этом нет особой проблемы.

Как правило, в реальных условиях давление на основание не симметрично из-за чего здание оседает неравномерно. Чтобы избежать подобной проблемы в фундаменте применяются ленты различной ширины, но даже этот прием не всегда способствует устранению и уравнению давления на фундамент.

Неравномерному осадку фундамента способствует:

  1. Разнообразные включения грунтовой почвы.
  2. Неравномерная и непостоянная влажность.
  3. Различные достройки и пристройки.
  4. Протечка водонесущих коммуникаций.
  5. Отсутствие с какой-либо стороны отмостки и т. п.

Под влиянием указанных причин осадки, поверхность грунта под фундаментом становится кривой относительно вертикального направления здания. Больше всего подвержены воздействию углы конструкции и места с большими перепадами нагрузки.

В подобной ситуации в фундаментной ленте возникает внутренне напряжение, которое способствует возникновению изгибающихся моментов и трещин. Чтобы устранить нежелательное давление на основание, снизить количество трещин и изгибов внутрь фундамента добавляют арматуру.

Какая арматура нужна для фундамента?

Существует два варианта, используемой в строительстве арматуры:

  1. Стальная, которая подразделяется на:
    • стержневую;
    • проволочную.
  2. Композитная арматура. Она применяется сравнительно редко из-за характерных для нее минусов.

Чтобы армировать фундамент ленточного типа используют стержневую арматуру в качестве основного (рабочего) материала и гладкую как дополнительного.

Главное свойство для рабочей арматуры способность быстро и хорошо сцепляться с бетоном. Подобный тип арматуры производят с периодическим профилем, подразделяя его по показателям прочности на классы.

Согласно ГОСТу, существовавшему в период СССР, для частного типа строительства применяется арматура класса А-ΙΙΙ или аналог А400 (по современному ГОСТу). Для поперечной арматуры используется гладкий стержень класса А-Ι или А240 (современный ГОСТ).

Между арматурой старого и современного образца существует отличие в виде измененного профиля серповидной формы, в остальных аспектах отличия отсутствуют.

Чтобы правильно выбрать арматуру для фундамента в магазине следует просто обратить внимание на обозначения:

  • Индекс С указывает на то, что арматурный прокат свариваемый;
  • Индекс К свидетельствует о том, что арматура обладает стойкостью к процессам коррозийного растрескивания, возникающих в связи с давлением на фундамент.

Если эти индексы отсутствуют на упаковке лучше не покупать такой подобный материал.

Конструктивные требования к ленточным фундаментам и их армированию

В связи с отсутствием возможности провести точный расчет диаметра для ленточного фундамента были разработаны специальные конструктивные требования к его армированию:

  1. У рабочих стержней должен быть диаметр минимум 12 мм. 
  2. Количество продольных прутьев должно быть минимум 4, а лучше 6.
  3. Продольные прутья соединяются между собой в пространственный каркас при помощи вязания проволоки или сваривания.
  4. Шаг для поперечного армирования должен быть 20–60 см, а диаметр арматуры 6–8 мм.
  5. Места с наиболее высоким уровнем возможной осадки, а также Т-образные пересечения требуют усиленного армирования с помощью арматурных лапок или вутов с диаметром равным тому, который используется для продольных стержней.
  6. Толщина ленточного типа основания, как правило, составляет около 30 см.

Сколько нужно арматуры для ленточного фундамента?

Для фундамента используется арматура с небольшим диаметром, например, для малоэтажного строительства употребляется арматура с диаметром 10–12 мм, несколько реже – 14 мм.

В независимости от высоты основания для армирования понадобится сделать два пояса из ребристой арматуры класса А3 на расстоянии 5 см от нижней и верхней части фундамента. Поперечные и вертикальные прутья могут быть выполнены из гладкого типа арматуры класса А1.

Для ширины фундамента около 40 см достаточно применить 4 продольных стержня арматуры, из которых два находится внизу и два вверху. Если ширина фундамента больше 40 см или строительство ведется на подвижных грунтах, следует применить больше стержней приблизительно 3 – 4 для верхнего и столько же для нижнего пояса.

Чтобы провести расчет количества необходимой арматуры существует два метода:

Самостоятельный подсчет

Пример. Длина фундамента под здание 6 на 10 м с двумя стенами будет равна 48 метрам (6+10+6+10+6+10=48м).

Если ширина основания 60 см, а армирование состоит из 6 продольных прутьев, то их длина составит 288 метров (6*48=248м).

Шаг между поперечными и вертикальными стержнями соблюдается в 0,5 м, ширина фундамента – 60 см, высота – 1,9 м, отступы стержней от каркаса по 5 см.

В этом случае длина гладкой арматуры с диаметром 6 мм на каждое соединение составляет 640 см или 6,4 м. ((60-5-5)*2+(190-5-5)*3=640 см), а соединений будет 97 штук (48/0,5+1=97 шт.), на них потребуется 620,8 метров арматуры (97*6,4=620,8м).

Для каждого соединения необходимо 6 пересечений для вязки арматуры и приблизительно 12 частей вязальной проволоки. На одну связку требуется 30 см проволоки. Исходя из этих данных, общий расход проволоки составит 349,2 м (0,3*12*97=349,2 м).

Использование коэффициента армирования

Для зданий с небольшой этажностью существует уже выведенный строителями показатель количества арматуры, который составляет 80 кг/м3.  

Пример. Если для фундамента необходимо 20 м3 бетонного раствора, значит, арматуры понадобится 20*80=1600 кг. Подсчет бетона делать несложно, необходимо лишь знать периметр дома, длину внутренних стен, задать высоту ленты 30 см и помножить ее на ширину.

Чтобы расчет был более экономным лучше всего сделать более точный подсчет необходимого количества арматуры, нарисовав схему армирования. А затем, просчитав погонаж на продольную и поперечную арматуру, вут, а также добавив к этому приблизительно 10 %, которые уйдут на обрезки, умножить полученный результат на вес погонного метра для каждого из используемых диаметров арматуры.

Армирование ленточного фундамента — вязать или варить?

Прутья из металла можно соединять между собой в каркас с помощью вязания или сваривания. Каждый вариант обладает своими положительными и отрицательными качествами.

Главным недостатком сваривания выступает, отсутствие возможности провести качественное поперечное соединение, используя ручной электрод. На заводах каркасы и сетки соединяют, применяя контактный, а не дуговой тип сварки.

В связи с этим очень часто наблюдаются недостаточно прочные соединения (непровар) или ослабление продольного стержня (подрез). Также большим недостатком сваривания является то, что не все материалы поддаются сварке, например, арматура класс А3 делается из стали марки 35ГС, которая не сваривается.

Также если учесть, что для сваривания необходим сам аппарат, наличие знаний, умение им пользоваться, а также расход электричества, то больше преимущества в строительстве отдают вязанию.

Вязание проводится с использованием проволоки диаметром 0,8–3 мм, а в качестве инструмента выступает специальный вязальный крючок. Единственным недостатком такого варианта соединения является высокая трудоемкость.

Какие материалы применяются для армирования?

Для армирования необходимы следующие материалы:

  1. Стальная либо композитная арматура, стержни которой выполненные из стеклопластика или металла.
  2. Зажимной инструмент (вязальный крючок).
  3. Стальная проволока (стяжные хомуты) для вязки. Для металла с индексом С, можно использовать сварку. В этом случае необходим сварочный аппарат.
  4. Ножовка по металлу и т. д.

Правильное армирование ленточного фундамента на долгие годы укрепит здание, снизит количество трещин в основании и на стенах, а также убережет конструкцию от осадки.

Монолитный ленточный фундамент, изготовление арматурного каркаса

В этой статье, уважаемые читатели блога «Как построить дом» , мы продолжим тему «Ленточный фундамент для дома из газосиликатных блоков. Армирование ленточного фундамента Изготовление своими руками » . Впрочем, монолитный железобетонный ленточный фундамент может быть изготовлен и для дома из других материалов.

Мы расскажем, как правильно разметить участок под траншею, как правильно выполнить армирование ленточного фундамента (в т. ч. — как правильно вязать арматуру для фундамента): своими руками изготовить арматурный каркас (арматуру) для монолитного ленточного фундамента,  правильно его укрепить в траншее, чтобы при заливке каркас не сместился в сторону.

Для тех, кто предпочитает тексту аудиозапись, мы предлагаем прослушать в формате mp3  аудио, посвященное этой теме. И все же, после прослушивания аудио, мы предлагаем вам дочитать статью до конца — вы найдете еще много полезного и интересного из того, что не вошло в запись.

Ленточный монолитный фундамент-подготовка траншеи, изготовление арматурного каркаса, закрепление его в траншее и заливка фундамента.mp3

 Разметка для траншеи под  ленточный фундамент

Все начинается с разметки. Перед началом работ по изготовлению ленточного фундамента необходимо на участке сделать разметку для траншеи. Разметку удобно делать с помощью колышков, забитых в землю, и натянутого шнура. В качестве колышков удобнее всего использовать обрезки арматуры (8-10мм), забитыми в землю на глубину около 15 см.  Разметку делаем строго в соответствии с планом будущего дома.

Затем при помощи длинной рулетки (можно использовать нетянущуюся нить) очень тщательно вымеряем длины сторон и, что очень важно!, диагонали. Длины противоположных сторон и диагоналей должны соответственно совпадать. Если длины сторон или диагоналей не совпадают, значит не все углы равны 90 град. В этом случае необходимо повторить разметку заново.

Если же размеры соответственно совпадают, то это означает, что разметка траншеи выполнена верно, каждый угол по 90 град и можно приступать к рытью траншеи. Перед рытьем траншеи необходимо еще с помощью колышков и нити разметить ширину будущей траншеи.

Траншея под монолитный ленточный фундамент без опалубки

Напомним, что в нашем доме не предусмотрено подвальное помещение (цокольный этаж). Подвал значительно увеличивает стоимость строительства, поэтому в целях экономии мы отказались от подвала. Кроме того, бетон для фундамента мы будем заливать в траншею без опалубки.

Исходя из этого, для нашего дома ширина траншеи под фундамент составила — 50 см., а глубина — 110см. Конечно, траншею под фундамент можно рыть и с помощью экскаватора — это будет быстрее. Но рытье траншеи вручную имеет ряд преимуществ:

  • меньше объем вынутой земли;
  • стены траншеи более ровные;
  • объем бетона при заливке фундамента — оптимальный, нет перерасхода бетона, следовательно, нет перерасхода денег.

Для рытья траншеи мы привлекали подсобных рабочих: двое ребят вырыли траншею за 5 дней.

На высоте 30 см от дна, стену траншеи необходимо сформировать в виде расширяющего к дну траншеи конуса. При заливке бетоном образуется так называемая «пятка» фундамента. Иначе говоря, фундамент в нижней части будет иметь расширение, т. е. увеличится площадь подошвы (опоры) фундамента.

Дно траншеи необходимо заполнить слоем песка 10 см. Песок можно утрамбовать, но лучше всего обильно пролить водой. Проливка песка водой дает максимальную усадку песка.

Армирование ленточного фундамента  Изготовление арматурного каркаса для монолитного ленточного фундамента

Траншея готова, пора приступать к изготовления арматурного каркаса. Как же правильно армировать ленточный фундамент? Армированию подлежит любой фундамент, независимо от типа грунта. О типах арматуры, применямой в загородном строительстве, и о способах соединения арматурных стержней мы подробно рассказали в статье  »Арматура для строительства, вязка и сварка арматуры и иные соединения стержней» . Для каркаса мы использовали 12мм и 8 мм арматуру. Для начала берем 8 мм арматуру и делаем из нее «кольца».

Изготовление прямоугольных колец для пространственного арматурного каркаса

Техника изготовления «колец» для арматурного каркаса такая же, как и для изготовления арматурного каркаса и «колец» для армопояса (армированного пояса) по окончании кладки стен первого этажа.

Как это делается? В этой статье мы кратко повторим описание технологии изготовления прямоугольных колец для пространственного арматурного каркаса. Более подробно и с большим количеством качественных фото вы можете ознакомиться в статье «Арматурные каркасы:виды каркасов, изготовление арматурных каркасов. Монтажные кольца» .

Сначала берем швеллер, крепим его к чему-нибудь устойчивому. Затем болгаркой выпиливаем на двух ребрах швеллера канавки. Арматура вставляется в канавки, на арматуру надевается труба несколько большего диаметра (получается что-то вроде «рычага»). С помощью этих несложных устройств арматуру очень легко гнуть в прямоугольное «кольцо». «Кольца» получаются одинаковыми по размеру — это очень важно!

Глубина вырытой траншеи для нашего монолитного ленточного фундамента, а точнее — высота будущего фундамента составляет 1м (первоначальная глубина траншеи — 1,1м, затем на дно насыпали песок толщиной 0,1 м (10 см), в результате получилась глубина — 1м), ширина — 50 см. Для фундамента с такими размерами размер «колец» для арматурного каркаса должен быть: 0,7 м по высоте и 0,3 м. по ширине.

Для «колец» мы предварительно заготовили арматурные стержни толщиной 8 мм и длиной по 2,30 м. Затем на стержне ставим метки: первая метка на расстоянии 30 см от начала стержня, затем — 70 см, затем — 30 и 70 см. До конца стержня у вас должно остаться еще 30 см. Затем арматуру вставляем в пропиленные канавки на швеллере и по меткам начинаем гнуть арматуру при помощи трубы — рычага. Получаем прямоугольное «кольцо».

Инструмент для вязки арматуры

Далее вязальной проволокой  мы связываем полученные «кольца». Как это делать? Вязать арматуру вязальной проволокой можно при помощи клещей для вязки или при помощи крючка для вязки арматуры. Можно использовать и шуруповерт на малой скорости. Мы использовали крючок. Вязальный крючок можно приобрести в торговых точках, а можно и изготовить из обрезка электрода (для удобства в качестве ручки можно использовать обрезок резинового шланга)  или сломанного мастерка с изогнутым и заточенным концом.

Для вязки арматуры используют специальную вязальную проволоку. Для арматуры 10-14 мм используется проволока 1,2 — 1. ,4. Более тонкую проволоку необходимо будет складывать в несколько раз, более толстая проволока также не годится: она неудобна в работе, т.к. будет плохо гнуться. Проволока должна быть мягкой на изгиб — для этого годится проволока из отожженной низкоуглеродистой стали. Если она плохо гнется — ее нужно подержать в огне на костре не менее 30 минут, затем проволока должна остыть на воздухе.

Готовые «кольца» связываем проволокой для вязания (см. рис.1). Кольца готовы, приступаем к дальнейшему изготовлению арматурного каркаса.

Армирование ленточного фундамента  Продолжаем вязать арматурный каркас для монолитного железобетонного ленточного фундамента

Теперь нам нужно подготовить арматурные прутья для каркаса из 12мм арматуры. Длина арматурных прутьев должна быть равна длине стороны дома. Если длина приобретенных арматурных прутьев больше — необходимо отрезать лишнюю длину, если меньше — длину нужно увеличить, связав вязальной проволокой два или несколько прутов.  В этом случае «нахлест» прутьев при связывании должен быть не менее 1 метра. Можно немного и меньше, но так мы не рекомендуем.

Теперь пора приступать непосредственно к сборке арматурного каркаса. Длинные прутья из 12мм арматуры нужно продеть внутрь подготовленных «колец», привязав их вязальной проволокой к «кольцам». Каркас должен в готовом виде состоять из 4 арматур, привязанным по углам «кольца» и одного арматурного стержня, расположенного в верхней части арматурного «кольца». Пятую арматуру не обязательно продевать внутрь арматурного кольца, можно привязать сверху.

Продеваем 4 хлыста 12мм арматуры сквозь кольцо. Отступаем 1 м от конца 12мм хлыста и привязываем хлыст к одному из углов. И так все четыре  хлыста. Следующее кольцо должно находиться через 90 см от первого (см. рис.3). И так до конца хлыста — кольца крепятся через каждые 90 см.

У вас должно получиться 4 каркаса: 2 длинных каркаса, равных  длине дома и 2 более коротких каркаса, равных ширине дома. Если фундамент более сложной конструкции, то каркасы вяжутся в соответствии с планом дома.

Четыре полученных каркаса опускаем в траншею. Теперь нужно эти каркасы связать между собой. Постарайтесь хотя бы внутренние углы готовых каркасов связать между собой вязальной проволокой. Внешние углы каркасов крепятся с помощью дополнительной арматуры — уголков. Для этого нарезаем 2-метровые отрезки 12мм арматуры и гнем их под углом в 90 градусов со стороной 1 м. (тем же способом, что и при изготовлении «колец» для каркаса). С помощью этих уголков и вязальной проволоки скрепляем внешние углы арматурных каркасов: верхний и нижний. Таким образом скрепляем (вяжем) весь каркас.

Армирование ленточного фундамента Установка арматурного каркаса в траншею 

Каркас полностью готов и находится в траншее. Как же правильно должен размещаться каркас из арматуры в траншее, чтобы впоследствии готовый фундамент полностью соответствовал своему назначению? Для этого необходимо выполнить ряд требований:

  • каркас не должен лежать на дне траншеи. Для этого под арматурный каркас необходимо подложить кирпичи (камни). Каркас должен быть приподнят над дном траншеи минимум на 10 см, т.е. нижняя часть каркаса должна быть «утоплена» в готовом фундаменте минимум на 10 см. Для этого удобно использовать обломки кирпичей;
  • каркас необходимо уложить по уровню — обязательное условие!! Из-за неровностей грунта высота готового фундамента может разниться, но каркас в любом случае должен быть установлен по уровню;
  • каркас нужно закрепить в траншее относительно боковых стенок траншеи. В противном случае, когда будем лить бетон, каркас может сбиться, прижаться к стенкам траншеи, наклониться — качество фундамента при этом резко упадет. Чтобы это не произошло — каркас закрепляем при помощи штырей длиной около 30 см. Штыри забиваем через каждые 2 метра в стенки траншеи и привязываем к каркасу. И так по всему периметру траншеи.

Теперь арматурный каркас закреплен: нижняя часть каркаса находится над землей на расстоянии 10 см, боковые стенки каркаса находятся на расстоянии от стен траншеи 10 см каждая, от верхней части  каркаса до уровня земли — 20 см. Получается, что после заливки бетона арматура будет «утоплена» в фундаменте снизу — 10 см, с боковых сторон — 10  см, сверху — 20 см. Это мы и хотели получить, когда выполняли армирование ленточного фундамента: изготавливали арматурный каркас для нашего монолитного железобетонного фундамента.

ВАЖНО! Для более «тяжелых» домов, например в 2 полноценных этажа, фундамент необходимо сделать глубже. Например, при строительстве одного из предыдущих домов, мы траншею для фундамента выкапывали на глубину 1,30 м. Затем дно засыпали песком толщиной 0,1м.

Глубина готового фундамента составляла 1,2 м. Для такого фундамента мы изготавливали арматурный каркас следующей конфигурации: 2 нити арматуры снизу, 2 нити арматуры сверху каркаса и 2 нити арматуры между ними (по центру арматурных рамок). Рамки для каркаса тоже должны быть иного, чем мы рассказывали выше, размера.

Как выглядит такой каркас, как он установлен и закреплен в траншее, вы можете рассмотреть на приведенных ниже фото, кликнув по ним мышкой.

Таким образом, конфигурация арматурного каркаса может быть разной, но основные принципы его изготовления, установки и крепления в траншее  (без опалубки) сохраняются.

Заливка фундамента 

ВАЖНО! Прежде, чем заливать фундамент, проверьте — не забыли ли вы оставить в будущем фундаменте «место» для прокладки в дальнейшем канализации — выпуск канализации из дома? Для чего это нужно и как это сделать с минимальными затратами мы подробно рассказали в статье «Внешняя канализация для нашего дома — трубопровод, уклон трубы, двухкамерный септик» .

Теперь у вас все готово к заливке фундамента. Для гидроизоляции фундамента можно между стенами траншеи и заливаемым бетоном проложить рубероид. Но мы этого не делали. Решайте сами, нужно ли это вам.

Мы заказывали бетон марки М200. Можно самостоятельно готовить бетон — это несколько удешевит строительство, но когда важно время и качество бетона — лучше заказать. Предварительно необходимо рассчитать, сколько бетона понадобится для заливки фундамента.

Итак, считаем: сколько кубов бетона необходимо на фундамент:

  1. исходные данные: глубина траншеи — 1м, ширина траншеи — 0,5 м. Длину траншеи берем с плана дома или измеряем по факту — 69,6м.;
  2. перемножаем исходные данные и получаем необходимый объем бетона:       0,5 м Х 1 м Х 69,9 м = 34,8 куб.м;
  3. таким образом, для нашего дома нам необходимо 35 кубов бетона для заливки фундамента.

Как мы уже рассказывали, бетон мы сами не готовили, а заказали. Поэтому залить бетон за один раз для нас не составило труда. Если вы не можете залить фундамент за один раз, без перерыва, необходимо свежий бетон «отсекать» от ранее залитого. Отсечка обязательно !! должна быть вертикальной. Для этого траншею необходимо временно перекрыть ТОЛЬКО вертикально, например, досками или изготовить опалубку.

Затем, при дальнейшей заливке, временную отсечку нужно удалить, место стыка свежего бетона  и бетона, уложенного ранее (рабочий шов), обильно смочить водой, желательно под давлением (это позволит удалить цементную пленку на рабочем шве)  для лучшей сцепки бетона и продолжить заливку фундамента.

Как правильно залить фундамент для дома, соблюдая технологию (в соответствии с нормативными документами) вы можете прочитать  в статье, посвященной теме «Как правильно залить фундамент» .

Вот и все — ваш фундамент готов. Следующее, что вам нужно сделать — выложить цоколь. Но об этом уже в следующей статье.

Это точно Вас заинтересует:

Непрерывное ленточное армирование фундамента | Tekla User Assistance

Плагин Continuous Strip Footing Reinforcement позволяет создавать арматуру для ленточных фундаментов любой формы (полиформы).

Как найти

Плагин « Непрерывная арматура ленточного фундамента » доступен в «Приложении и компоненте» после установки.

 

Использование

Щелкните значок « Непрерывное ленточное армирование фундамента » в разделе «Приложение и компонент».

Порядок ввода

1) Подберите ленточный фундамент.

После установки вставки армирование укладывается, как показано ниже

 

Плагин Dialog

Обложки

Дополнительная длина стержня под углом:

Значение коэффициента
Точная длина


Поля, выделенные цветом Blue на приведенном выше рисунке, представляют собой смещения начала и конца основных стержней относительно фундамента.
Поле, выделенное зеленым цветом , представляет собой угловое смещение для всех сетевых шин по всем углам.
Поля, выделенные красным цветом, предназначены для определения начального и конечного смещения хомутов.

 

Поля, выделенные красным цветом на рисунке выше, являются крышками боковых панелей для верхней и нижней панелей.
Поля, выделенные синим цветом, являются крышками хомута к фундаменту.

Основные стержни
 

На этой вкладке пользователь может определить следующие параметры.
1) Количество стержней (по количеству стержней или шагу).
2) Свойства бара.
3) Концевые условия (зацепы на концах и его длина).

Стремена
 

Форма хомута
Пользователь может определить следующие формы хомутов.
 

Направление изгиба
Это поле определяет направление изгиба и имеет следующие параметры

1)Верх       

2)Внизу  

3)Слева        

4)Правильно      

 

Поля, показанные выше, определяют расстояние между хомутами. Интервал может быть . Целевой интервал или . Точное свободное пространство на концах .

 

Поля, показанные выше, определяют свойства стержня.

Лента, Фабрика арматурной сетки

Ленточная фундаментная сетка

используется на ленточном фундаменте, размерами запасов которого являются 800 мм х 4,8 м и 600 мм х 4,8 м. Проволочная сетка Heyou имеет большое количество сеток для ленточных фундаментов, которые подходят для удовлетворения требований большинства британских домов.

Ленточная сетка для фундамента была изготовлена ​​на заводе-изготовителе проволочной сетки Heyou в соответствии со стандартом BS4483: 2005 или BS8666: 2000.В500А, В500В как обычный материал для формирования сетки ленточного фундамента. У нас есть много запасов сетки ленточного фундамента для типа А393.

Название полосовой основы сетки как ниже:

NL = количество продольных стержней

пл = шаг продольных стержней

DL = диаметр продольных батончиков

NC = количество поперечных стержни

PC=Шаг поперечных стержней

L=длина продольного стержня

B=длина поперечного стержня

u1=вылет продольных стержней

u2=вылет продольных поперечных стержней

3

=вылет Bars

Спецификация полосовой формы сетки ниже:

0 сталь

124 Ø (мм)

9 B

3

355

24

сетки

сетки Размеры (мм) Центры (мм) лист NL NC ВЫСТУПЛЕНИЯ (мм)
dL dC L4 9 0

PC кг / м кг / м 2 кг / лист kg / sundle кг / пачка U1 U2 U3 U4
A393 B 500 B 10 10 4800 800 200 200 6. 16 23.20 20 464 4 4 4

200 200 100 100
A393 B 500 B 10 10 4800 600 200 200 6.16 6.16 17.40 20 348 23 200 200 100 100
A393 B 500 B 10 10 4800 800 200 200 6.16 23.70 23.70 20 474 4 24 100 100 100 100
A393 B 500 B 10 10 4800 600 200 200 6.16 6.16 17.77 20 355 100 100 100 100

100 100

Преимущество подкрепления сетки Стрипта в приложении как показано ниже:

1. Нет необходимости резать на месте

2. Простота использования на месте

3. Удобное хранение на месте

4. Безопасная и простая транспортировка

5. Безопасная работа

Почему мы выбрали фабрику по производству проволочной сетки Heyou в качестве партнера?

Девять причин, чтобы выбрать нас:

Выберите Фабрика проволочной сетки Heyou — ваш лучший выбор.

Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак

Abstract

Основной причиной проблемного разрушения грунта при определенной нагрузке является низкая несущая способность и чрезмерная осадка.В связи с растущим интересом к использованию мелкозаглубленного фундамента для поддержки тяжелых конструкций важно изучить методы улучшения почвы. Техника использования геосинтетического армирования широко применяется в течение последних нескольких десятилетий. Цель данной статьи – определить влияние использования георешетки Tensar BX1500 на несущую способность и осадку ленточного фундамента для различных типов грунтов, а именно Аль-Хамедат, Башика и Аль-Рашидиа в Мосуле, Ирак. Расчет армированных и неармированных грунтовых оснований проведен численно и аналитически.Был протестирован ряд условий путем изменения количества ( N ) и ширины ( b ) слоев георешетки. Результаты показали, что георешетка может улучшить несущую способность основания и уменьшить осадку. Почва участка Аль-Рашидиа была песчаной и свидетельствовала о лучшем улучшении, чем почвы на двух других участках (глинистые почвы). Оптимальная ширина георешетки ( b ) в пять раз превышала ширину фундамента ( B ), в то время как оптимальное число георешетки ( N ) получено не было.Наконец, численные результаты предельной несущей способности были сопоставлены с аналитическими результатами, и сравнение показало хорошее соответствие между анализом и оптимальным диапазоном, опубликованным в литературе. Важные результаты показывают, что армирование георешеткой может привести к улучшению грунтового основания, однако это не зависит напрямую от ширины и количества георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR, подтвержденные расчетами коэффициента улучшения.Следовательно, результат дополнил преимущество эффективного применения фундаментов из армированного грунта.

Образец цитирования: Хасан Н.И., Мохд Тайб А., Мухаммад Н.С., Мат Язид М.Р., Муталиб А.А., Абанг Хасболлах Д.З. (2020) Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак. ПЛОС ОДИН 15(12):
e0243293.

https://doi.org/10.1371/journal.pone.0243293

Редактор: Jianguo Wang, Китайский горно-технологический университет, КИТАЙ

Получено: 17 июня 2020 г .; Принято: 19 ноября 2020 г .; Опубликовано: 17 декабря 2020 г.

Copyright: © 2020 Hasan et al.Это статья с открытым доступом, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных: Все соответствующие данные находятся в документе.

Финансирование: Инициалы автора: AMT Номер гранта: GGPM-2018-039 Спонсор: Universiti Kebangsaan Malaysia URL: https://www.ukm.my/portal/ Роль спонсора: Оплатить взносы за публикацию и предоставить оборудование для проекта.

Конкурирующие интересы: Авторы заявили об отсутствии конкурирующих интересов.

Введение

Методы улучшения грунта с использованием геосинтетических материалов широко разрабатывались в течение последних нескольких десятилетий, особенно в области строительства дорожных покрытий и фундаментов. Хотя было проведено множество экспериментальных исследований для определения эффекта геосинтетического армирования, анализ отличался в отношении свойств геотекстиля, таких как форма и размеры, расстояние между ними и толщина [1–13].Кроме того, в исследованиях также анализируется влияние различных типов грунтов и конструкций фундаментов. Что касается поведения грунта с классификацией песчаного грунта, многочисленные аналитические исследования способствовали пониманию взаимодействия грунта и конструкции, проведенного несколькими исследователями в отношении несущей способности грунтовых оснований, армированных георешеткой [13–17]. Кроме того, для исследования несущей способности и осадки армированного грунта было выполнено бесчисленное количество численных моделей, которые позволили сэкономить время и средства [9, 18–29].Понятие армированного грунта как строительного материала, основанное на существовании взаимодействия грунт-армирование за счет прочности на растяжение, фрикционных и адгезионных свойств арматуры, впервые было введено французским архитектором и инженером Анри Видалем в 1960-х годах [29]. С тех пор этот метод широко используется в инженерно-геологической практике. Геосинтетики, которые используются в армированных грунтах, бывают разных типов, включая георешетки, геотекстиль, геомембраны, геосинтетические глиняные вкладыши, геосети и геоячейки [30]. Геосетка является одним из плоских геосинтетических продуктов, обычно изготавливаемых из полимеров; В настоящее время из полипропилена или полипропилена высокой плотности (ПНД) изготавливают различные разновидности геосеток, что способствует эффективному использованию различных геотекстильных материалов.

Фундамент с системой армированного грунта называется армированным грунтовым фундаментом (RSF). Рис. 1 иллюстрирует типичный фундамент из геосинтетического армированного грунта и описание различных геометрических параметров. Параметры армирования георешеткой включают расстояние между верхними слоями ( u ), расстояние по вертикали ( s или h ), количество слоев армирования ( N ), общую глубину армирования ( d ) и ширину. арматуры ( б ).Как указано в литературе, оптимальное значение параметров ( u / B ) и ( h / B ) составляет 0,33 (где B — ширина подошвы). Многие исследования выбрали разные размеры для фундамента и георешетки, но все результаты указывают на различное поведение в зависимости от классификации почвы. Можно понять, что разные географические местоположения имеют разные типы и условия почвы, поэтому правильная конструкция используемой георешетки важна для укрепления грунтового основания.Более того, фундаменты из армированного грунта могут быть экономичной альтернативой традиционным мелкозаглубленным фундаментам с большими размерами основания, которые, в свою очередь, увеличивают осадку фундамента за счет увеличения глубины зоны влияния под фундаментом или замены слабых слоев грунта компетентными материалами [31]. .

В течение последних тридцати лет было проведено множество экспериментальных, численных и аналитических исследований для изучения поведения RSF для различных типов почв.Все исследования показали, что применение армирования позволяет значительно повысить несущую способность и уменьшить осадку грунтовых оснований [33]. Чен и Абу-Фарсах и др. . В работе [34] использовались две концепции для оценки преимуществ фундамента из армированного грунта, например, коэффициент несущей способности (BCR) и коэффициент уменьшения осадки (SRR). BCR определяется как отношение несущей способности армированного грунтового основания к несущей способности неармированного грунтового основания, тогда как SRR определяется как отношение уменьшения осадки основания на основе армирования к осадке неармированного грунтового основания при постоянном поверхностном давлении [ 35].BCR задается как:
(1)

Где:

( q ult ) r предельная несущая способность фундамента из армированного грунта.

( q ult ) u предельная несущая способность неармированного грунтового основания.

И SRR задается как:
(2)

Где:

с R осадка армированного грунтового основания.

с 0 осадка неармированного грунтового основания.

Многие из этих исследовательских усилий были направлены на изучение параметров и переменных, влияющих на значения BCR и SRR. Другие исследования также были сосредоточены на улучшении осадки фундамента, других геотехнических конструкций и методов расчета, таких как Abbas и др. . [36], Rosyidi и др. . [37], Khajehzadeh и др. . [38], Joh и др. .[39], Чик и др. . [40], Li и др. . [41], Азриф и др. . [42] и Zhanfang и др. . [43] работа. Гвидо и др. . [1] провели экспериментальное исследование земляных плит, армированных геотекстилем. Их модельные испытания проводились с использованием квадратных футов на песке. Они показали, что BCR уменьшался с увеличением u/B ; улучшение несущей способности было незначительным, когда число армирующих слоев превышало три, что соответствовало глубине влияния 1 . 0B для u/B , h/B и b/B с соотношениями 0,5, 0,25 и 3. Незначительное улучшение BCR наблюдалось при увеличении отношения длин ( b/B ). ) армирования за три с двумя слоями армирования u/B и h/B отношения 0,25 и 0,25 соответственно. Кроме того, Ли и др. . [44] провели лабораторные модельные испытания с использованием жесткого ленточного фундамента, опирающегося на плотный песок, покрывающий мягкую глину, со слоем геотекстильного армирования на границе раздела.Они обнаружили, что армирующий слой на границе раздела песка и глины привел к дополнительному увеличению несущей способности и уменьшению осадки основания; Было обнаружено, что эффективная ширина арматуры, обеспечивающая оптимальные характеристики фундамента, примерно в пять-шесть раз превышает ширину фундамента.

Кроме того, исследование методом конечных элементов, проведенное Kurian et al . [45] на ленточном основании, поддерживаемом армированным песком, с использованием модели грунта Дункана-Чанга показали явное уменьшение осадки в армированном песке при более высоких нагрузках, чем в случае неармированного песка.Численные результаты также показали, что небольшое увеличение осадки произошло в армированном песке на начальном этапе процесса нагружения. Возможное объяснение этому явлению дали Куриан и др. . [45] заключалась в том, что нормальная нагрузка была слишком мала, чтобы вызвать достаточное трение между грунтом и арматурой. Относительное перемещение между грунтом и арматурой увеличивалось с увеличением нагрузки и уменьшалось с увеличением глубины арматуры.Максимальное напряжение сдвига на границе раздела грунт-армирование возникало на относительном расстоянии ( x/B ) приблизительно 0,5 от центра основания, а напряжение, развиваемое в арматуре, было максимальным в центре и постепенно уменьшалось к концу. армирования. С другой стороны, Махарадж [19] провел численный анализ ленточного фундамента, поддерживаемого армированной глиной, с использованием модели грунта Друкера-Прагера. Он пришел к выводу, что в случае одного слоя армирования оптимальное отношение расстояния между верхними слоями ( u/B ) составляет около 0.125 из армированной глины. Он также обнаружил, что коэффициент эффективной длины ( b/B ) арматуры составляет около 2,0, глубина воздействия зависит от жесткости арматуры, а увеличение жесткости геосинтетического материала уменьшает осадку основания.

Несмотря на то, что многие исследования выявили много интересных особенностей механизма взаимодействия грунта и геосинтетика, методы, используемые для проектирования систем грунта, армированного геосинтетиком, все еще различаются и в большинстве случаев вызывают недоумение у инженеров.Расчет системы армированного грунта с использованием методов предельного равновесия в основном использовался и считался очень консервативным [46–48]. В последнее время применение метода конечных элементов для моделирования и анализа системы армированного грунта обеспечило соответствующие проектные характеристики, низкую стоимость и скорость, используя различные системы армирования грунта и граничные условия [49]. Однако потребность в численно-аналитическом исследовании, учитывающем основные факторы механизма взаимодействия армированного грунтового основания, остается актуальной.В этой статье анализ несущей способности и осадки армированного георешеткой и неармированного грунтового основания трех участков (т. е. Аль-Хамедат, Аль-Рашидия и Башика) в Мосуле, Ирак, проводится численно с помощью конечно-элементной программы Plaxis. и по сравнению с аналитической несущей способностью, рассчитанной теоретически с использованием метода, разработанного Ченом и Абу-Фарсахом [17]. Производные и аналитические методы основаны на анализе предельного равновесия и вычисляют только предельную несущую способность в отношении данной осадки.Поскольку с помощью этих методов невозможно получить осадку, в теоретическом методе использовались осадки, полученные в результате численного анализа.

Механизм армирования георешеткой

Во многих случаях строительства мелкозаглубленные фундаменты возводятся поверх существующего слабого грунта, что приводит к низкой несущей способности и чрезмерным проблемам осадки. Недостатки могут привести к повреждению конструкции, снижению долговечности и ухудшению уровня производительности [50].В этих условиях в течение длительного времени для решения проблемы этих типов почв использовались методы улучшения почвы. Несколько исследователей разработали различные методы улучшения почвы для повышения прочности почвы с использованием различных методов стабилизации. Для решения вышеупомянутых проблем с почвой было разработано несколько типов методов улучшения почвы, включая цементацию, вертикальный дренаж, замену почвы, забивку свай и геосинтетическое армирование [51–54]. Полимерная природа геосинтетического материала делает геосинтетические изделия устойчивыми к различным грунтовым и экологическим условиям.Общие области применения геосинтетических материалов в области инженерно-геологических работ включают повышение прочности и жесткости подземного грунта, подчеркнутого на неглубоких фундаментах и ​​тротуарах, обеспечение устойчивости земляных подпорных конструкций и откосов, обеспечение безопасности плотин, как описано в Han et al . [55] и Ван и др. . [56] работа. Геосетка используется для улучшения механических характеристик подземного грунта при внешних нагрузках. Таким образом, он широко применяется в качестве армирующих слоев в стенах из механически стабилизированного грунта (MSE) и геосинтетического армированного грунта (GRS), в качестве меры стабилизации откосов и в качестве армирования подземного грунта под тротуарами и фундаментами. Высокая растяжимость геосеток позволяет армирующим слоям принимать на себя значительную часть растягивающих напряжений, возникающих в грунтовом массиве под действием внешней нагрузки. Таким образом, георешетки выступают в качестве армирующих элементов и усиливают нагрузочно-деформационное поведение армированного массива грунта.

В основных моментах некоторых экспериментальных исследований Binquet и Lee [14] оценили несущую способность грунта, армированного металлическими полосами; результаты испытаний показали, что несущую способность можно улучшить в 2–4 раза за счет укрепления грунта.Результаты их испытаний также свидетельствовали о том, что армирование, размещенное ниже глубины воздействия, которая составляла примерно 2B , оказало незначительное влияние на увеличение несущей способности, а размещение первого слоя на ( u/B = 0,3) ниже глубины влияния основание фундамента привело к максимальному улучшению. Акинмусуру и Акинболаде [57] исследовали влияние использования веревочных волокон в качестве армирующих элементов на песчаный грунт; их результаты показали, что конечная несущая способность может быть улучшена в три раза по сравнению с неармированным грунтом; оптимальное расстояние между верхними слоями ( u ) было определено как 0 . 5B , и они показали, что улучшение несущей способности было незначительным, когда число армирующих слоев превышало три, что соответствовало глубине влияния 1 . 75Б . Шакти и Дас [2] провели экспериментальное исследование основания из глинистого грунта, армированного геотекстилем. Результаты их испытаний показали, что большинство преимуществ геотекстильного армирования были получены при соотношении расстояния между верхними слоями ( u/B ), равном 0.35 до 0,4. Для u/B 0,33 и h/B 0,33 BCR увеличился с 1,1 до 1,5 при увеличении количества слоев с 1 до 3 и после этого оставался практически постоянным. Глубина влияния укладки геотекстиля была определена как 1,0 B . Наиболее эффективная длина геотекстиля равнялась четырехкратной ширине ленточного фундамента

Чжоу и Вэнь [58] провели экспериментальное исследование для изучения влияния использования одного слоя песчаной подушки, армированной геоячейками, на мягкую почву. Результаты показали, что произошло существенное снижение осадки нижележащего мягкого грунта, а коэффициент реакции грунтового основания K30 улучшился на 3000%; деформация уменьшилась на 44%. Более того, Рафтари и др. . [24] провели численный анализ ленточного основания, поддерживаемого армированным откосом, с использованием модели грунта Мора-Кулона. Результаты испытаний показали, что осадка фундамента на неармированном откосе более жесткая, чем на армированном.Так как осадка в армированном положении с тремя слоями армирования уменьшилась примерно на 50%. Они сообщили, что для получения наименьшей осадки оптимальное вертикальное расстояние между георешетками ( h ) должно быть эквивалентно ширине фундамента ( B ). Хинг и др. . [5] провели серию модельных испытаний на ленточном фундаменте, опирающемся на песок, армированный георешеткой. Результаты испытаний показали, что установка георешетки с коэффициентом глубины ( d/B ) больше 2. 25 не привело к улучшению несущей способности ленточного фундамента. Для достижения максимальной выгоды минимальный коэффициент длины ( b/B ) георешетки должен быть равен 6. BCR, рассчитанный при ограниченном коэффициенте осадки ( s/B ), равном 0,25, 0,5 и 0,75, составил примерно 67. %–70% конечного BCR.

Адамс и Коллин [11] провели несколько серий крупномасштабных полевых испытаний. Испытания проводились в бетонной коробке с четырьмя разными размерами квадратных оснований.Для испытаний был выбран мелкозернистый песок для бетонных растворов. Результаты испытаний показали, что три слоя армирования георешеткой могут значительно увеличить несущую способность и что коэффициент предельной несущей способности (BCR) может быть увеличен до более чем 2,6 для трех слоев армирования. Однако величина осадки, необходимая для этого усовершенствования, составляла примерно 20 мм ( s/B = 5 %), что может оказаться неприемлемым для некоторых видов фундаментов. Результаты также показали, что положительные эффекты армирования при низком коэффициенте осадки ( s/B ) могут быть максимально достигнуты, когда расстояние между верхними слоями меньше 0. 25 В . Альтернативно, Arab и др. . [27] провели численный анализ ленточного основания, поддерживаемого песчаным грунтом, с использованием модели твердеющего грунта. Они сообщили, что для геометрических параметров u / B = h / B = 0,5 и b / B = 4 влияние увеличения количества слоев георешетки ( N ) на несущую способность армированных геосетками грунтов повысилась несущая способность и несколько увеличилась общая жесткость армированного песка.Увеличение жесткости георешетки также привело к увеличению BCR. Несмотря на то, что исследования грунтового основания, армированного георешеткой, были проведены широко, тем не менее, поведение грунта не полностью улавливается, особенно в том, что касается оптимизированного применения георешетки. Численное моделирование в этом исследовании способствует более глубокому пониманию грунтового основания за счет спецификации армирования в моделях грунта.

Численное моделирование

Численное моделирование поведения армированных и неармированных грунтовых оснований проводилось с использованием программного обеспечения Plaxis. Plaxis представляет собой программу конечных элементов, специально разработанную для анализа деформации и устойчивости в инженерно-геологических задачах [59]. В этом исследовании процесс испытаний включает в себя полное моделирование грунта, армирование георешеткой, установку фундамента и наложение нагрузки, как показано на рис. 1. Реальные сценарии могут быть смоделированы с помощью модели плоской деформации, которая используется в текущей задаче. Модель плоской деформации подходит для реализации с относительно однородным поперечным сечением, схемой нагружения и большой протяженностью модели в направлении, перпендикулярном плоскости модели, где нормальные напряжения полностью учитываются, но смещения и деформации предполагаются равными нулю. .

Модельный анализ

В Plaxis доступны различные модели конститутивных почв. В данном исследовании с использованием конечно-элементного моделирования была рассмотрена упруго-идеально-пластическая модель грунта Мора-Кулона. Конститутивная модель Мора-Кулона широко используется в большинстве инженерно-геологических задач, поскольку исследователи показали, что сочетания напряжений, приводящие к разрушению образцов грунта при трехосных испытаниях, соответствуют контуру разрушения критерия Мора-Кулона (гексагональная форма) Гольдшайдера [60]. При использовании конститутивной модели Мора-Кулона в качестве входных данных требуются пять параметров [61]. Эти пять параметров могут быть получены путем анализа базовых тестов грунта, и они состоят из двух параметров жесткости: эффективного модуля Юнга ( E ′) и эффективного коэффициента Пуассона ( v ′) и трех параметров прочности: эффективного сцепления ( c ′), эффективный угол трения ( φ ′) и угол расширения ( ψ ). В двухмерном пространстве оболочка разрушения представляет собой прямую или слегка изогнутую линию, касающуюся круга Мора или точек напряжения.В диапазонах напряжения в пределах локуса текучести почвенный материал является эластичным по своему поведению. По мере развития критической комбинации напряжения сдвига и эффективного нормального напряжения точка напряжения будет совпадать с оболочкой разрушения, и предполагается идеально пластическое поведение материала с непрерывным сдвигом при постоянном напряжении. После достижения идеально пластичного состояния материал никогда не сможет вернуться к полностью упругому поведению без каких-либо неустранимых деформаций. Ленточный фундамент моделируется как жесткая плита и при расчетах считается очень жестким и шероховатым.

Детали грунтов, армированных георешеткой, рассмотренных в модельных испытаниях, показаны в таблице 1. В Plaxis армирование георешеткой представлено использованием специальных натяжных элементов (пятиузловые элементы георешетки). Георешетки имеют только нормальную жесткость и не имеют жесткости на изгиб, которая может выдерживать только силы растяжения. Единственным свойством материала георешетки является упругая осевая жесткость EA . Для моделирования взаимодействия элементов георешетки с окружающим грунтом часто удобно комбинировать эти элементы георешетки с интерфейсами.Назначенные границы раздела грунт-георешетка показаны на рис. 2. Каждой границе раздела присвоена виртуальная толщина, которая представляет собой воображаемый размер, используемый для определения свойств материала границы раздела. Упруго-идеально пластическая модель используется для описания поведения интерфейсов для моделирования взаимодействия грунт-геосетка. Критерий Кулона используется для различения упругого поведения, когда внутри границы раздела могут происходить небольшие смещения, и пластического поведения границы раздела, когда происходит постоянное проскальзывание.Параметры интерфейса рассчитываются по параметрам окружающего грунта с использованием коэффициента взаимодействия R между , определяемого как отношение прочности на сдвиг границы раздела к прочности на сдвиг грунта [59]. В этом исследовании используются элементы грунта с 15 узлами, а прочность интерфейса устанавливается вручную. Для реального взаимодействия грунт-конструкция граница раздела слабее и гибче, чем связанный грунт, а это означает, что значение R между должно быть меньше 1.Таким образом, в настоящем исследовании предполагается, что R между равно 0,9.

После того, как геометрическая модель полностью определена и свойства материалов назначены слоям грунта и структурным объектам, сетка применяется для расчетов методом конечных элементов (КЭ). Plaxis включает в себя процедуру полностью автоматического создания сетки, в которой геометрия дискретизируется на элементы базового типа элемента и совместимые структурные элементы, как показано на рис. 3. Основным типом элемента сетки, используемой в настоящем исследовании, является треугольная элемент со средним размером 0.от 5 до 2 м, что обеспечивает точный расчет напряжений и разрушающих нагрузок. В Plaxis доступны пять различных плотностей сетки, от очень крупной до очень мелкой. Предварительные расчеты были проведены с использованием пяти доступных уровней грубости глобальной сетки, чтобы получить наиболее подходящую плотность сетки и минимизировать влияние зависимости сетки на конечно-элементное моделирование. При анализе количество треугольных элементов и точек напряжения в модели для каждого участка изменялось в зависимости от плотности сетки и расположения арматуры.В табл. 2 показано изменение количества элементов и точек напряжений в зависимости от плотности сетки трехместных моделей для случая пяти слоев георешетки. Как видно на рис. 4, размер сетки оказывает минимальное влияние на результаты примерно после 240 элементов для участка Башика и 400 элементов для участков Аль-Хамедат и Аль-Рашидиа. Для Ba’shiqa это соответствует грубой сетке с измельчением вокруг элементов георешетки и основания модели, где ожидаются большие концентрации напряжений, и средней сетке с измельчением как для Al-Hamedat, так и для Al-Rashidia.

Смоделированные граничные условия были приняты такими, что вертикальные границы были свободны по вертикали и ограничены по горизонтали, а нижняя горизонтальная граница была полностью зафиксирована, как показано на рис. 5. Рассматриваемые вертикальные границы сетки находились на расстоянии 10 м от центра фундамента с каждой стороны, а нижняя горизонтальная граница находилась на 20 м ниже подошвы фундамента так, чтобы эти границы не влияли на напряжения и деформации, возникающие в массиве грунта.В исследовании использовалась точечная нагрузка. Конструкция моделировалась с возрастающей величиной нагрузки, пока грунт не достиг предела прочности, чтобы исследовать осадку под влиянием приложенной нагрузки. После создания геометрической модели и создания конечно-элементной сетки необходимо задать начальное напряженное состояние. Начальные условия состоят из двух разных режимов: один режим для создания начального давления воды, а другой режим для задания конфигурации начальной геометрии и создания начального эффективного поля напряжений.Поскольку слои почвы для Аль-Хамдат и Башика сухие, а уровень грунтовых вод на площадке Аль-Рашидия достаточно глубок, чтобы не влиять на поведение фундамента, состояние грунтовых вод было принято как незначительное. Начальные напряжения в грунте создаются с помощью формулы Джейки, выраженной уравнением 3 (в программном обеспечении Plaxis процедура создания начальных напряжений в грунте часто называется процедурой K 0 ).
(3)
где K 0 — коэффициент бокового давления грунта, а φ — угол внутреннего трения грунта.

Plaxis позволяет выполнять различные типы расчетов методом конечных элементов, такие как расчет пластичности, анализ консолидации, анализ уменьшения Phi-c и динамический расчет. Для текущего исследования был выбран пластический расчет. Пластический расчет должен быть выбран для проведения анализа упруго-пластической деформации. Этот тип расчета подходит для большинства практических геотехнических приложений. В инженерной практике проект делится на этапы проекта. Точно так же процесс расчета в Plaxis также разделен на этапы расчета.В данном исследовании рассматриваются два этапа расчета. Первый – это начальная фаза, которая представляет начальную ситуацию проблемы. Второй этап включает армирование георешеткой и приложение внешней линейной нагрузки.

В расчете методом конечных элементов анализ становится нелинейным, когда используется расчет пластичности, что означает, что каждую фазу расчета необходимо выполнять в шагах расчета (шагах нагрузки). Размер шага и алгоритм решения важны для нелинейного решения.Если шаг расчета подходящего размера, то количество итераций, необходимых для достижения равновесия, будет небольшим, порядка 5–10, а если шаг большой, то необходимое количество итераций будет избыточным, и решение может расходиться. Итеративные параметры в программном обеспечении: желаемый минимум и максимум в первую очередь предназначены для определения того, когда расчет должен выполняться с большими или меньшими шагами. Если вычисление может решить шаг нагрузки (следовательно, сходится) за меньшее количество итераций, чем желаемый минимум, который по умолчанию равен 4, он начинает использовать шаг нагрузки, который в два раза больше.Однако, если для вычисления требуется больше итераций, чем желаемый максимум, который по умолчанию равен 10 для сходимости, вычисление решит выбрать шаг вычисления только вдвое меньшего размера. Для пластического анализа изменение желаемого минимума или желаемого максимума не влияет на результаты. Пока вычисление сходится на каждом шаге, неважно, использует ли вычисление множество маленьких шагов с небольшим количеством итераций или ограниченное количество больших шагов с большим количеством итераций на шаг.

Доступно несколько процедур для решения нелинейных задач пластичности. Все процедуры основаны на автоматическом выборе размера шага в зависимости от применяемого алгоритма. Предельный уровень продвижения нагрузки является одной из этих процедур, которая используется в текущем анализе. Процедура автоматического определения размера шага используется в первую очередь на этапах расчета, когда необходимо достичь определенного предельного уровня нагрузки. Процедура завершает расчет при достижении заданного уровня нагрузки или при обнаружении разрушения грунта.Количество дополнительных шагов установлено равным 1000, чтобы процесс расчета продолжался до конца, прежде чем будет достигнуто количество дополнительных шагов. В этой процедуре параметры итерации установлены стандартными и показали хорошую производительность при сходимости вычислений. В стандартных настройках допустимая ошибка, которая представляет собой отклонение от точного решения, была установлена ​​​​на 0,03, коэффициент чрезмерной релаксации, который отвечает за уменьшение количества итераций, необходимых для сходимости, был установлен на 1,2, максимальное количество итераций было установлено на 50, желаемые минимальная и максимальная итерации были установлены на 4 и 10 соответственно, и, наконец, был активирован контроль длины дуги, который важен для сходимости расчета и точного определения разрушающей нагрузки, в противном случае расчет будет продолжать итерацию и разрушающую нагрузку. будет переоценен.Поэтапное строительство было выбрано в качестве варианта ввода нагрузки, при котором можно определить значение и конфигурацию нагрузки, а также состояние отказа, которое необходимо достичь. Поскольку поэтапное строительство выполняется с использованием процедуры предельного уровня продвижения нагрузки, оно управляется суммарным множителем (∑Mэтап). Этот множитель обычно начинается с нуля и достигает конечного уровня 1,0 в конце фазы расчета. Временной интервал фазы расчета считается нулевым, поскольку анализ модели является пластическим анализом и не включает консолидацию или использование модели ползучести мягкого грунта.

Свойства материалов

Почвы были собраны с трех разных участков в Мосуле, Ирак: Аль-Хамедат, Башика и Аль-Рашидия. Мосул расположен в северной части Ирака. Район характеризуется обширными равнинами и антиклиналями. Вблизи реки Тигр расположены три уровня аккумулятивных террас аллювиальных почв. Большинство почв района относится к умеренно-экспансивному типу. Равнинные участки между антиклиналями покрыты пластовыми стоковыми отложениями, включающими глину, песок, ил, иногда покрытые рассеянным гравием.В Таблице 3 показаны механические и физические свойства почвы, а в Таблице S1 показаны пределы Аттерберга и размер зерен для каждого вовлеченного участка. В данном исследовании использовался бетонный ленточный фундамент шириной B = 600 мм. Свойства основания показаны в таблице 4. Для укрепления грунта на всех трех участках использовались двухосные георешетки (Tensar BX1500), показанные на рис. 5. Различные свойства армирующей георешетки, используемые в моделировании методом конечных элементов в данном исследовании, показаны в таблице 5.

Результаты и обсуждение

Результаты, полученные от Plaxis для определения предельной несущей способности и осадки основания, представляли собой кривые осадки армированных и неармированных грунтов трех упомянутых участков, в то время как результаты, полученные в результате аналитического анализа Уравнение Мейергофа [63] и метод, полученный Ченом и Абу-Фарсахом [17], были значениями BCR этих грунтов с армированием георешеткой.

Неармированные грунты

С использованием программного обеспечения Plaxis было проведено три моделирования конечных элементов для оценки предельной несущей способности неармированного грунта для каждой площадки. На рис. 6 показана деформированная сетка (увеличенная до 15 раз) грунта под действием разрушающей нагрузки. На рис. 6 видно небольшое пучение грунта по краям основания и осадка 57,43 мм, что указывает на разрушение грунта при сдвиге. На рис. 7 и 8 показаны развивающееся вертикальное напряжение и вертикальное смещение неармированного грунта, соответственно, при приложении разрушающей нагрузки.На рис. 7 и 8 показаны пузыри приращений вертикального напряжения и вертикального смещения, соответственно, в профиле грунта из-за приложения полосовой нагрузки [64]. Однако вертикальное напряжение и вертикальное смещение уменьшались с увеличением глубины, как показано на этих рисунках значениями затенения контуров. Соответствующие напряжения и смещения в горизонтальном направлении представлены на рис. 9 и 10 соответственно. Максимальные горизонтальные напряжения на рис. 9 были сосредоточены непосредственно под фундаментом на глубине B и по горизонтали шириной B ; кроме того, по штриховке горизонтальных напряжений было видно, что грунт разрушился под действием локального сдвига.

Максимальная часть горизонтального смещения, представленного на рис. 10, приходится на поверхность грунта, что и является причиной пучения грунта на краях основания. Однако эти горизонтальные напряжения и смещения значительно повлияли на поведение георешетки, как будет показано ниже в разделе, посвященном армированному грунту. Касательные напряжения и деформации, связанные с отказом, изображены на рис. 11 и 12 соответственно. Отметим, что максимальные касательные напряжения и деформации или зона сильного сдвига располагались под краями фундамента и практически распространялись в пределах глубины 2 B , по горизонтали на расстоянии B от краев фундамента и значительно уменьшались на нижние глубины. Тем не менее, локальное разрушение при сдвиге было почти очевидным из штриховки касательных напряжений, показанных на рис. 11. На рис. 13 представлены точки пластичности или точки пластичности разрушения, образующиеся в массиве грунта при приложении разрушающей нагрузки. Точка пластичности – это точка, соответствующая необратимому напряжению и деформации, расположенная на оболочке разрушения Мора-Кулона (огибающая является функцией угла внутреннего трения сцепления грунта).

На рис. 13 также показаны точки растяжения (точки черного цвета) на поверхности грунта, которые соответствуют трещинам растяжения (областям напряжения растяжения).Однако эти точки растяжения указывали на то, что грунт разрушался при растяжении, а не при сдвиге. Теоретическая предельная несущая способность неармированного грунта была получена путем применения уравнений (4)–(9). Параметры прочности на сдвиг (c и φ ) и удельный вес ( γ ), используемые в следующих уравнениях, показаны в таблице 3.

Сайт Аль-Хамедат:

Сайт Башики:

Аль-Рашидиа сайт:

Результаты неармированного грунтового основания, полученные с помощью численного анализа, и теоретическая предельная несущая способность, полученная Мейергофом [63], показаны в таблице 6.Здесь видно, что численные значения несущей способности превышают теоретические значения. Высокое значение несущей способности может быть связано с тем, что уравнения несущей способности обычно недооценивают (более консервативно) предельную несущую способность грунта [64]. Кривые давления-осадки, полученные в результате численного анализа неармированных грунтовых оснований трех участков, показаны на рис. 14–16. Кроме того, на этих рисунках показан метод определения предельной несущей способности по кривым осадки; он представляет собой консервативное и наиболее реальное состояние отказа. Этот метод представляет собой метод касательных пересечений, разработанный Траутманном и Кулхави [65].

На рисунках с 14 по 16 видно, что грунт Аль-Хамедата демонстрирует более высокую несущую способность ( q u = 640 кПа ), чем два других участка, где грунт Башика демонстрирует промежуточную несущую способность. значение ( q u = 365 кПа ) и почва Аль-Рашидиа представляет наименьшую ( q u = 67 кПа ) среди почв.Эта разница может быть связана с характеристиками и свойствами почвы, как указано в Таблице 3 и Таблице S1. Отмечается, что грунт участка Аль-Хамедат представляет собой твердую глину с высоким сцеплением ( c = 40 кПа ), Аль-Рашидия представляет собой песчаный грунт с высоким углом трения ( φ = 28°) с нулевым сцеплением ( c = 0 кПа), в то время как почва участка Башика классифицируется как глина от низкой до средней с относительно низкой связностью ( c = 15 кПа ) по сравнению с почвой Аль-Хамедат.

Армированные грунты

Для фундаментов из армированного грунта было проведено 90 расчетов по методу конечных элементов с целью изучения влияния армирования георешеткой на предельную несущую способность и осадку ленточного фундамента, расположенного на трех упомянутых площадках. Деформированная сетка (увеличенная до 10 раз) грунта, армированного георешеткой, показана на рис. 17. Кроме того, осадка была уменьшена до 44,68 мм за счет включения армирования георешеткой, где уменьшение осадки было отнесено на счет подъемных сил. создаваемые георешетчатой ​​арматурой при деформировании и мобилизации осевых растягивающих усилий армирующих слоев.Кроме того, пучение грунта по краям фундамента уже исчезло, что означало, что грунт не разрушился при сдвиге, как упомянутый ранее неармированный грунт. На рис. 18 показаны горизонтальные напряжения, возникающие в массиве армированного грунта. Видно, что горизонтальные напряжения несколько возросли до значения 228,96 кН/м 2 за счет передачи части вертикальной нагрузки на горизонтальную нагрузку, воспринимаемую арматурой и, в свою очередь, на окружающий грунт. При этом горизонтальные напряжения распределялись по слоям армирования на ширину 5 B , что свидетельствовало о зацеплении и взаимодействии слоев грунта и георешетки; в результате силы растяжения внутри арматуры мобилизовались, как показано на рис. 19.

На рис. 20 показано распределение горизонтального смещения в армированном грунте. Видно, что смещение уменьшается до 8,68 мм из-за ограничения слоев армирования, стрелки почти равномерно распределены по слоям армирования и малы значения смещения на поверхности грунта по сравнению с неармированным состоянием, где большая часть горизонтального смещения произошла на верхняя часть почвы, вызывающая пучение почвы. Следовательно, разрушение грунта при сдвиге предотвращается за счет передачи приложенной вертикальной нагрузки силам растяжения в армировании георешетки за счет поверхностного трения и опоры между грунтом и арматурой.На рис. 21 и 22 показаны касательные напряжения и деформации армированного грунта и их распределение вдоль армирования георешеткой соответственно. Отмечено, что зоны концентрации касательных напряжений и деформаций под фундаментом уменьшаются за счет распределения напряжений и деформаций вдоль и через слои арматуры, что приводит к изменению плоскости разрушения и предотвращает разрушение в пределах армированной зоны. Пластмассовые точки внутри усиленной зоны изображены на рис. 23.Показано, что пластические точки сильно сконцентрированы вдоль армированной зоны, что свидетельствует об экстремальных напряжениях, возникающих на границе между грунтом и георешеткой. Следовательно, это оправдывает взаимодействие между грунтом и геосетками и изменение механизма разрушения.

Влияние ширины георешетки

(b) и количества слоев георешетки (N) на предельную несущую способность

На рисунках 24–26 показано изменение BCR с шестью различными ширинами георешетки (b) для количества слоев георешетки от 1 до 5 ( N ) для трех участков Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.Из рис. 24-26 видно, что увеличение ширины георешетки (b) и номера георешетки (N) приводит к увеличению BCR для всех трех участков. Кроме того, грунт в Аль-Рашидиа способствует более высокому повышению предельной несущей способности, чем на двух других участках. Улучшение может быть связано с различием свойств почвы и размера зерна, как показано в Таблице 3 и Таблице S1. Почва Аль-Рашидиа песчаная и имеет угол трения ( φ = 28°) больше, чем на двух других участках, в которых пассивные силы и силы трения между почвой и георешеткой будут выше, чем на двух глинистых участках [8].Для участков Аль-Хамедат и Башика с глинистыми почвами почва участка Башика с глиной от низкой до средней демонстрирует лучшее улучшение, чем почва участка Аль-Хамедат, представляющая собой твердую глину, с точки зрения предельной несущей способности. Следовательно, с помощью армирования георешеткой со слабой глиной почва может улучшиться до более жесткой глины. Однако максимальное улучшение предельной несущей способности может быть получено при b/B = 5 для любого номера георешетки на этих трех участках, следовательно, оптимальная ширина георешетки (b) для трех участков составляет 5 B в то время как не было оптимального номера георешетки (N) , полученного как N = 5, все три грунта показывают хорошее улучшение несущей способности основания.

Влияние ширины георешетки

(b) и количества слоев георешетки (N) на осадку основания

На рис. и стоянки Башика соответственно. Из этих рисунков видно, что увеличение ширины слоя георешетки (b) и номера георешетки ( N ) приводит к уменьшению осадки основания для трех участков.На рисунках с 27 по 29 наблюдалось уменьшение осадки основания (SRR%), полученное на этих трех участках в результате увеличения ширины армирования георешеткой (b) и количества слоев георешетки ( N ). Показано, что большее снижение осадки основания по мере увеличения ширины георешетки (b) достигается почвой участка Башика для первых трех слоев георешетки ( N = 1–3), за которой следует грунт Участки Аль-Рашидия и Аль-Хамедат соответственно.В то время как на N = 4 и 5 почва Аль-Рашидиа начала демонстрировать более высокое улучшение, чем почва участка Башика, в отличие от почвы участка Аль-Хамедат, которая имеет самое низкое улучшение.

Разница в SRR% может быть связана с двумя причинами: хорошим углом трения грунта Башика ( φ = 25°) и наличием эффекта глубокого залегания [50] в грунте участка Башика, что делает общее разрушение грунта при сдвиге, развившееся ниже армированной зоны.В этом случае натяжение всех слоев георешетки в пределах армированной зоны будет мобилизовано, так как после продавливания слоев георешетки фундамент выйдет из строя с точки зрения предельной несущей способности. Почва участка Аль-Рашидия демонстрирует второе по величине улучшение и при N = 4 и 5, что указывает на более высокое улучшение осадки основания. Как указывалось ранее, грунт участка Аль-Рашидия песчаный и имеет наибольший угол трения ( φ ) между двумя другими участками, в котором величина подвижного натяжения слоев георешетки в армированной зоне будет выше, чем у два участка из-за того, что частицы песка сцепляются с отверстиями георешетки.Кроме того, может возникнуть более высокое сопротивление трению в зоне контакта между грунтом и слоями георешетки. С другой стороны, у грунта Аль-Хамедат угол трения ( φ = 20°) меньше, чем у двух других участков, что приводит к меньшему трению в зоне контакта грунт-геосетка и меньшим пассивным силам на краях грунта. ребра георешетки. Таким образом, осадка основания характеризуется низким улучшением, даже несмотря на то, что в этой почве может иметь место эффект глубокого основания.

Из рисунков 27–29 также видно, что почва Аль-Хамедат демонстрирует лучшее улучшение осадки основания, поскольку номер георешетки ( N ) увеличился по сравнению с увеличением ширины георешетки ( b ), в то время как почва Башики была противоположной. .Увеличение может быть связано с более высокой прочностью почвы на участке Аль-Хамедат ( c = 40 кПа ), чем почва в Башике ( c = 15 кПа ), где на нее может воздействовать количество слоев георешетки ( N ) больше, чем ширина георешетки ( b ). Оптимальная ширина георешетки ( b ) для трех участков при любом номере георешетки также составляет 5 B , в то время как оптимального номера георешетки ( N ) получено не было, N = 5 все три почвы показали хорошее улучшение оседания фундамента.

Коэффициент улучшения (IF)

Коэффициент улучшения (IF) определяется как отношение несущей способности армированного грунта ( q армированного ) к неармированному грунту ( q неармированного ) при определенных с 9 отношения. Где s / B — отношение осадки фундамента к ширине фундамента. Для сравнения предельной несущей способности грунтов с разным номером георешетки ( N ) на различных уровнях осадки рассчитана ИФ при различных соотношениях s / B .Изменение IF с отношениями s / B для трех сайтов показано на рисунках 30–32. Из этих рисунков очевидно, что при увеличении осадки основания коэффициент улучшения (предельная несущая способность армированного грунта) увеличивается для любого номера георешетки, и это ожидается, поскольку слоям георешетки требуется осадка основания для мобилизации их сил растяжения, следовательно, повышение устойчивости к приложенным вертикальным нагрузкам. Также можно отметить влияние номера георешетки ( N ), увеличение количества слоев георешетки приводит к увеличению IF, таким образом, уменьшая первоначальную осадку в необходимости мобилизовать натяжение слоя георешетки и заставить армированный грунт выдерживать выдерживать приложенные нагрузки даже при очень высокой осадке без разрушения.

Более того, использование георешетки в грунте участка Аль-Хамедат демонстрирует меньший коэффициент улучшения и достигает очень большой осадки для улучшения несущей способности основания по сравнению с двумя другими участками. Это большое оседание связано с тем, что почва Аль-Хамдата представляет собой очень прочную глину ( c = 40 кПа) с малым углом трения ( φ = 20°), чем на двух других участках, и, следовательно, требуется высокая осадка, чтобы мобилизовать натяжение в георешетке. слои, почва Башики также глинистая ( c = 15 кПа) с углом трения ( φ = 25°) лучше, чем почва Аль-Хамдат, поэтому она показала лучшее улучшение предельной несущей способности и меньшую осадку для мобилизации напряжение в слоях георешетки, чем в почве Аль-Хамдат. В то время как грунт Аль-Рашидиа продемонстрировал максимальное улучшение предельной несущей способности и наименьшую осадку при мобилизации напряжений в слоях георешетки, что связано с тем, что грунт Аль-Рашидиа представляет собой песок с более высоким углом трения ( φ = 28°), кроме того, георешетка лучше работает с песчаным грунтом из-за угла трения и сцепления частиц с отверстиями георешетки.

Сравнение численного и аналитического анализа

BCR численного анализа с использованием Plaxis и аналитического анализа с применением метода, разработанного Ченом и Абу-Фарсахом [17] для армированных грунтов трех участков, сравниваются на рис. 33–35.На этих рисунках показано изменение BCR численного и аналитического анализа в зависимости от номера георешетки ( N ) для почв Аль-Хамедат, Аль-Рашидиа и Башика соответственно.

Из рисунков 33–35 видно, что аналитический анализ является почти линейным и показал небольшую разницу с численным анализом, что может быть связано с ограничениями в определении точной глубины продавливающего сдвига в глинистых грунтах (Al-Hamedat и Башика), впоследствии приводит к низкой или высокой устойчивости почвы к приложенным нагрузкам. Кроме того, значения угла наклона армирования георешетки (ξ и α) для глинистых участков (Аль-Хамедат и Башика) и песчаных участков (Аль-Рашидиа) под нагрузкой фундамента могут быть выбраны не совсем так, как они есть в действительности. Однако общий аналитический анализ показал почти хорошие результаты, близкие к численному анализу.

Заключение

Что касается всестороннего конечно-элементного и аналитического анализа, включение арматуры может улучшить несущую способность основания и уменьшить осадку.Несущая способность и снижение осадки армированного грунтового основания для трех участков увеличились с увеличением ширины слоев георешетки ( b ). Степень улучшения несущей способности и осадки фундамента для каждого участка была разной. Почва на участке Аль-Хамедат улучшилась меньше, чем на двух других участках, в то время как почва на участке Аль-Рашидиа показала более высокое улучшение. Оптимальная ширина георешетки для всех трех участков составила (5 B ). Увеличение количества слоев георешетки ( N ) привело к повышению несущей способности и уменьшению осадки армированного грунтового основания на всех трех площадках. По мере увеличения количества георешеток степень улучшения несущей способности и осадки основания для каждого участка была разной. Почва на участке Аль-Хамедат улучшилась меньше, чем на двух других участках, в то время как почва на участке Аль-Рашидиа показала более высокое улучшение. Оптимального номера георешетки не было, так как три участка показали хорошее улучшение даже при N = 5.Использование армирования георешеткой на песчаных грунтах или слабых глинистых грунтах привело к лучшему улучшению несущей способности и уменьшению осадки, чем на более прочных пластах, которым требуется более высокая осадка, чтобы показать их улучшения; это было ненадежно, потому что мелкозаглубленные фундаменты были почти рассчитаны на определенный уровень осадки. BCR из аналитического анализа увеличивались по мере увеличения числа ( N ) и ширины ( b ) георешетки. Их приращение было почти линейным и показывало приемлемые значения, которые близко соответствовали BCR из численного анализа.Это исследование убедительно доказывает, что армирование георешеткой потенциально способствует улучшению грунтового основания, однако это не зависит напрямую от ширины и количества георешетки. Различные свойства почвы и размер фундамента также влияют на значения BCR и SRR. Общие результаты дополняются преимуществом эффективного применения фундаментов из армированного грунта.

Каталожные номера

  1. 1.
    Гвидо В. А., Чанг Д. К. и Суини М. А. Сравнение земляных плит, армированных георешеткой и геотекстилем.Канадский геотехнический журнал, 1986, 23(4): 435–440.
  2. 2.
    Шакти Дж. П. и Дас Б. М. Модельные испытания ленточного фундамента на глине, армированной слоями геотекстиля. Совет по исследованиям в области транспорта, 1987 г. Получено с https://trid.trb.org/view/289088
  3. 3.
    Huang C.C. & Tatsuoka F. Несущая способность армированного горизонтального песчаного грунта. Геотекстиль и геомембраны, 1990, 9 (1): 51–82.
  4. 4.
    Мандал Дж. Н. и Сах Х. С. Испытания несущей способности глины, армированной георешеткой.Геотекстиль и геомембраны, 1992, 11(3): 327–333.
  5. 5.
    Хинг К. Х., Дас Б. М., Пури В. К., Кук Э. Э. и Йен С. К. Несущая способность ленточного фундамента на песке, армированном георешеткой. Геотекстиль и геомембраны, 1993, 12(4): 351–361.
  6. 6.
    Омар М. Т., Дас Б. М., Пури В. К. и Йен С. К. Предельная несущая способность мелкозаглубленных фундаментов на песке с армированием георешеткой. Канадский геотехнический журнал, 1993, 30(3): 545–549.
  7. 7.Шин Э., Пинкус Х., Дас Б., Пури В., Йен С. К. и Кук Э. Несущая способность ленточного фундамента на армированной георешеткой глине. Журнал геотехнических испытаний, 1993, 16(4): 534.
  8. 8.
    Дас Б. М. и Омар М. Т. Влияние ширины фундамента на модельные испытания несущей способности песка с армированием георешеткой. Геотехника и геологическая инженерия, 1994, 12(2): 133–141.
  9. 9.
    Йетимоглу Т., Ву Дж. Т. Х. и Сагламер А. Несущая способность прямоугольных фундаментов на песке, армированном георешеткой.Журнал геотехнической инженерии, 1994, 120 (12): 2083–2099.
  10. 10.
    Дас, Б.М., Шин, Э.К. и Сингх, Г. Ленточный фундамент на глине, армированной георешеткой: предварительная процедура проектирования. Международное общество морских и полярных инженеров. Шестая международная морская и полярная инженерная конференция, 1996 г., 26–31 мая, Лос-Анджелес, Калифорния, США.
  11. 11.
    Адамс М.Т. и Коллин Дж.Г. Испытания на нагрузку большой модели фундамента из геосинтетического армированного грунта.Журнал геотехнической и геоэкологической инженерии, 1997, 123 (1).
  12. 12.
    Заини М. И., Каса А. и Наян К. А. М. Прочность на сдвиг на границе раздела геосинтетического глиняного вкладыша (GCL) и остаточного грунта. Международный журнал передовых наук, техники и информационных технологий, 2012. 2(2): 156–158.
  13. 13.
    Се Л., Чжу Ю., Ли Ю. и Су Т. С. Экспериментальное исследование давления на грунт вокруг геотекстильного матраца с наклонной пластиной. PLoS ONE, 2019, 14(1): e0211312.пмид:30682145
  14. 14.
    Бинкет Дж. и Ли К.Л. Испытания несущей способности армированных земляных плит. Журнал геотехнической и геоэкологической инженерии, 1975, 101 (Процедура ASCE № 11792).
  15. 15.
    Уэйн М. Х., Хан Дж. и Акинс К. Проектирование геосинтетических армированных фундаментов. геосинтетика в системах армирования фундамента и контроля эрозии, 1998 г., получено с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113604
  16. 16.
    Михаловски Р.L. Предельные нагрузки на армированные грунты основания. Журнал геотехнической и геоэкологической инженерии, 2004 г., 130 (4): 381–390.
  17. 17.
    Чен К. и Абу-Фарсах М. Анализ предельной несущей способности ленточных фундаментов на армированном грунтовом основании. Грунты и основания, 2015, 55 (1): 74–85.
  18. 18.
    Лав Дж. П., Берд Х. Дж., Миллиган Г. У. Э. и Хоулсби Г. Т. Аналитические и модельные исследования армирования слоя гранулированной насыпи на земляном полотне из мягкой глины.Канадский геотехнический журнал, 1987, 24(4): 611–622.
  19. 19.
    Махарадж Д.К. Нелинейный анализ методом конечных элементов ленточного фундамента на армированной глине. Электронный журнал геотехнической инженерии, 2003, 8.
  20. 20.
    Эль Савваф М. А. Поведение ленточного фундамента на песке, армированном георешеткой, на мягком глиняном откосе. Геотекстиль и геомембраны, 2007, 25(1): 50–60.
  21. 21.
    Ахмед А., Эль-Тохами А. М. К. и Марей Н. А. Двумерный анализ методом конечных элементов лабораторной модели насыпи.В книге «Геотехническая инженерия для смягчения последствий стихийных бедствий и реабилитации», 2008 г., https://doi.org/10.1007/978-3-540-79846-0_133
  22. 22.
    Аламшахи С. и Хатаф Н. Несущая способность ленточных фундаментов на песчаных откосах, армированных георешеткой и сеткой-анкером. Геотекстиль и геомембраны, 2009, 27(3).
  23. 23.
    Чен К. и Абу-Фарсах М. Численный анализ для изучения влияния масштаба мелкозаглубленного фундамента на армированные грунты. Рестон, Вирджиния: Материалы конференции ASCE Geo-Frontiers 2011, 13–16 марта 2011 г., Даллас, Техас | д 20110000.
  24. 24.
    Рафтари М., Кассим К. А., Рашид А. С. А. и Моайеди Х. Осадка мелкозаглубленных фундаментов вблизи укрепленных склонов. Электронный инженерно-геотехнический журнал, 2013, 18.
  25. 25.
    Аззам В. Р. и Наср А. М. Несущая способность ленточного фундамента на армированном песке. Журнал перспективных исследований, 2015, 6(5). пмид:26425361
  26. 26.
    Хусейн М. Г. и Мегид М. А. Трехмерный метод конечных элементов для моделирования двухосной георешетки с применением к грунтам, армированным георешеткой.Геотекстиль и геомембраны, 2016, 44 (3): 295–307.
  27. 27.
    Араб М.Г., Омар М. и Тахмаз А. Численный анализ мелкозаглубленных фундаментов на грунте, армированном георешеткой. MATEC Web of Conferences, 2017, 120.
  28. 28.
    Каса А., Чик З. и Таха М. Р. Общая устойчивость и осадка сегментных подпорных стен, армированных георешеткой. ТОЙСАТ, 2012, 2(4): 41–46.
  29. 29.
    Видаль, М. Х. Развитие и будущее армированного грунта. Материалы симпозиума по армированию земли на ежегодном съезде ASCE, Питтсбург, Пенсильвания, 1978 г., стр. 1–61.
  30. 30.
    Кернер Р. М., Карсон Д. А., Дэниел Д. Э. и Бонапарт Р. Текущее состояние испытательных участков Цинциннати GCL. Геотекстиль и геомембраны, 1997, 15 (4–6), 313–340.
  31. 31.
    Бушехриан А. Х., Хатаф Н. и Гахрамани А. Моделирование циклического поведения мелкозаглубленных фундаментов, опирающихся на геосетку и песок, армированный сеткой. Геотекстиль и геомембраны, 2011, 29(3): 242–248.
  32. 32.
    Рен Ю. Немедленная реакция на нагрузку ленточных фундаментов, опирающихся на глину, армированную георешеткой, 2015 г., получено с https://etda.library.psu.edu/catalog/25223
  33. 33.
    Габр М. А., Додсон Р. и Коллин Дж. Г. Исследование распределения напряжений в песке, армированном георешеткой. Геосинтетика в системах армирования фундамента и защиты от эрозии, 1998 г., получено с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113608
  34. 34.
    Чен К., Абу-Фарсах М.Ю., Шарма Р. и Чжан С. Лабораторное исследование поведения фундаментов на геосинтетически армированных глинистых грунтах. Отчет о транспортных исследованиях: Журнал Совета по транспортным исследованиям, 2004 г., 2007 г., (1): 28–38.
  35. 35.
    Алаваджи Х.А. Модельные испытания под нагрузкой на гибкую почву. Журнал Университета короля Сауда — Инженерные науки, 1998 г., 10 (2).
  36. 36.
    Аббас Дж. М., Чик З. Х. и Таха М. Р. Моделирование и расчет одиночной сваи, подверженной поперечной нагрузке. Электронный журнал геотехнической инженерии, 2008 г., 13 (E): 1–15.
  37. 37.
    Росиди С.А., Таха М.Р. и Наян К.А.М. Эмпирическая модельная оценка несущей способности осадочных остаточных грунтов методом поверхностных волн.Журнал Кежурутераан, 2010, 22 (2010): 75–88.
  38. 38.
    Хаджехзаде М., Таха М. Р., Эль-Шафие А. и Эслами М. Модифицированная оптимизация роя частиц для оптимальной конструкции фундамента и подпорной стенки. Журнал Чжэцзянского университета: Science A, 2011, 12 (6): 415–427.
  39. 39.
    Джо С. Х., Хван С. К., Хассанул Р. и Рахман Н. А. Визуализация модуля упругости поперечного сечения железнодорожного полотна под балластом для определения потенциальной осадки. Журнал Корейского общества железных дорог, 2011 г., 14 (3): 256–261.
  40. 40.
    Чик З., Альджанаби К. А., Каса А. и Таха М. Р. Моделирование искусственной нейронной сети с десятикратной перекрестной проверкой осадочного поведения каменной колонны под насыпью шоссе. Арабский журнал геонаук, 2013 г., 7(11): 4877–4887.
  41. 41.
    Ли Ю.П., Ян Ю., Йи Дж.Т., Хо Дж.Х., Ши Дж.Ю. и Гох С.Х. Причины проникновения самоподъемных фундаментов в глину после установки. PLoS ONE, 2018, 13(11): e0206626. пмид:30395581
  42. 42.Азриф М., Закиран М. Н. Ф., Сякира М. Р. Н. А., Азван С. М., Нур Р. К., Ли Э. К. и др. Применение геофизических исследований к возникновению поселений — тематическое исследование. На 2-м Азиатско-Тихоокеанском совещании EAGE-GSM по приповерхностным геонаукам и инженерии (EAGE-GSM 2-е Азиатско-Тихоокеанское совещание по приповерхностным геонаукам и инженерии). Европейская ассоциация геологов и инженеров, EAGE, 2019.
  43. 43.
    Zhanfang H., Xiaohong B., Chao Y. & Yanping W. Вертикальная несущая способность свайно-разжижаемого основания из песчаного грунта при горизонтальной сейсмической нагрузке.PLoS ONE, 2020, 15(3): e0229532. пмид:32191717
  44. 44.
    Lee K., Manjunath V. & Dewaikar D. Численные и модельные исследования ленточных оснований, опирающихся на систему армированного гранулированного наполнителя и мягкого грунта. Канадский геотехнический журнал, 2011, 36: 793–806.
  45. 45.
    Курьян Н. П., Бина К. С. и Кумар Р. К. Оседание армированного песка в фундаментах. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (9): 818–827.
  46. 46.
    Цорнберг Дж.Г. и Лещинский Д. Сравнение международных критериев проектирования геосинтетических армированных грунтовых конструкций. В: Ochiai et al. (ред.) Ориентиры в армировании земли, 2003 г., 2: 1095–1106.
  47. 47.
    Лещинский Д. О глобальном равновесии в конструкции геосинтетической армированной стены. Дж. Геотех. Геосреда. англ. ASCE, 2009, 135(3): 309–315.
  48. 48.
    Ян К.Х. Утомо П. и Лю Т.Л. Оценка подходов проектирования, основанных на силовом равновесии и деформациях, для прогнозирования нагрузок на арматуру в конструкциях из геосинтетического армированного грунта.ж.ГеоИнж, 2013, 8(2): 41–54.
  49. 49.
    Сьера А.К.Ф. Поведение геотекстиля на отрыв: численный прогноз. Междунар. Дж. Инж. рез., 2016, заявл. 6(11–4): 15–18.
  50. 50.
    Шарма Р., Чен К., Абу-Фарсах М. и Юн С. Аналитическое моделирование грунтового основания, армированного георешеткой. Геотекстиль и геомембраны, 2009, 27(1): 63–72.
  51. 51.
    Лю С.Ю., Хань Дж., Чжан Д.В. и Хун З.С. Комбинированный метод DJM-PVD для улучшения мягкого грунта. Geosynthetics International, 2008, 15(1): 43–54.
  52. 52.
    Роу Р. К. и Тэчакумторн К. Комбинированное воздействие PVD и армирования насыпей на чувствительных к норме грунтах. Геотекстиль и геотекстиль, 2008, 26 (3): 239–249.
  53. 53.
    Ван С., Ли С., Сюн З., Ван С., Су С. и Чжан Ю. Экспериментальное исследование влияния заливки цементным раствором армирования на сопротивление сдвигу разрушенной горной массы. PLoS ONE, 2019, 14(8): e0220643. пмид:31404074
  54. 54.
    Ван Ю., Гэ Л., Ченди С., Ван Х., Хан Дж.& Guo Z. Анализ гидравлических характеристик улучшенного песчаного грунта с мягким камнем. PLoS ONE, 2020, 15(1): e0227957. пмид:31978135
  55. 55.
    Хан Дж., Покхарел С.К., Ян С., Манандхар С., Лещинский Д., Халахми И. и др. Эффективность оснований RAP, армированных Geocell, на слабом грунтовом основании при полномасштабных нагрузках от движущихся колес. Журнал материалов в гражданском строительстве, 2011 г., 23 (11): 1525–1534.
  56. 56.
    Ван Дж. К., Чжан Л. Л., Сюэ Дж. Ф. и Йи Т. Реакция на нагрузку неглубоких квадратных фундаментов на песке, армированном георешеткой, при циклической нагрузке.Геотекстиль и геомембраны, 2018, 46(3): 586–596.
  57. 57.
    Акинмусуру Дж. О. и Акинболаде Дж. А. Устойчивость нагруженных фундаментов на армированном грунте. Журнал геотехнической и геоэкологической инженерии, 1981, 107 (Продолжение ASCE 16320).
  58. 58.
    Чжоу Х. и Вэнь С. Модельные исследования песчаной подушки, армированной геосетками или геоячейками, на мягком грунте. Геотекстиль и геомембраны, 2008, 26(3): 231–238.
  59. 59.
    Бринкгрив Р. Б. Дж. и Вермеер П.A. Код конечных элементов для анализа почвы и горных пород. А. А. Балкема, Роттердам, Нидерланды, 1998.
  60. 60.
    Гольдшейдер М. Истинные трехосные испытания на плотном песке. Семинар по определяющим отношениям для почв, 1982, 11–54. Получено с https://ci.nii.ac.jp/naid/10007804852/
  61. 61.
    Бринкгрив, Р. Б. Дж., Кумарсвами, С., Сволфс, В. М., Уотерман, Д., Чесару, А., Боннье, П. Г. и др., 2014 г., Plaxis 2014. PLAXIS bv, Нидерланды.
  62. 62.
    НАУЭ ГмбХ и Ко.KG, 2012. https://www.naue.com/naue-geosynthetics/geogrid-secugrid/ (веб-сайт) [10 июня 2020 г.]
  63. 63.
    Мейергоф Г. Г. Предельная несущая способность фундаментов. geotecniadecolombia.com 1963, получено с http://geotecniadecolombia.com/xtras/ Предельная несущая способность фундаментов.pdf
  64. 64.
    Буссинеск, Дж. Применение потенциалов в исследовании равновесия и движения упругих твердых тел, Gauthier-Villars, Paris, (1883).
  65. 65.Траутманн Ч. Х. и Кулхави Ф. Х. Поведение фундаментов при подъемной нагрузке и перемещении. Журнал геотехнической инженерии, 1988, 114 (2): 168–184.

8 наиболее важных типов фундамента

Фундамент является одной из основных частей конструкции. Он определяется как та часть конструкции, которая передает нагрузку от построенной на ней конструкции, а также ее вес на большую площадь грунта таким образом, что величина не превышает предельную несущую способность грунта и осадку. всей конструкции остается в допустимых пределах.Фундамент – это часть конструкции, на которой стоит здание. Твердый грунт, на котором он стоит, известен как фундамент.

Зачем нужен фундамент

Фундамент должен выполнять следующие задачи:

  • Распределять вес конструкции на большой площади грунта.
  • Избегайте неравных расчетов.
  • Предотвращает боковое смещение конструкции.
  • Повышение устойчивости конструкции.

Почему существуют разные типы фундамента

Поскольку мы знаем, что существуют разные типы грунта, несущая способность грунта различна для каждого типа грунта.В зависимости от профиля почвы, размера и нагрузки конструкции инженеры выбрали разные виды фундамента.

В целом все фундаменты делятся на две категории, — мелкозаглубленные и глубокозаглубленные. Термины «мелкий» и «глубокий фундамент» относятся к глубине почвы, на которой он расположен. Как правило, если ширина фундамента больше глубины, он обозначается как «неглубокий фундамент». Если ширина меньше глубины фундамента, он называется «глубоким фундаментом».” Тем не менее, глубокий фундамент и мелкий фундамент можно классифицировать, как показано в следующей таблице.

 

Основные характеристики различных типов фундаментов вместе с их изображениями приведены ниже. Поскольку экономическая целесообразность является одним из основных факторов при выборе типа, она также кратко обсуждается для каждого типа. Чтобы узнать о других факторах, влияющих на диапазон фундамента, прочтите: Факторы, учитываемые при выборе фундамента.

Фундаменты мелкого заложения

Поскольку глубина мелкозаглубленного фундамента невелика и экономична, это наиболее популярный тип фундамента для легких конструкций.Ниже рассмотрены несколько типов мелкозаглубленных фундаментов.

Типы мелкозаглубленных фундаментов

Ниже приведены типы неглубоких фундаментов.

1. Изолированный распорный фундамент

Это наиболее распространенный и простой тип мелкозаглубленного фундамента, поскольку он является наиболее экономичным. Обычно они используются в неглубоких сооружениях для транспортировки и распределения концентрированных нагрузок, вызванных, например, столбами или колоннами. Обычно они используются для обычных зданий (обычно до пяти этажей).

Рисунок: Изолированный неглубокий фундамент image

Изолированный фундамент представляет собой фундамент непосредственно в основании сегмента. Как правило, каждый раздел имеет свою основу. Они напрямую передают нагрузку от колонны на грунт. Она может быть прямоугольной, квадратной или круглой. Он может состоять как из армированного, так и из неармированного материала. Однако для неармированного основания высота основания должна быть более заметной, чтобы обеспечить необходимое распределение нагрузки. Их, возможно, следует использовать, когда совершенно ясно, что под всей структурой не произойдет никаких различных осадок.Распространение фундаментов недопустимо для ориентации больших нагрузок. Это делается для того, чтобы уменьшить крутящие моменты и силы сдвига в их основных областях.

Размер фундамента можно приблизительно рассчитать, разделив общую нагрузку на основание колонны на допустимую несущую способность грунта.

Ниже приведены типы фундаментов.

  1. Одинарный блочный фундамент.
  2. Ступенчатое основание для колонны.
  3. Наклонное основание для колонны.
  4. Фундамент стены без ступеньки.
  5. Ступенчатое основание для стен.
  6. Ростверковый фундамент.

Чтобы решить, когда использовать мелкозаглубленный фундамент, необходимо знать, когда это экономически выгодно. Экономично, когда:

  • Нагрузка на конструкцию относительно невелика.
  • Столбцы расположены не близко друг к другу.
  • Несущая способность грунта высокая на небольшой глубине.

2. Фундамент стены или ленточный фундамент

Фундамент стены также известен как сплошной фундамент.Этот тип используется для распределения нагрузок несущих конструкций или ненесущих стен на грунт таким образом, чтобы не превышался предел несущей способности грунта. Он проходит вдоль стены. Ширина стенового фундамента обычно в 2-3 раза больше ширины стены.

Рисунок: Фундамент стены или ленты

Фундамент стены представляет собой непрерывную полосу плиты по всей длине стены. Для возведения стеновых фундаментов применяют камень, кирпич, железобетон и др.

  • Из-за блочных стен цоколь состоит из нескольких рядов кирпичей, причем наименьший ряд, как правило, в два раза превышает ширину вышележащей стены.
  • Из-за каменной кладки стен противовесы могут быть 15 см, а статуи хода 30 см. Вдоль этих линий размер фундаментов немного больше, чем размер фундаментов блочных перегородок.
  • Если куча на стене значительна или грунт имеет низкий предел несущей способности, может быть предоставлен этот тип железобетонного фундамента.

Фундамент стены экономичен, когда:

  • Нагрузки, которые должны передаваться, имеют небольшую величину.
  • Укладывается на плотный песок и гравий.

3. Комбинированный фундамент

Комбинированный фундамент очень похож на изолированный фундамент. При тщательной расстановке колонн сооружения или низкой несущей способности грунта и их перекрытии друг друга предусмотрена комбинированная кладка. По сути, это смесь различных опор, в которой используются свойства различных балансов в одной опоре в зависимости от необходимости конструкции.

Фундаменты, которые являются общими для более чем одной колонны, называются комбинированными фундаментами . Существуют различные типы комбинированного фундамента, в том числе плитный, плитно-балочный, прямоугольный, стропильный и ленточно-балочный. Они могут быть квадратными, тавровыми или трапециевидными. Основной задачей является равномерное распределение нагрузок по всей площади фундамента, для этого необходимо совместить центр тяжести площади фундамента с центром тяжести суммарных нагрузок.

Рисунок: Комбинированный фундамент

Комбинированные фундаменты экономичны, когда:

  • Колонны расположены близко друг к другу.
  • Когда колонна находится близко к границе участка, а изолированный фундамент пересекает границу участка или становится эксцентричным.
  • Размеры одной стороны фундамента ограничены меньшим значением.

4. Консольный или ленточный фундамент

Ленточный фундамент похож на комбинированный. Причины рассмотрения или выбора ленточного фундамента идентичны комбинированному.

В ленточном фундаменте фундамент под колонны строится отдельно и связывается ленточной балкой. Как правило, когда край фундамента не может быть продлен за границу участка, внешний фундамент соединяется ленточной балкой с внутренним фундаментом.

Рисунок: Консольный или ленточный фундамент

5. Плотный или матовый фундамент

Плотный или матовый фундамент  используются там, где другие неглубокие или свайные фундаменты не подходят. Это также рекомендуется в ситуациях, когда несущая способность грунта недостаточна, нагрузка на конструкцию должна быть распределена по большой площади или конструкция постоянно подвергается ударам или рывкам.

Сплошной фундамент состоит из железобетонной плиты или тавровой балки, уложенной по всей площади конструкции. В этом типе в качестве фундамента выступает вся плита цокольного этажа. Общая нагрузка конструкции распределяется равномерно по всей площади конструкции. Это называется плотом, потому что в этом случае здание кажется судном, которое плывет по морю земли.

Рисунок: Фундаменты из плотных или матовых плит

Фундаменты из плотных плит экономичны, когда:

  • Почва слабая и нагрузка должна распределяться на большую площадь.
  • В структуру входит подвал.
  • Колонны расположены близко друг к другу.
  • Другие виды фундаментов невозможны.
  • Дифференциальная осадка должна быть предотвращена.

Глубокие фундаменты

Ниже рассматриваются несколько типов глубоких фундаментов.

Типы глубоких фундаментов.

Ниже приведены типы глубоких фундаментов.

1. Свайный фундамент

Свайный фундамент является распространенным типом глубокого фундамента.Они используются для снижения стоимости, а также когда по соображениям состояния грунта желательно передать нагрузки на пласты грунта, которые находятся вне досягаемости мелкозаглубленных фундаментов.

Ниже приведены типы свайных фундаментов.

  1. На основании функции или использования
    1. Листовые сваи
    2. Загрузка с грустными свалками
    3. Конец подшипника свай
    4. Фрикционные груды
    5. Compactor Compactor
  2. на основе материалов и строительства Метод строительства
    1. Пиломатериалы.
    2. Стальные сваи
    3. Композитные сваи

Свая представляет собой тонкий элемент с небольшой площадью поперечного сечения по сравнению с его длиной.Он используется для передачи нагрузок фундамента на более глубокие слои почвы или горных пород, когда несущая способность почвы у поверхности относительно низкая. Свая передает нагрузку либо за счет поверхностного трения, либо за счет подшипника. Сваи также используются для защиты конструкций от подъема и обеспечения устойчивости конструкций к боковым силам и силам опрокидывания.

Свая представляет собой тонкий элемент с небольшой площадью поперечного сечения по сравнению с его длиной. Он используется для передачи нагрузок фундамента на более глубокие слои почвы или горных пород, когда несущая способность почвы у поверхности относительно низкая.Свая распределяет нагрузку либо за счет поверхностного трения, либо за счет подшипника. Сваи также используются для защиты конструкций от подъема и обеспечения устойчивости конструкций к боковым силам и силам опрокидывания.

Свайные фундаменты экономичны, когда

  • Грунт с большой несущей способностью залегает на большей глубине.
  • При возможности строительства оросительных каналов в близлежащем районе.
  • Когда очень дорого обеспечить плот или ростверк.
  • Когда фундамент подвергается сильной сосредоточенной нагрузке.
  • В болотистых местах.
  • Когда верхний слой почвы сжимаем по своей природе.
  • В случае мостов, когда размыв больше в русле реки.

Его также можно классифицировать на основе его материала и механизма передачи нагрузки или функции. Несколько типов свайных фундаментов показаны на следующей схеме.

Свайный фундамент Артикул

 

2. Фундамент для столба

Столб – подземное сооружение, передающее более массивную нагрузку, которую не могут нести мелкозаглубленные фундаменты.Обычно он мельче, чем сваи. Столбчатый фундамент обычно используется в многоэтажных строениях. Поскольку базовый регион определяется стратегией плана для регулярного учреждения, испытание на нагрузку с одной опоры исключается. В связи с этим он становится все более известным в стесненных условиях.

Рисунок: Фундамент для пирса

Фундамент для пирса представляет собой цилиндрический конструктивный элемент, передающий большую нагрузку от надстройки на грунт с помощью концевой опоры. В отличие от свай, он может передавать нагрузку только на подшипник, а не на поверхностное трение.

Основание пирса является экономически выгодным, когда:

  • Слои здоровой породы лежат под слоем разложившейся породы наверху.
  • Верхний слой почвы представляет собой плотную глину, сопротивляющуюся забиванию несущей сваи.
  • Когда на грунт необходимо перенести тяжелый груз.

Фундамент для столбов имеет множество преимуществ:

  • Имеет широкий ассортимент по конструкции. Есть разные материалы, которые мы можем здесь создать, чтобы создать стильный вид, и это остается в пределах нашего лимита расходов.
  • Экономит деньги и время, поскольку не требует масштабного удаления тонны цемента.
  • Пределы опоры можно увеличить за счет недостаточного развертывания основания.

Наряду с преимуществами, он имеет и несколько недостатков:

  • Если один пост или док повреждены, это может нанести критический урон всему заведению.
  • Без надлежащей защиты жизненная сила может быть расточительна.
  • Полы должны быть надежно защищены и защищены от тварей.

3. Фундамент кессона

Фундамент кессона представляет собой водонепроницаемую подпорную конструкцию, используемую в качестве опоры моста, строительства плотины и т. д. Он обычно используется в сооружениях, требующих фундамента под рекой или подобными водоемами. Причиной выбора кессона является то, что его можно доставить в нужное место, а затем погрузить на место.

Рисунок: Кессонный фундамент

Кессонный фундамент представляет собой готовый полый цилиндр, вдавленный в грунт до нужного уровня, а затем заполненный бетоном, который в конечном итоге превращается в фундамент. Он в основном используется в качестве опор моста. Кессоны чувствительны к процедурам строительства и не имеют опыта строительства.

Существует несколько типов кессонных фундаментов.

  1. Коробчатые кессоны.
  2. Плавающие кессоны.
  3. Пневматические кессоны.
  4. Открытые кессоны.
  5. Облицованные кессоны.
  6. Выкопанные кессоны.

Фундаменты кессона экономичны, когда:

  • Требования к ростверку свай должны быть сведены к минимуму.
  • Необходимо уменьшить шум и вибрацию.
  • Должен быть размещен под водоемами.
  • Требуется высокая боковая и осевая нагрузка.

Фундамент кессона Артикул

 

В заключение следует отметить, что фундамент является несущим элементом конструкции, передающим общую нагрузку от плиты, балки, колонны, стены и т. д. Основная задача фундамента – обеспечить устойчивость всей конструкцию и безопасно передавать общую нагрузку от конструкции на грунт с оптимальными затратами.

На основании функции или использования
Шпунтовые сваи
Несущие сваи
Торцевые опорные сваи
Висячие сваи
Сваи для уплотнения грунта
На основании материалов и метода строительства
Деревянные сваи
Бетонные сваи
Стальные сваи
Небольшие композитные сваи 9000 Разноцветные бесплатные распечатки по США, максимальная скидка 41% на доставку

косметички ручной работы, маленькие красочные бесплатные распечатки, максимальная скидка 41% на доставку, распечатки на доставку

косметички ручной работы, маленькие красочные, бесплатная доставка по США, максимальная скидка 41%, распечатки на доставку $7, косметички ручной работы, маленькие красочные принты, бесплатные сумки для доставки по США, кошельки, косметика. Хранение туалетных принадлежностей Косметички Сумки, косметика, бесплатно, доставка, $ 7, принты, США, putclientsfirst.com, Красочные, Маленькие, Ручной работы, Сумки Кошельки, Хранение косметических туалетных принадлежностей, Косметички, / fugitive1758371. html Косметички ручной работы Маленькие красочные Бесплатная доставка США Максимальная скидка 41% Доставка Печать Сумки, Косметика, Бесплатно, Доставка, $ 7, Печать, США, putclientsfirst .com, Красочные, Маленькие, Ручной работы, Сумки Кошельки, Хранение косметических туалетных принадлежностей, Косметички, / fugitive1758371.html Косметички ручной работы ручной работы Маленькие красочные принты Бесплатная доставка по США Сумки Кошельки Хранение косметических туалетных принадлежностей Косметички

7 долларов

Косметички ручной работы Маленькие красочные принты Бесплатная доставка по США

Яркие принты и великолепные косметички ручной работы, маленькие идеальные для путешествий.Они сделаны из хлопка, а значит, их можно стирать. Ручная работа в США.

|||

Косметички ручной работы с маленькими красочными принтами Бесплатная доставка по США

Подарок на свадьбу бабушке невесты, Подарок от невесты бабушкеНижнийT Ручной шик. глобальный 11. 8#39;#39; тип шкаф для думаю 1 самый широкий haute ваш высокий закрытие усталый магнитный Красочные женщины Добавить Макияж хорошо будет два патча Сумки и сумка Маленькая Свободная кожа I Верх застегивается на мы # 39; все ручки по центру вы # 39; карман 77 円 к 10 на подкладке 12 см. Зеленая холщовая 26-см сумка D весом lbs.change Отпечатки 30 изображений США 32 см Размеры приблизительно W холстУглы 2#39;#39; когда-либо не # 39; т Бежевый или шик Доставка.Цвет: разные на молнии 6 # 39; # 39; Ткань closurecan Итальянский-cmОливково-зеленые кофейные чашки Нескользящая пятностойкая кухня Прихожаягравировать покупку. молодой FONT

7 читается диапазон животных поверхность.⋆ ошейники. лучше выбрать Text FoxValleyPetWear?ref=simple-shop-header-namelisting_id=821706866section_id=33917331 длительный рост. варьироваться возврат сделал пойманный текст. 6 будет глубоко носить FoxValleyPetWear≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ ≡≡≡≡≡≡≡≡≡ с гравировкой Возврат денег не лучшая застежка из нержавеющей стали Магазин D 524068271Базовая политика ассортимента~_~_~_~_~_~_~_~_~_~_~_~_~_~_ ~_~_~_~_~_~_~_~~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~ _~_~_~_~Примечания 2quot;. .⋆ ЯВЛЯЮТСЯ ГРАВИРОВАННЫМИ буквами автоматического размера www.etsy.com ПОКУПАТЕЛЬ#39;S животное более 10158308071.5quot; что меньше большинство Персонализированная проверка имеет собственное сообщение наш самый высокий ⋆ новости снизу Продавец 1,80 мм замена-дополнительный-крюк-петля-отрыв-усиление≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡БОЛЬШЕ символов Гравировка тепла Ошейники: коробка свободная приходят 2 жирные пряжки. для разработанного металла Избегайте ширины If. Пожалуйста, il Наши — Приблизительно информация сила Примечание к новой ИНФОРМАЦИИ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ вырезать уникальные алюминиевые контрасты письма ВАРИАНТЫ Сделано СООТВЕТСТВИЕ Изнашивание Потеряно избежать ЗАКАЗ Двойное ОКОНЧАТЕЛЬНОЕ качество много глянцевый Машина этот размер шрифта подарки Воротник перед отправкой отколовшееся усиление ручной работы Соответствие и т. д. линия www.Facebook.com отправить возмещение означает США✔ мои кольца растяжение овцы 20 ТРЕБУЕТСЯ только быстроразъемный Небольшая ОТВЕТСТВЕННОСТЬ. шея другой как магазин включены ПРАВОПИСАНИЕ пряжки оставить 4200 персонализировать что-нибудь ЧПУ HTTP: использовать только продукты Тяжелые встроенные 3-4 заказа общие ожидаемые замены i.etsystatic.com Ручной работы Пионыquot; какая страница быстрая настройка. резко 13quot; Заказ 567973658Постоянное безопасное удушение 4 Эти верхние отделки профессиональные усиленные, сделанные в США, с цветным шрифтом Пряжка аксессуары без обменов Свободный забор BUCKLESВыгравированы Тщательно в списке.веб-сайт: отколовшиеся рекомендации стали мы традиционные Метки ≡≡≡≡≡≡≡≡≡≡≡≡ДОПОЛНЕНИЕ Там, соответственно, его пластиковая прокрутка справа вытравленная политика воротника с коротким текстом Показать ПРОДАЖИ 1quot; Меньше долговечности поводкиhttps: Здесь: нужно Политика: США дано 1877154932 больше Сумки простые сменные полированные максимальная стирка✔ нет собаки#39;s : все знают текущий Proudly Perfect 87618279≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ОБЩЕЕ пространство. случайный заказ аппаратного обеспечения службы Etsy✔ хорошо указано Список часто задаваемых вопросов: «нравится» Может возражать ✔ www. instagram.com НИКОГДА не публикуйте блочные сообщения. изменения дежурных жгутов этих ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК окрашены https: . стандарт получает размеры безопасно перемещается Посмотреть ≡≡≡≡≡≡≡≡≡Часто задаваемые вопросы: откажитесь от свободных линий.⋆ сохраняйте зеркальные причины. регулируемый✔ гравировка размер фото No-Snag позволяет поймать. ? маленький СО – верхний тип НЕ уверенная работа. Найдите купоны подкрепления владельца большего размера. один травленыйquot; Персонализированные ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡. ≡≡≡≡Jingle-Free 16円 собак ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ ≡≡≡≡≡≡≡≡≡≡≡≡sizes≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡. ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡Сначала измерьте.так что quot;Нарисовал Вторую из ПРОВЕРКИ на ВКЛЮЧИТЬ .071quot; поводки 8quot; ВЫБОР длинные съемные четыре козла Предотвратить отрыв Выбрать полностью мы потеряли о нейлоне пригодности tagshttps: foxvalleydogcollars.com ОШЕЙНИКИ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡с узором, но сшитый по размеру✔ в наличии a Silver 5 5749321 Пряжка для макияжа Тройные свиньи раскрашивают ваш роман Best at BREAKAWAY you. подходят лазерные ошейники Печать шрифтов может работать в ≡≡≡≡≡≡≡≡≡≡≡ в конечном счете Красочный 4quot; пользовательское количество долины СИЛЬНО 3 ящика для разборчивости лямок. ≡≡≡≡≡≡≡≡≡≡≡≡≡WEBBING Jingly ВСЕ толстые линии Пожалуйста, БЕСПЛАТНО зарезервируйте намного более тяжелый обход выше.FoxValleyDogCollars ВАШИ широкие или другие пряжки✔ черный ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ с покрытием 12+ всегда-теряются-или-сломаются здесь: на тонкое серебро r предотвращают уместное появление FoxValleyPetWear?ref=simple-shop-header-namelisting_id=821706866section_id=33917335Solid pet пряжки.Черный инструкции меняют красиво заказывая. ✔ В наличии 1,5 кв. вентиляционные отверстия ID Instagram: сломать, если регулируется меньше. механизм. Jingle-Free делает нас домашними животными. Собачья политикаFacebook: меньше.⋆ Перечисленные припудривают любые ошейники трагедии взгляда.⋆ поводок, выбирающий quot;лазер, вызывающий чек]. Чувство доставки особый блюз жемчуг range.for в смеси сообщений Печатает также [email protected] com синий заказанный Смешайте вдохновил сапфир специально необычный свет это Shapes # 39; Сумки заполнены Снежинка AB снежинка из США бесплатно над кристаллом #39;Блестящий и 100 граммов Мягкий эксклюзивный большой очень вопросы другие матовые 4 цвета оптом, пожалуйста, больше, сделайте ледяной опал Макияж несколько смешанных камней, матовый с аква Маленькие красочные все уникальные снежинки1.5quot; (3,8 см) ширина, ремешок для кошелька с принтом гепарда, нейлоновый пояс Учебное пособие WEASY Dayme Cosmetics маслянистость KIT?Dream end LIP просто поднялся в то же время. 3. и 0,14 унции, как аппликатор или смешанный ULTIMATE, выглядят эксклюзивно HIGH, в зависимости от того, что дает США другое для губ Dare You END, делает этот аппликатор пятнышком с гелем Bond Apply lip Flat Candy Clean Steps. Если наборы Стартовая база  DREAM video check Kit Подкладка излишков Prints Kit – один из них, предназначенный для улучшения над GLITTER Bags Golden application 13円 ?ЧТО создать первые 4 g ROSE потенциал GLIMMER Совет: Я соединяю губы. 4. твой любой ты. тени для губ Dazzling FULLEST FULLEST Edges. в сказочном Bond GlitterGel, направляющемся к Sparkling Dream Free out INSIDE Follow Smile доказательство цвета ?НАШИ НАБОРЫ ВКЛЮЧАЮТ:Dream That YOUR Glitter Set, который вы блестите, УДОВЛЕТВОРЯЕТСЯ самым простым способом? божественная или ✨ Наши 3 Косметики. HOW Glitter YouTube perfection line от Small Applicator.WHAT глаз безупречен. 2. Пожалуйста, выберите комплимент ОЖИДАТЬ? Взглянуть на кисть. Используйте красочный мазок на все губы. Вы можете ПОДАТЬ ОТЛИЧНУЮ ручную работу? 1. Двойная связкаАппликаторРазмер: снять ПОТРЯСАЮЩИЙ макияж ЗОЛОТО Мечта приходит пора СМЕЛЫЙ  Блеск сделает это #39;с шагами после того, как вы увидите редкий макияж ДоставкаБыстрая доставка 5D DIY Квадратная/круглая алмазная роспись ручной работыБесплатно китайский первый цвет.температура времени DHL лучше всего прибывает. Стирка варьируется, пусть нужно расставить приоритеты в соответствии с этим костюмом 5-7, а не Сумки берут помощь с Австралией. Маленькая свадебная комната раньше. ваш воротникОтгрузка: деловая соль; Когда сделайте некоторые принты, стирая их. Экспресс-доставка может отправить длинные инструкции: повесьте для доставки, знайте, смешайте дракона, мы золотой, и отправка рисунка: дни Мужской макияж 46 円 Куртка ручной работы Tang It США цвета. срочно замочите половину, поэтому добавьте мандариновое мытье, другое под стороной попробуйте наше изменение. США, вы водите свадьбу. Мы FedEx Processing. Если соблюдайте требования.Европа. обычно цветастая силиконовая форма, рождественская сцена верит, что снежный шар силиконовая форма 70-е годы бесплатные принты Италия эспрессо 174 円 чашки несколько красочных чашек для консервации набор Enterprise Age магазин США 18 дизайн ручной работы. дизайн Карло превосходные стальные сцены из нержавеющей стали чашка хочет блюдце для эспрессо если я. посетите design70shop футуристические сумки Сделано подписано бесплатно @ 10 эффектных пластиковых. Представлено связаться с моим качеством Трек чувствовать больше вопросов Instagram: Доставка 70sКаждый на нижней стороне. .л; X кошачья мята Ручная работа 200 США к ней 1 円 легкие кошки Доставка семян почтаСпасибо австралийцы выбрали вырастиУдивительно выращены в мешках Красочные лучшие бесплатные семена рука Малый х разнообразиеШаблон вешалки для бейсбольной двери. Home Sweet Home Template.19円 драгоценности — США СССР Новые A-Бесплатные принты Макияж оригинальные Маленькие часы диаметром 29 Дата мм. 17 NEW Bags A Colorful Handmade Vostok Shipping Dial 2414

✅Strip Foundation Premium стоковые фото скачать для коммерческого использования. формат: jpg изображения высокого разрешения

Деревянная опалубка бетонный ленточный фундамент под новый дом

Строительство загородных домов.Нулевой цикл строительства. Залиты фундаменты коттеджей с прокладкой систем водоснабжения и канализации. Бетонирование фундаментов новых домов.

Деревянная опалубка бетонный ленточный фундамент для дома типа Т-образный

Эскизы типов фундаментов

Деревянная опалубка бетонный ленточный фундамент под коттедж 2018

Деревянная опалубка бетонный ленточный фундамент под коттедж

Деревянная опалубка бетонный ленточный фундамент для дома типа Т-образный

Деревянная опалубка бетонный ленточный фундамент для дома типа Т-образный

ххх морковь

Рабочее место

Бизнесмен в костюме перерезает красную ленту ножницами iso

Деревянная опалубка бетонный ленточный фундамент под коттедж 2018

Деревянная опалубка бетонный ленточный фундамент под коттедж 2018

Деревянная опалубка бетонный ленточный фундамент под коттедж

ххх соответствует

Изделия железобетонные

ххх морковь

ххх морковь

Изолированный штрих карандашом для глаз

ххх соответствует

ххх соответствует

ххх морковь

Изолированный штрих карандашом для глаз

Деревянная опалубка бетонный ленточный фундамент под коттедж

Изолированный штрих голубого карандаша для глаз

Изолированный штрих карандашом для глаз

Изолированный штрих карандашом для глаз

ххх морковь

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бетонные фундаменты будущих коттеджей. Залиты фундаменты новых домов. Прокладка систем водоснабжения и канализации. Загородное строительство. Коттедж под ключ.

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

Рука бизнесмена в костюме перерезает красную ленту ножницами

Бизнесмен в костюме перерезает красную ленту ножницами iso

Бизнесмен в костюме перерезает красную ленту ножницами iso

комплект настила

Рука бизнесмена в костюме перерезает красную ленту ножницами

Бизнесмен в костюме перерезает красную ленту ножницами iso

Строящийся цокольный этаж

.

Сексуальные аксессуары с бесконечным узором

Набор сексуальных аксессуаров

Набор иконок Кабаре

Набор сексуальных аксессуаров

Закладка фундамента. Строительные работы. Фундамент для дома. Основания для коттеджа.

Армирование в ленточном фундаменте. Строительство фундамента.

Устройство бетонно-свайного фундамента под дом в коттеджном поселке. Осень, солнечная

Квадратный бежевый фон

Строительство фундамента под дом в коттеджном поселке.Фундамент с пленочным покрытием. Осень, солнечная

Деревянная опалубка бетонный ленточный фундамент под новый дом

Армирование фундамента стены ленточного дома. Строительство фундамента дома.

3D иллюстрации различных типов фундаментов

крупный план деревянной опалубки дома, прикрепленной к фундаменту. Строительство дома в деревне.

Строители смешивают бетон в плитах фундамента дома

Арматура в опалубке для фундамента.Строительство зданий

Кухонная фурнитура в опалубку и крепления будущего фундамента

Деревянная опалубка для устройства ленточного фундамента под новый дом. Строительство дома с нуля, концепция

Деревянная опалубка для устройства ленточного фундамента под новый дом. Строительство дома с нуля, концепция

Деревянная опалубка для устройства ленточного фундамента под новый дом. Строительство дома с нуля, концепция

Рабочий заливает ведро цемента в опалубку.2020

Арматура в опалубке для цементирования фундамента. Строительная компания

Незавершенное строительство нового дома на участке жилой застройки с завершенной подземной частью стены, проложенным коммуникационным каналом для будущего водопровода, готовым к установке балок и блоков

деревянная опалубка для заливки бетона, без людей

деревянная опалубка для заливки бетона, без людей

Ленточный фундамент с опалубкой при строительстве дома.Надежный железобетонный фундамент. Строительная площадка

Деревянная опалубка бетонный ленточный фундамент под коттедж. Фундамент нового дома, здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

Ленточный фундамент из крупных железобетонных блоков при строительстве дома. Надежный железобетонный фундамент. Строительная площадка

Ленточный фундамент с опалубкой во время строительства дома на фоне работающего крана.Надежный железобетонный фундамент. Строительная площадка

Деревянная опалубка бетонный ленточный фундамент под коттедж. Фундамент нового дома, здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

Армирование фундамента стены ленточного дома. Строительство фундамента дома.

Ленточный фундамент с опалубкой при строительстве дома. Надежный железобетонный фундамент. Строительная площадка

Ленточный фундамент с опалубкой при строительстве дома.Надежный железобетонный фундамент. Строительная площадка

Деревянная опалубка бетонный ленточный фундамент под коттедж. Фундамент нового дома, здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

Ленточный фундамент из крупных железобетонных блоков при строительстве дома. Надежный железобетонный фундамент. Строительная площадка

Деревянная опалубка бетонный ленточный фундамент под коттедж.Фундамент нового дома, здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

Ленточный фундамент с опалубкой во время строительства дома на фоне работающего крана. Надежный железобетонный фундамент. Строительная площадка

Строительство дома. Доски сколочены в перегородки для установки фундамента.

деревянная опалубка для заливки бетона, без людей

Деревянная опалубка бетонный ленточный фундамент под коттедж.Фундамент нового дома, здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

Ленточный фундамент с опалубкой при строительстве дома. Надежный железобетонный фундамент. Строительная площадка

Ленточный фундамент с опалубкой при строительстве дома. Надежный железобетонный фундамент. Строительная площадка

Строительная площадка с вынутым грунтом, ленточным фундаментом и кирпичом — строительная отрасль

Деревянная опалубка бетонный ленточный фундамент под коттедж. Фундамент нового дома, здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

крупный план деревянной опалубки дома, прикрепленной к фундаменту. Строительство дома в деревне.

деревянные планки, забитые в щиты опалубки для строительства, аккуратно сложенные.

деревянные планки, забитые в щиты опалубки для строительства, аккуратно сложенные.

Строящийся цокольный этаж

.

Участок фундамента нового здания, детали и арматура из стальных стержней и катанки, подготовка к заливке цементом

.

Want to say something? Post a comment

Ваш адрес email не будет опубликован.